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Abstract
A salient approach to interpretable machine learning is to restrict modeling to simple mod-
els. In the Bayesian framework, this can be pursued by restricting the model structure and 
prior to favor interpretable models. Fundamentally, however, interpretability is about users’ 
preferences, not the data generation mechanism; it is more natural to formulate interpret-
ability as a utility function. In this work, we propose an interpretability utility, which expli-
cates the trade-off between explanation fidelity and interpretability in the Bayesian frame-
work. The method consists of two steps. First, a reference model, possibly a black-box 
Bayesian predictive model which does not compromise accuracy, is fitted to the training 
data. Second, a proxy model from an interpretable model family that best mimics the pre-
dictive behaviour of the reference model is found by optimizing the interpretability utility 
function. The approach is model agnostic—neither the interpretable model nor the refer-
ence model are restricted to a certain class of models—and the optimization problem can 
be solved using standard tools. Through experiments on real-word data sets, using deci-
sion trees as interpretable models and Bayesian additive regression models as reference 
models, we show that for the same level of interpretability, our approach generates more 
accurate models than the alternative of restricting the prior. We also propose a systematic 
way to measure stability of interpretabile models constructed by different interpretability 
approaches and show that our proposed approach generates more stable models.

Keywords Interpretable machine learning · Bayesian predictive models

1  Introduction and background

Accurate machine learning (ML) models are usually complex and opaque, even to the 
modelers who built them (Lipton 2018). This lack of interpretability remains a key barrier 
to the adoption of ML models in some applications including health care and economy. 
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To bridge this gap, there is growing interest among the ML community to interpretability 
methods.

Such methods can be divided into (1) interpretable model construction, and (2) post-
hoc interpretation. The former aims at constructing models that are understandable. Post-
hoc interpretation approaches can be categorized further into (1) model-level interpretation 
(a.k.a. global interpretation), and (2) prediction-level interpretation (a.k.a. local interpreta-
tion) (Du et al. 2018). Model-level interpretation aims at making existing black-box models 
interpretable. Prediction-level interpretation aims at explaining each individual prediction 
made by the model (Doshi-Velez and Kim 2017). In this paper, we focus mostly on post-
hoc interpretation.

Prior research on the construction of interpretable models has mainly focused on 
restricting modeling to simple and easy-to-understand models. Examples of such models 
include sparse linear models (Ustun and Rudin 2016), generalized additive models (Lou 
et al. 2012), decision sets (Lakkaraju et al. 2016), and rule lists (Jung et al. 2017). In the 
Bayesian framework, this approach maps to defining model structure and prior distribu-
tions that favor interpretable models (Letham et al. 2015; Wang et al. 2017; Popkes et al. 
2019; Wang 2018). We call this approach interpretability prior. Letham et al. (2015) estab-
lished an interpretability prior approach for classification by use of decision lists. Inter-
pretability measures used to define the priors were (1) the number of rules in the list and 
(2) the size of the rules (number of statements in the left-hand side of rules). A prior dis-
tribution was defined over rule lists to favor decision lists with a small number of short 
rules. