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Abstract—There has been increasing interest for the
coexistence of communication and radar systems which share
the same wireless channel. This paper investigates the effect of
non-cooperative additive radar interference for a communication
channel where convolutional encoder is used. In order to
include any given pair of convolutional encoder and M -ary
constellation in the analysis, bit-error-rate (BER) bound
expressions for low and high interference regions are derived
based on product-state matrix technique. Thus, the any chosen
constellation together with convolutional encoder does not need
to satisfy the quasi-regularity (QR) property that includes
geometrical uniformity and symmetry. Numerical results validate
the derived performance bounds and using proper optimization
techniques, the derived expressions can be utilized in search for
good constellations for a given coding scheme suffering from
radar interference without any restrictions on the constellation
points and the choice of convolutional encoder.

I. INTRODUCTION

Wireless communications systems operating on the
frequency bands that are currently allocated solely to radar
systems have recently gained interest due to the congestion
experienced by the cellular systems in sub-6 GHz frequencies
[1]. Ideally such co-existing systems would be jointly designed
so that the mutual interference is minimized and performance
maximized [2]. This would, however, require a complete
re-design and replacement of the existing systems, so a more
practical scenario is the one where the radar and communication
systems are designed in isolation and operate with minimal
knowledge of each other.

The performance of wireless communication systems
coexisting with non-cooperative radars that transmit unaltered
signals has been analyzed in some recent works [3], [4]. More
precisely, in [3], [5], the uncoded symbol error rate (SER) was
calculated for AWGN channels suffering from additive radar
interference (ARI) while [4] considered the capacity analysis of
the same channel. To the best of our knowledge, however, the
performance of communication systems employing practical
forward error correction coding under ARI has been evaluated
only for binary modulation via computer simulations [6] and the
performance of coded transmission with irregular constellation,
where any regular grid constraint on constellation points does
not exist, under ARI has not been addressed yet.

Considering short packet transmission in 5G and beyond
5G networks, a convolutional encoder can be preferred over

capacity-approaching error correcting codes [7] where the latter
ones cannot tackle desired latency requirements due to their
iterative decoding process [8]. For instance, it was interestingly
shown that even polar codes have became less preferable than
convolutional encoders in particular packet size and system
complexity requirements [9].

Error performance analysis of error correcting codes is
typically based on the assumption that their performance is
independent of the transmitted sequence. While this is true for
quasi-regular (QR) cases, many systems are in fact irregular;
especially for when the encoders are paired with non-uniformly
spaced constellations [10]. For the communication systems
suffering from non-cooperative radar interference, the optimal
irregular constellations have been proposed in [11] for
uncoded scenarios by utilizing deep learning techniques.
Interestingly, this can be also observed in the cases where
a convolutional encoder used with conventional M -QAM and
M -PSK constellations [10].

Motivated by this fact, this paper investigates the error
performance of convolutionally coded communication system
for any given pair of the convolutional encoder and the
constellation over AWGN channels under ARI. To the best our
knowledge, this paper provides the first example of deploying a
convolutional encoder with any given M -ary constellation with
the existence of non-cooperative additive radar interference.
In order to encompass QR and irregular scenarios in the
performance analysis for any given convolutional encoder along
with any type of constellation, the general error performance
analysis is represented, where the product-state matrix technique
is utilized for the first time over ARI cases.

The rest of the paper is organized as follows. The
system model for convolutionally coded transmission with
ARI is described in Section II. Error performance analysis,
including generating function calculation via the product-state
matrix technique and its derivations for both low-INR and
high-INR regions, are given in Section III. Derived BER bound
expressions are compared to simulation results in Section IV,
and Section V completes the paper with concluding remarks.

