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Abstract

We introduce the convolutional spectral kernel
(CSK), a novel family of non-stationary, non-
parametric covariance kernels for Gaussian
process (GP) models, derived from the con-
volution between two imaginary radial basis
functions. We present a principled framework
to interpret CSK, as well as other deep prob-
abilistic models, using approximated Fourier
transform, yielding a concise representation
of input-frequency spectrogram. Observing
through the lens of the spectrogram, we pro-
vide insight on the interpretability of deep
models. We then infer the functional hy-
perparameters using scalable variational and
MCMC methods. On small- and medium-
sized spatiotemporal datasets, we demon-
strate improved generalization of GP models
when equipped with CSK, and their capability
to extract non-stationary periodic patterns.

1 Introduction

Gaussian processes (GP), as rich distributions over
functions, are a cornerstone of a wide array of prob-
abilistic modeling paradigms, thanks largely to their
tractability, flexibility, robustness to overfitting and
principled quantification of uncertainty (Rasmussen
and Williams, 2006). At the helm of every GP model
lies the covariance kernel, a function depicting its co-
variance structure and encoding prior knowledge.

Despite their affinity to neural networks (Williams,
1997; Lee et al., 2018), GP models seldom exhibit the
generalization of the former due to the innate rigidity
of the widely used squared exponential (SE) kernel, ren-
dering them insufficient for genuine pattern recognition.
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While myriad studies (Paciorek and Schervish, 2004;
Alvarez et al., 2009; Wilson and Adams, 2013; Duve-
naud et al., 2013; Tobar et al., 2015; Wilson et al., 2016;
Remes et al., 2017; Tobar, 2018; Shen et al., 2019) have
sought more expressive kernel choices, their efforts fall
notably short on (i) flexibility, (ii) interpretability or
(iii) scalability, all of which are essential to large-scale
data analysis. In this work, we propose and analyze a
novel kernel family satisfying the above properties.

We propose the convolutional spectral kernel (CSK), a
novel kernel family with both spatially varying length-
scales and frequencies, derived from the convolution of
two complex radial basis functions. We demonstrate
that CSK possesses superior flexibility, unifying the
monotonic non-stationary quadratic (NSQ) kernel (Pa-
ciorek and Schervish, 2004) and the stationary spectral
mixture (SM) kernel (Wilson and Adams, 2013).

We introduce the notion of the spectrogram as a new,
principled framework to interpret nonparametric ker-
nels. The spectrogram is a joint distribution of input
and frequency, conveniently displaying local covariance
patterns. Our analysis shows that CSK retains an
unbiased description of the instantaneous frequency,
as opposed to the similar generalized spectral mix-
ture (GSM) kernel (Remes et al., 2017). Meanwhile,
our analysis sheds light on previously un-interpretable
state-of-the-art deep probabilistic models, namely deep
GPs (Damianou and Lawrence, 2013; Salimbeni and
Deisenroth, 2017; Havasi et al., 2018) and the deep
kernel learning (Wilson et al., 2016), and justifies the
adoption of certain heuristics in the said models.

We introduce scalable inference schemes for GP models
equipped with CSK, which combine sparse GPs (Snel-
son and Ghahramani, 2006; Titsias, 2009; Hensman
et al., 2017), stochastic gradient Hamiltonian Monte
Carlo (Neal, 1993; Chen et al., 2014), and moving win-
dow MCEM (Havasi et al., 2018). Our method can
be extended to covariance function deep GPs (Dunlop
et al., 2018), a hierarchical generalization of our current
model.

Empirically, we provide evidence from synthetic and
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Figure 1: Visualization of the (a) basis function and convolution with a white noise process; (b) a sample from
the resulting GP, where the highlighted points are computed from a convolution between the moving white noise
process, denoted by the jagged lines in (a); (c) the kernel matrix of the resulting CSK.

real-world spatiotempral datasets to support our theo-
retical claims. Our experiments visually and numeri-
cally demonstrate interpretable pattern extraction and
superior predictive performance of the CSK-GP model.