II. SYSTEM MODEL

The system model of the convolutionally coded transmission
with the existence of additive radar interference is shown in
Fig. 1. Specifically, the information bits of a given frame, b,
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Fig. 1: Convolutionally coded transmission model with the existence of
non-cooperative radar interference.

are encoded by a rate R-convolutional encoder and the encoded
bits are fed to the bit-to-symbol mapper where the transmitting
symbols are generated from a M -ary constellation, {xi}Mi=1,
with average energy of S in the transmitter. Then, the received
signal after one symbol duration can be expressed as

y =
√
Sx+

√
Ie−jθ + Z, (1)

where x is a constellation point mapped to the corresponding
information bit(s) and

√
Ie−jθ is the amplitude-constant

additive radar signal as in [5]. Here, I can be considered as the
average INR resulting from the radar interference after assuming
Z is a zero-mean unit-variance proper-complex Gaussian noise.
Also, θ denotes the random phase component of the interfering
radar signal which has a uniform distribution over [0, 2π).

In order to decode transmitted symbol in the receiver,
soft-decision Viterbi decoding is utilized in which optimal MAP
receiver is implemented for possible transition probabilities
during a frame. More explicitly, the optimal MAP rule under
non-cooperative radar interference is given by [5]:

arg min
k∈{1,··· ,M}

Eθ

[
|y −

√
Sxk|2 − ln I0

(
2
√
I|y −

√
Sxk|

)]
.

(2)
Here, I0 denotes the modified Bessel function of the first kind
of order zero [12] and Eθ [·] represents the expectation operator
over θ. The original MAP rule can be approximated into two
different metrics for S � I (low-INR region) and I � S
(high-INR region) as described in the following subsections:

A. Approximate MAP rule for low-INR

When S � I , the second term in (2) is negligible and the
“treat interference as noise” (TIN) decoding rule can be applied
in the decoding [3], such as,

arg min
k∈{1,··· ,M}

Eθ

[
|y −

√
Sxk|2

]
. (3)

B. Approximate MAP rule for high-INR

In the case of S � I, the optimal MAP rule can
be approximated based on “interference cancellation (IC)”
principle, where the decoding rule is expressed as [3]

arg min
k∈{1,··· ,M}

Eθ

(
|y −

√
Sxk| −

√
I
)2

. (4)

III. ERROR PERFORMANCE ANALYSIS

In order to investigate the error performance of any given
convolutionally coded system, the calculation of the transfer
function, T (D,K), is the pivotal step. The mostly used transfer
function calculation method used in many studies [13] is only
valid under the assumption of quasi-regularity. In [14], a general
method which can be readily be used for both QR and irregular
cases had been proposed as it was reemphasized in [10], [15].

In order to represent the most general error performance
analysis with the existence of ARI, the product-state matrix
technique in the calculation of T (D,K) is utilized. For a given
T (D,K), a BER upper bound [16, (9)] can be calculated as

Pb ≤
1

k

∂

∂K
T (D,K)

∣∣∣∣∣
K=1

, (5)

where k is the number of information bit(s) per symbol.

For the calculation of T (D,K), it is assumed to have
a N -state convolutional encoder and it yields N2 ordered
pairs of product-states (u, v), where u is an actual encoder
state in the transmitter and v is a Viterbi decoder’s state in
the receiver, (u, v ∈ {1, ..., N}). Then, N2 ×N2 product-state
matrix S(D,K) can be constructed with its entries based on
transitions from (u, v) to (ū, v̄). Let D(u,v),(ū,v̄) denote the
branch label for transition (u → ū) and (v → v̄). It was shown
in [17] that each entry of S (D,K) can then be written as

[S(D,K)](u,v),(ū,v̄) = p (u → ū|u)