2 Convolutional spectral kernel (CSK)

In this section, we derive the convolutional spectral
kernel, a non-stationary, nonparametric kernel, inter-
pretable through its local lengthscale, frequency and
variance functions. Throughout the discussion of this
paper, we assume a simple regression task: the ob-
jective is to infer a scalar function f(x) ∈ R with
D-dimensional inputs x ∈ RD, with a finite supply of
N observed data points as a data matrix X ∈ RN×D,
and a set of noisy observations y ∈ RN . We assume the
function f is a realization of some underlying zero-mean
Gaussian process, with homoskedastic observation noise
of precision β,

f(x) ∼ GP(0, k(x,x′)), (1)

y = f(x) + ε, ε ∼ N (0, β−1). (2)

Our construction of CSK is inspired by the construc-
tion of non-stationary kernels with spatially-varying
lengthscales (Gibbs, 1998; Higdon et al., 1998; Paciorek
and Schervish, 2004). We propose a novel feature map
Kx(u) ∈ C of complex-valued radial bases:

Kxi(u) = e−
‖Σ−1/2

i
(u−xi)‖2
2 exp(ı〈Σ−1i µi,u− xi〉)

∝ N (u|xi + ıµi,Σi) . (3)

Here we abuse the notation of a multivariate normal
density, where ı denotes the imaginary unit, u ∈ RD
denotes a point in input space, and the µi := µ(xi) ∈
RD, Σi := Σ(xi) ∈ RD×D�0 are vector- and positive-
semidefinite matrix-valued functions of xi denoting the

frequency and covariance parameters of the input space,
from which we can construct the frequency as an inverse
product Σ−1µ. Viewing GPs as continuously-indexed
moving average processes, the feature map (3) denotes a
potentially infinite window (Tobar et al., 2015). We can
henceforth represent a GP as a convolution between
Kxi

and a white noise process g(x) ∼ GP(0, δx=x′)
(Higdon et al., 1998):

f(xi) =

∫
Kxi

(u)g(u) du. (4)

The kernel of f is the Hermitian inner product between
Kxi

(u) and Kxj
(u), which is solved analytically:

k(xi,xj) =

∫
Kxi

(u)Kxj
(u) du

∝ N
(
xi − xj |ı(µi + µj),Σi + Σj

)
. (5)

Here Kxi
(·) denotes the complex conjugate. The so-

lution to this integral is detailed in Section 1 of the
appendix. We obtain a non-stationary correlation func-
tion after normalization:

R(xi,xj) =
Re (k(xi,xj))√
k(xi,xi)k(xj ,xj)

= σij e
−

Qij+Sij
2 cos〈ωij ,xi − xj〉, (6)

σij =
|Σi|1/4|Σj |1/4

|(Σi + Σj)/2|1/2
, (7)

Qij =
∥∥∥(Σi + Σj)

−1/2
(xi − xj)

∥∥∥2 , (8)

ωij = (Σi + Σj)
−1

(µi + µj), (9)

Sij =
∥∥∥(Σ−1i + Σ−1j

)−1/2
(ωii − ωjj)

∥∥∥2 . (10)

We can see from the cosine term in (6) that CSK com-
putes pairwise frequencies ωij for each pair of data
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points, and the exponential terms include squared Ma-
halanobis distances between xi and xj (8), and between
local frequencies ωii and ωjj (10).

CSK unifies two generalizations of the SE kernel. Pa-
ciorek and Schervish (2004) generalize the SE kernel
by allowing lengthscales to spatially vary, which is a
special case of CSK when µi ≡ 0. Formally,

kNS(xi,xj) = σije
−

Qij
2 ∝ N (xi|xj ,Σi + Σj) . (11)

The spectral mixture kernel (Wilson and Adams, 2013)
generalizes the SE kernel by allowing for non-zero fre-
quency mean, which is a special case of CSK when
functions µi and Σi are kept constant:

kSM (xi,xj) = kSE(xi,xj) cos〈µ,xi − xj〉. (12)

With the reasonable assumption of a smooth and slow-
varying frequency mean µi, CSK (6) identifies one
mostly stationary covariance substructure of the data.
While a dataset might exhibit behaviors such as mul-
tiple frequencies or spatially varying variances, such
behaviors can be accounted for by stacking multiple
CSKs multiplied by a standard deviation function
σp(·) ∈ R≥0:

kCS(xi,xj) =

P∑
p=1

σp(xi)σp(xj)Rp(xi,xj). (13)

CSK is defined through the component functions σp(·),
Σp(·), and µp(·). We denote the vector of functional
parameters as θ, and each functional parameter θd(x)
has a warped GP (Snelson et al., 2004) prior:

θd(xi) = Fd(hd(xi)), (14)
hd(xi) ∼ GP(0, kd(xi,xj)), (15)

For simplification, we assume diagonal covariances:
Σp = diag(`2p1, · · · `2pD). The warping function Fd en-
sures the CSK to be positive definite.

3 The spectrogram

This section coins the notion of spectrogram, a joint
input-frequency distribution, as a principled framework
to interpret typical nonparametric kernels encountered

in GP models regardless of input dimensions, which
often lacks interpretability.

In signal processing and time-series analysis, the
Wigner transform (Flandrin, 1998) converts covariance
functions into quasi-probability distributions between
input and frequency via a Fourier transform:

W (x,ω) =

∫
RD

k
(
x +

τ

2
,x− τ

2

)
e−2ıπω

>τdτ . (16)

The Wigner distribution function (WDF) W (x,ω) is
a generalized probability distribution that retains in-
stantaneous spectral density on all inputs. Despite
their potential in interpretation, few machine learning
models (Shen et al., 2019) apply the transform (16)
due to its intractability.

In this work, we consider all kernels taking the form
of a generalized mixture of Gaussian characteristic
functions, as indexed by A :

k(xi,xj) =
∑
a∈A

σ
(a)
ij e

−
D

(a)
ij
2 exp(ıUij). (17)

Here the σ, D and U are real-valued functions of xi
and xj . A linearized approximation of the above func-
tions gives an estimate of the kernel value, where the
variables x and τ are separated:

k(a)
(
x +

τ

2
,x− τ

2

)
≈ σ(a)

xx e
− 1

2τ
>Λ(a)

x τ exp(ı〈ξ(a)x , τ 〉),
(18)

Λ(a)
x = Ht Dx+t/2,x−t/2

∣∣
t=0

, (19)

ξ(a)x = Jt Ux+t/2,x−t/2

∣∣
t=0

. (20)

Ht and Jt in (19) and (20), respectively, denote the
Hessian and Jacobian operators with respect to the
variable t. We can henceforth approximate the WDF
with the kernel estimate (18):

Ŵ (x,ω) =
∑
a∈A

σ(a)
xxN

(
ω

∣∣∣∣∣ξ(a)x

2π
,
Λ(a)

x

2π2

)
. (21)

Our approximation is exact for both stationary and har-
monizable spectral kernels (Wilson and Adams, 2013;
Shen et al., 2019). The rest of the section delineates
the significance of our method in interpreting CSK

Kernel form ξx Λx reference
Spectral mixture (12) µ Σ−1 Wilson et al. (2015)
Non-stationary quadratic (11) 0 1

2Σ−1x Paciorek and Schervish (2004)
Generalized spectral mixture (23) µx + (Jxµx) x 1

2Σ−1x Remes et al. (2017)
Convolutional spectral kernel (6) Σ−1x µx

1
2

(
Σ−1x + Jx (ωxx)

>
ΣiJx (ωxx)

)
current work

DGP-SE (26) 0 Jxf>L−1Σ
−1JxfL−1 Damianou and Lawrence (2013)

Table 1: Spectrogram function parameters for various non-stationary covariance function and compositional DGP.
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Figure 2: Overview of some kernels used in GP models, with sample paths (first row), kernel matrices (second
row), and spectrogram (third row). Examples include SE (Rasmussen and Williams, 2006), NSQ (Paciorek and
Schervish, 2004), SM (Wilson and Adams, 2013), GSK (Samo, 2017), GSM (Remes et al., 2017), HM (Shen et al.,
2019) and CSK (current work).

and deep GP (DGP) models. The models in interest
and their spectrograms are listed in Table 1, and their
derivation summarized in Section 2 of the appendix.

3.1 Spectrograms of non-stationary kernels

The spectrogram applies to GP models equipped with
nonparametric kernels (Paciorek and Schervish, 2004;
Damianou and Lawrence, 2013; Remes et al., 2017), as
demonstrated in Table 1. In particular, we investigate
the notable similarity between CSK and generalized
spectral mixture (GSM) (Remes et al., 2017) kernel.

The GSM kernel is a nonparametric, quasi-periodic
kernel with an intuitively defined spectrogram. The
correlation of GSM is a parametrization of (17)

Dij =
∥∥∥(Σi + Σj)

−1/2
(xi − xj)

∥∥∥2 , (22)

Uij = 〈µi,xi〉 − 〈µj ,xj〉. (23)

While it is tempting to equate the frequency mean ξx

(20) with µi, our analysis yields contradictory evidence,
with ξxi

= µi+ (Jxµ) |x=xixi, rendering the GSM ker-
nel inherently biased in instantaneous frequency, which
leads to an erroneously defined intuitive spectrogram
(Remes et al., 2017).