×
∑
n

pnK
a(u→ū)⊕a(v→v̄)D(u,v),(ū,v̄),

(6)
assuming both transitions (u → ū) and (v → v̄) exist, otherwise
[S(D,K)](u,v),(ū,v̄) = 0. The summation in (6) is over the n
possible parallel transitions depending on a given encoder,
where pn denotes the probability of nth parallel transition
between (u → ū) if it exists, otherwise pn = 1. In (6),
p (u → ū|u) is the conditional probability of transition from
state u to state ū given state u, and a (u → ū) denotes the
Hamming weight of the information sequence for the transition
from u to ū [17]. Using the same notation given in [14], the
product-states can be categorized into ’good states’ G where
u = v and ’bad states’ B where u �= v. After suitably ordering
the product-states, S (D,K) can be written as [14]

S (D,K) =

[
SGG (D,K) SGB (D,K)
SBG (D,K) SBB (D,K)

]
. (7)

Using the partitioning in (7), the transfer function in (5) can
be calculated as [14]

T (D,K) = a+ bT [I− SBB (D,K)]
−1

c, (8)

where a = 1TSGG (D,K)1, b = 1TSGB (D,K) , and
c = SBG (D,K)1. Here, 1 and I denotes a vector of ones
and identity matrix, respectively. As it can be seen in (6), each
entry of S (D,K) contains D(u,v),(ū,v̄), so in order to calculate
average BER bound expression, the transition probabilities in
(5) are required. To do so, D(u,v),(ū,v̄) for low-INR region and
high-INR region are derived in the following subsections by
utilizing the approximated MAP rules given in (3) and (4),
respectively.



A. Calculation of D(u,v),(ū,v̄) for low-INR region

In the case of S � I , (3) can be applied as the decoding rule
in soft-decision Viterbi decoding process. Then, the probability
of decoding an erroneous symbol, x̂, instead of an actually
transmitting one, x, can be formulated as [18]

D(u,v),(ū,v̄) = Pr

(∣∣∣y −√Sx∣∣∣2 − ∣∣∣y −√Sx̂∣∣∣2 ≥ 0

)
. (9)

Regarding the product-state indices, (v → v̄) is an erroneous
decoder transition in Viterbi decoder where (u→ ū) is an
actual transition at the transmitter. Now, the performance
analysis for low-INR region is represented for different types
of constellations as follows:

1) M-AM: When M -AM constellation is used in the
transmitter, DM−AM

(u,v),(ū,v̄) can be expressed as

DM−AM
(u,v),(ū,v̄) (S,∆, I) =

1

2
erfc

(√
S
4

∆

)
+

2√
π
e−

S
4 d

2

A (S, I,∆, n) .

(10)

Here, erfc (·) denotes the complementary error function [12]
and A (S,∆, n) can be calculated from

A (S, I,∆, n) =
∞∑
n=1

(−1)
n

n!
Hn−1

(√
S
4

∆

)

×
Γ
(

1+n
2

)
(1 + (−1)

n
)
2 In/2

21−n
2 n
√
πΓ (n/2)

,

(11)

for ∆ ≥ 0 where Hn−1 (·) is the Hermite polynomial of order
n [12] along with ∆ = x− x̂ (see Appendix A for the details).
For ∆ < 0, DM−AM

(u,v),(ū,v̄) can be rewritten as

DM−AM
(u,v),(ū,v̄) (S,∆, I) = 1− 1

2
erfc

(√
S
4

∆

)
− 2√

π
e−

S
4 ∆2

A (S, I,∆, n) .

(12)

2) Squared M-QAM: When squared M -QAM is used in the
transmitter, the erroneous transition analysis can be derived from
after utilizing (10) since a squared M -QAM is the Cartesian
product of two identical

√
M -AM constellations. Using this

fact, the correct transition probability can be expressed as the
product of two correct transition probabilities of

√
M -AM

constellation, that is,

Eθ
[(

1−Q
(√
S/4∆R +

√
2I cos θ

))
×
(

1−Q
(√
S/4∆I +

√
2I cos θ

))]
,

(13)
where ∆R = <{x} − <{x̂} and ∆I = ={x} −
={x̂}. Also, <{·} and ={·} represent the real and
imaginary parts of complex number, respectively. Then,
DM−QAM

(u,v),(ū,v̄) (S,∆R,∆I , I) can be found in the form of given
in (14) at the top of the next page.