The CSK records unbiased frequencies in contrast, al-
beit suffers a bias in the lengthscales (as shown in Table

1). We posit that it is essential that we adopt unbi-
ased frequencies, so that the kernel extracts correct
periodicities.

3.2 Standard DGPs are equivalent to GPs
with NSQ kernels

Through spectrogram analysis, we uncover an equiva-
lence between two classes of DGPs, namely the ones
constructed with compositions and the ones with non-
parametric covariance functions (Dunlop et al., 2018).

The compositional DGP (Damianou and Lawrence,
2013; Salimbeni and Deisenroth, 2017; Dunlop et al.,
2018) generalizes standard GP with recursive functional
composition:

f = fL ◦ fL−1 ◦ · · · ◦ f0, (24)
fl ∼ GP(ml, kl), l = 0, · · ·L. (25)

The conditional kernel kl|fl−1 can be seen as one with
varying lengthscales when kL is the default SE kernel:

kl(x, x
′|fl−1) = w2e−

(fl−1(x)−fl−1(x′))2

2`2 (26)

≈ w2σije
−

Q
x,x′
2 = kNS(x, x′|Σi), (27)

Σi =
2`2

f ′2l−1(xi)
. (28)

Here the Qx,x′ corresponds to the squared distance
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Figure 3: Posterior draws on two DGPs on toy dataset (see (a)). (b) and (c) demonstrate a 2-layer compositional
DGP f2 ◦ f1, where (b) maps from input x to the first layer f1, and (c) from f1 to the second layer f2. (d)
shows draws from an NSQ-DGP f ∼ GP(0, kNS(·, ·; `)), with log-lengthscale following prior log ` ∼ GP(0, k). (e)
shows direct mapping from input x to the latent function f , with consistent color markings.

defined in (8). According to our analysis (Table 1), the
DGP kernel (26) and an NSQ kernel (11) with a length-
scale parametrization (28) share the same spectrogram,
demonstrating an equivalence up to second-order ef-
fects.

3.3 Advantages of covariance function DGPs

Given the equivalence drawn in 3.2, we delineate the
pros and cons between compositional DGPs and DGPs
formulated with covariance functions (Dunlop et al.,
2018), which comprise a layered structure of nonpara-
metric kernels kθ:

f0(x) ∼ GP(0, kθ(x, x′|θ = θ0)), (29)
fl(x)|fl−1(x) ∼ GP(0, kθ(x, x′|θ = F ◦ fl−1)). (30)

Here kθ denotes such nonparametric kernels as NSQ
(11) (Paciorek and Schervish, 2004), θ their functional
hyperparameters, and F a warping function (14) map-
ping GP samples to valid parameters. Despite the
notable equivalence, the two types of GP models be-
have differently in practice (Dunlop et al., 2018). This
discrepancy warrants a closer investigation, which evi-
dences the superiority of covariance function DGPs.

We posit that the deep compositional probabilistic
models (24) could benefit from monotonicity in hid-
den layers f0, f1 · · · , fL−1, a constraint not required
for covariance function DGPs (30). Zero-mean com-
postional DGPs exhibit a pathology where the prior
space of fL ◦· · ·◦f0 degenerates into piecewise constant
functions as L → ∞ (Duvenaud et al., 2014; Dunlop
et al., 2018). The state-of-the-art DGPs (Salimbeni
and Deisenroth, 2017; Havasi et al., 2018) remedy this
pathology with calibrated mean functions, which are
likely to generate monotonic sample paths, despite
the seemingly detrimental effect on model expressiv-
ity. Our derivation of approximate equivalence holds
when the function fl−1(x) has nonzero derivatives al-

most everywhere, and is consequently monotonic. The
“equivalence conditioned on monotonicity” marks the
absence of rank pathology in covariance function DGPs
(30) and provides alternate justification on calibrated
mean functions.

Covariance function DGP avoids multi-modality by di-
rectly modeling lengthscale values. It is worth noting
that the conditional kernel (26) stays invariant un-
der translation and reflection of fl−1, thus defining an
equivalence class containing the above transformations.
The invariance yields highly multi-modal posterior dis-
tributions (Havasi et al., 2018), a major obstacle to
effective inference. The linear mean function (Salim-
beni and Deisenroth, 2017) solves reflection but not
translation of fl−1. Meanwhile, functions belonging
to the same equivalence class correspond to a singular
lengthscale (28), and consequently a single covariance
function DGP, which has notably more concentrated
posterior densities. We demonstrate the two posteriors
of a toy example in Figure 3.

While the covariance function DGP appears to claim
a minor turf (Paciorek and Schervish, 2004; Heinonen
et al., 2016; Remes et al., 2017) in deep probabilistic
modeling, we advocate that it replace the customary
compositional DGPs as an equivalent but more effective
alternative.

3.4 CSK as deep Gaussian processes

Applying CSK (13) in the covariance function DGP
recursion (30) yields a DGP that nests the NSQ con-
struction (Dunlop et al., 2018) as a special case, defining
a proven ergodic Markov chain (Dunlop et al., 2018).
While the ergodicity of the DGP-CSK model upper
bounds the model complexity with its mixing time, the
application of CSK, nevertheless, significantly enriches
the prior space (Figure 4).
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Figure 4: 2D prior draws from covariance function DGPs with kernels NSQ (11) (first row) and CSK (6) (second
row).

4 Scalable inference for covariance
function DGPs

In this section, we present a framework of scalable infer-
ence for covariance function DGPs (30) (Dunlop et al.,
2018), which we formulate with f being a zero-mean
GP with nonparametric kernel kθ (f ∼ GP(0, kθ)), and
the kernel parameters θ = {θd}Dd=1 have warped GP
priors (14)-(15). Inserting a set of pseudo-observations
denoted as uθd = Fd(hd(zθd)),uf = f(zf ) on each GP,
we can factorize the joint likelihood p(y, f ,θ,u) as

p(y, f ,θ,u) = p(y|f)︸ ︷︷ ︸
likelihood

p(f |uf ,θ)p(uf |θ)p(θ|uθ)p(uθ)︸ ︷︷ ︸
prior

.

(31)

Similar to Hensman et al. (2015), we assume a free-
form variational distribution q(uf ,uθ), and formulate
the variational posterior process as

q(f) = p(f |uf ,θ)p(θ|uθ)q(uf ,uθ). (32)

Minimizing the term KL[q(f,uf ,uθ)||p(f,uf ,uθ|X,y)]

yields an optimal solution q∗ with (un-normalized) log-

likelihood with a normalizing constant C,

log q∗(uf ,uθ) =Ep(f |uf ,θ)p(θ|uθ) log p(y|f)p(uf |θ)

+ log p(uθ)− logC. (33)

While the expectation term renders q∗ intractable, we
can, however, unbiasedly estimate the expectation with
Monte Carlo samples of θ, and a subsample of the data
(Salimbeni and Deisenroth, 2017; Havasi et al., 2018).
Therefore, we can jointly infer the approximate pos-
terior and optimize the hyperparameter values with a
combination of stochastic gradient Hamiltonian Monte
Carlo (Chen et al., 2014; Springenberg et al., 2016) and
moving window Monte Carlo Expectation Maximiza-
tion algorithm (Havasi et al., 2018).

5 Experiments

5.1 Recovering chirp signal

We first test our methods on a simulated dataset. A
chirp signal is a non-stationary signal taking the generic
form x(t) = cos(φ(t)). In this setting, we take 400 noisy

Figure 5: Regression on synthetic chirp signal. (a): The training data (grey points) with the ground truth line
(blue) and predicted mean (red); ground truth and predict mean overlap. (b): HMC samples of the learned
frequency function, with ground truth instantaneous frequency (blue line) and MAP estimate (red line). (c), (d):
HMC samples of lengthscale and variance functions, with MAP estimates marked with red lines.
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Figure 6: GP regression with solar irradiance. Training and test points are respectively marked by black and red
dots in (a1)-(d1), where the test log-likelihoods are shown in the parentheses. The frequency parameter obtained
via kernel learning are marked as lines or points in the spectrogram (parametric values for SM and HM kernels in
(b2) and (c2), and the posterior mean value for each of the 3 components of CSK in (d2)). We color-consistently
plot lengthscales (Σi in (3)) and variances (σ(xi) in (13)) in figures (d3) and (d4), respectively.

observations of a chirp signal x(t) = cos(2π(t+ 0.6t3)),
and train a one-component CSK with 30 inducing
points. The synthetic instantaneous frequency of this
signal is φ′(t)/2π = 1 + 1.8t2, which is recovered with
the frequency term in CSK (see figure 5).