3) Irregular M-ary: In the given previous cases, the signal
point locations in a given constellation are restricted to be either
in one dimension (M -AM), or on regular lattices, (squared
M -QAM). In the case of an irregular M -ary constellation,
DM−ary

(u,v),(ū,v̄) can be expressed as

DM−ary
(u,v),(ū,v̄) (S,∆R,∆I , I)

= Eθ

[
Q

(√
S

2
|∆| −

√
I
|∆|

cos θ∆R +

√
I
|∆|

sin θ∆I

)]
,

(15)
with |∆| =

√
∆2
R + ∆2

I . After utilizing [eq.(10), [19]], (15)
can be simplified as

DM−ary
(u,v),(ū,v̄) (S,∆R,∆I , I) =

1

2
erfc

(√
S
8
|∆|

)
+

1√
π
e−

S
8 ∆2

B (S, I,∆R,∆I , n) ,

(16)

where the definition of the auxiliary function,
B (S,∆R,∆I , I, n), is given as

B (S,∆R,∆I , I, n) =
∞∑
n=1

(−1)
n

n!
Hn−1

(√
S

8
|∆|

)

×
(
I

2|∆|

)n/2 (1 + (−1)
n
)
(
∆2
I + ∆2

R

)n/2
Γ
(

1+n
2

)
2
√
πΓ (1 + n/2)

.

(17)

B. Calculation of D(u,v),(ū,v̄) for high-INR region

In the case of I � S, the error analysis is based on the
approximated MAP rule given in (4) and as it was shown in
[5], this results in an equivalent channel model such that

yeq = <{e−jθ
√
Sx}+ Zeq, (18)

with Zeq ∼ N (0, 1/2). For this equivalent channel, decoding
r̂ instead of an actually transmitting equivalent symbol, r,
D(u,v),(ū,v̄) can be expressed as

D(u,v),(ū,v̄) = Pr
(
|yeq − r|2 − |yeq − r̂|2 ≥ 0

)
, (19)

where r = <{e−jθx} and r̂ = <{e−jθx̂}.

1) M-AM: After applying some mathematical manipulations
into (19), DM−AM

(u,v),(ū,v̄) turns into

DM−AM
(u,v),(ū,v̄) = Eθ

[
Q

(√
S
2

(r − r̂) +
√

2I cos θ

)]
. (20)

Then, DM−AM
(u,v),(ū,v̄) can be found as

DM−AM
(u,v),(ū,v̄) (S,∆, I) =

π1/2

4
−

(
∆

√
S
2

+
√

2I

)

×
2F2

(
1
2 , 1; 3

2 ,
3
2 ;−

(
∆
√
S
2 +
√

2I
)2
)

π
,

(21)

where, ∆ = x − x̂ and pFq (·, ·; ·, ·; ·) is the generalized
hypergeometric function [12] (see Appendix B for the details).



DM−QAM
(u,v),(ū,v̄) (S,∆R,∆I , I) = 1−DAM

(u,v),(ū,v̄)

(
S
2
,∆I , I

)
−DAM

(u,v),(ū,v̄)

(
S
2
,∆R, I

)
+

1

4
erfc

(√
S

8
∆I

)

erfc

(√
S
8

∆R

)
+

1

2
erfc

(√
S
8

∆R

)
2√
π
e−

S
8 ∆2

IA
(
S

2
, I, n2,∆I

)
+

1

2
erfc

(√
S
8

∆R

)
2√
π
e−

S
8 ∆2

IA
(
S
2
, I, n1,∆R

)

+
4

π
e−

S
8 d

2
R+∆2

I

∞∑
n1=1

∞∑
n2=1

(−1)
n1+n2

n1!n2!
Hn1−1

(√
S

8
∆R

)
Hn2−1

(√
S

8
∆I

)
Γ
(

1+n1+n2

2

) (
1 + (−1)

n1+n2

)2

In1+n2/2

21−n1+n2
2 n1 + n2

√
πΓ (n1 + n2/2)

.