5.2 Solar irradiance

We consider regression on the solar irradiance dataset
(Lean, 2004), which exhibits some non-stationarities.
We compare GP models with NSQ, SM, HMK (Shen
et al., 2019) and CSK, where the inference for SM and
HMK were done with sparse GP regression with induc-
ing points (Titsias, 2009), and the functional hyperpa-
rameters of NSQ and CSK are inferred with SGHMC
as illustrated in the previous section. While it is not
immediately clear from the spectrogram visualizations

(see figure 6), the spectral kernels (SM, HMK and CSK)
learn similar frequency patterns: SM learns global fre-
quency peaks; HMK learns and interpolates local pat-
terns; CSK learns a varying global pattern, while also
accounting for the non-Gaussianity of the data.

5.3 Air temperature anomaly dataset

We conduct spatiotemporal analysis on the air temper-
ature anomaly dataset (Jones, 1994), which contains
monthly air temperature deviations from the monthly
mean temperature measured on locations on a global
grid. We subsampled the data from 1988-1993 with
32910 readings and partitioned an 80%-20% split on
training and testing data. Figure 7 demonstrates the
predictive temperature anomaly between a GP with SE
kernel and CSK with 5 components, which significantly
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Figure 7: Air temperature anomaly dataset. (a) demonstrates the temperature anomaly readings from May
1991. (b), (c) display the posterior predictive mean for May 1991 on a grid of global locations, with the numbers
in parentheses denoting mean squared error (MSE) and mean log-likelihood, respectively. (d), (e) depict the
correlation between London and other geographical locations: it is worth noting that the SE kernel (d) only
captures positive correlation on a small elliptical region.

Model LINEAR SVGP 100 SVGP 500 SM DGP 4 NSQ CSK
Test MLL -1.277 (0.008) -0.844 (0.015) -0.828 (0.017) -0.829 (0.017) -0.627 (0.008) -0.634 (0.009) -0.575 (0.012)
Test MSE 0.753 (0.012) 0.326 (0.011) 0.315 (0.011) 0.313 (0.011) 0.307 (0.011) 0.310 (0.012) 0.294 (0.008)

Table 2: Results for NY taxi dataset, where we report the test mean log-likelihoods and mean square errors, with
standard deviations denoted inside brackets, over 6 runs of the dataset.

improves the predictive performance. Nonstationarity
is required to capture the correlation patterns demon-
strated in the data.

5.4 New York Yellow Taxi dataset

We ran GP regression on a subset of the New York
Yellow Taxi dataset1, whose objective is to predict
the taxi trip duration given the pickup and dropoff
locations and the starting date and time. Given CSK’s
ability to handle periodicities, we treat the date and
time as one feature. We ran 7 different models in
total: Bayesian linear regression (LINEAR), standard
stochastic variational GPs (Hensman et al., 2013) with
100 and 500 inducing points (SVGP 100 & 500), sparse
GP with SM kernel (SM), 4-layer compositional deep
GP with “monotonic” inner layers (DGP 4), GP with
NSQ and CSK. Apart from SVGP 500, other models
were run with 100 inducing points.

One can tell from comparison in Table 2 that the taxi
dataset is nonlinear, non-Gaussian and exhibits nontriv-

1http://www.nyc.gov/html/tlc/html/about/trip_
record_data.shtml

ial frequency patterns. CSK marginally outperforms
other models by accounting for all three properties.

6 Conclusion

In this work, we propose the convolutional spectral
kernel, which generalizes the work of Paciorek and
Schervish (2004) with spatially varying frequencies.
We analyze commonly used kernels and GP models
having input warping with spectrograms, which sheds
light on the interpretation of deep models, and draws
an equivalence between two types of DGPs. We pro-
pose a novel scalable inference framework for DGPs
constructed via covariance functions, which empirically
outperforms current compositional DGP methods.

Observing models through the lens of the spectrogram
opens up points of interest for future work: While
conceptually well-defined for multivariate inputs, the
dimensionality of the spectrograms prevents straightfor-
ward visualization and thus needs further investigation;
In addition, the theoretical results derived in this paper
indicate that covariance function DGPs, as an appeal-
ing alternative to current DGPs, warrant further study.

http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml
http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml
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