(14)

2) Squared M-QAM: The similar steps already applied for
the case of the squared M -QAM over the low-INR region can
be followed by using (21).

3) Irregular M-ary: Considering the equivalent channel
model in high-INR region and well-known Chernoff bound,
the probability of decoding erroneous transition for an irregular
M -ary constellation can be expressed as [20]

DM−ary
(u,v),(ū,v̄) = Eθ

[
e−|r−r̂|

2/2
]

= Eθ
[
e−| cos θ∆R+sin θ∆I |/2

]
.

(22)
After using the trigonometric identity [Eq. (1.314.11), [12]],
which is,

a cos (θ) + b sin (θ) =
√
a2 + b2 cos

(
θ − arctan

(
b

a

))
(23)

and utilizing [eq. 3.915.4, [12]], DM−ary
(u,v),(ū,v̄) can be derived as

DM−ary
(u,v),(ū,v̄) (S,∆R,∆I) = e−SR

2/4I0

(
SR2/4

)
, (24)

where R =
√

∆2
I + ∆2

R and In (·) is the modified Bessel
function of the first kind [12].

C. QR cases

The product-state matrix technique offers the most general
error performance analysis for coded systems regardles of the
choice of a convolutional encoder and a M -ary constellation.
However, it comes at the expense of increased complexity in
the analytical calculations. In the QR cases, the complexity
of analysis can be reduced considerably by assuming that the
all zeros code word is sent by the transmitter where u → 0
and v → 0 in (7). Then, the size of product-state matrix in
the QR scenario reduces from N2 ×N2 to N ×N . It should
also be noted that being QR does not imply better or worse
performance and it only brings simplified error performance
calculation [17].

IV. NUMERICAL RESULTS

In this section, the derived error performance expressions are
validated through the Monte Carlo simulations. In all scenarios
considered, the natural bit-to-symbol mapping rule is selected
to generate output symbols from encoded bits and soft-decision
Viterbi decoding is used along with TIN and IC decoders for
low-INR and high-INR regions, respectively. Also, BER curves
are plotted with respect to S/I values for low-INR region and
I/S values for high-INR region. Considering the simplicity
and its popularity, a rate-1/2 convolutional encoder [5, 7]8 is
employed in the transmitter along with 4-AM, 4-QAM and
irregular 64-ary constellations.

TABLE I: Convergence of (10) with Nc terms for (11).

Nc S/I = 8 dB, I = 3 dB S/I = 14 dB, I = 1 dB
5 −4.61896127305 −7.38431518149
10 −4.91291703902 −6.27283776732
15 −3.9827146718 −6.23620318367
20 −4.11417579146 −6.24976229191
25 −4.11168375519 −6.25029611649
50 −4.11777939018 −6.25027493545
100 −4.11777939018 −6.25027493545

A. Low-INR region

In order to validate the derived error performance metrics for
low-INR region, (10) and (14), we first simulate three different
scenarios for 4-AM and 4-QAM constellation cases along
with different interference levels such that I = {1, 3, 5} dB.
In the calculation of (10), the infinite summation term seen
in (11) is truncated after 50th term since Table I shows the
convergence of the infinite summation in (11) for different S/I
values and I values and the corresponding log10(Pb) values.
Fig. 2 demonstrates that the derived BER bound expression for
M -AM and its extension to M -QAM yield good agreement
with simulated BER values for higher S/I values.

B. High-INR region

Now, the derived error performance analysis for high-INR
region, (21), is tested through the simulations. In the
simulations, QAM modulation is considered for S = 10 dB
and S = 12 dB, the simulated and analytical BER values are
plotted with respect to different I/S values. As it can be seen
from Fig. 3, the derived bound expression is validated with
simulated BER values for both cases.

C. Irregular constellation cases

In order to validate the analysis for an irregular M -ary
constellation, (16), irregular 64-ary constellation given in Fig. 4
which was originally proposed in [18] is used and [1101; 0111]
is also applied as the puncturing pattern in [5, 7]8 convolutional
encoder. Fig. 5 shows that the derived error bound expression
is in good agreement with the simulated results. From this
point of view, (16) has considerable potential to be used to
find optimized constellations for a given INR value in future
research.

V. CONCLUSIONS

We presented error performance for a generic,
convolutionally coded transmission coexisting with
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non-cooperative radar interference. The proposed error
analysis is compatible with any convolutional encoder and
constellation where symbol locations can be completely
arbitrary since the product-state matrix technique is utilized.
This extends the existing methods which can only be used
when the encoder and constellation satisfy the quasi-regularity
conditions. These conditions might be violated in the systems
where optimized irregular constellations are used to improve
performance. In addition, the presented analysis can be
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extended to the turbo trellis-coded systems to enable the
irregular constellation optimization in the presence of more
advanced error correcting coding techniques.

APPENDIX A: CALCULATION OF (11)

The conditional probability of erroneous decoding for a
given θ, Pr [x → x̂|θ], can be expressed as

Pr [x → x̂|θ] = Pr

[√
S

2
|x− x̂|2 + �{

√
Ieiθ (x− x̂)

∗}

+ �{z (x− x̂)
∗} ] .

(25)



Then, considering (x− x̂) ∈ R for M -AM, (25) simplifies to

Pr [x→ x̂|θ] = Pr

[
z

′′
≤ −

√
S

2
(x− x̂)−

√
2I cos θ

]

= Q

(√
S

2
(x− x̂)−

√
2I cos θ

)
,

(26)
where z

′′
∼ N (0, 1). The unconditional Pr [x→ x̂] can be

found as

Pr [x→ x̂] = Eθ

[
Q

(√
S

2
(x− x̂)−

√
2I cos θ

)]
. (27)

Then, using the identity of that Q (x) = (1/2) erfc
(
x/
√

2
)

and [Eq.(10), [19]], that is,

erfc (x+ y) = erfc (x) +
2√
π
e−x

2
∞∑
n=1

(−1)
n

n!
Hn−1 (x) yn,

(28)
along with the definition of ∆ = x− x̂, A (S, I,∆, n) can be
derived as in (11).

APPENDIX B: CALCULATION OF (21)

By using the relation between the Gaussian Q-function and
the complementary error function, (20) turns into

DM−AM
(u,v),(ū,v̄) = Eθ

[
1

2
erfc

(√
S

2
∆ +

√
2I cos θ

)]
=

1√
π

∫ ∞
cos θ

(
∆
√

S
2 +
√

2I
) e−t2dt.

(29)

Applying the change of integration variable t→ t
′
cos θ into

(29) results in

Eθ

[
1√
π

∫ ∞
∆
√

S
2 +
√

2I
e−t

′2
cos2 θ cos θdt

′

]
. (30)

By changing the order of the integrals, (30) can be rewritten as

1√
π

∫ ∞
∆
√

S
2 +
√

2I,∆≥0

{∫
cos θ≥0

e−t
′2

cos2 θ cos θdθ

}
dt

′

+
1√
π

∫ ∞
∆
√

S
2 +
√

2I,∆<0

{∫
cos θ<0

e−t
′2

cos2 θ cos θdθ

}
dt

′
.

(31)
With the definition of the Dawson’s integral [21], F (·), the
expression simplifies to

1√
π

∫ ∞
∆
√

S
2 +
√

2I,∆≥0

F
(
t
′
)

t′π
dt

′
+

1√
π

∫ ∞
∆
√

S
2 +
√

2I,∆<0

−
F
(
t
′
)

t′π
dt

′
.

(32)
Then, using [22], (21) can be obtained.
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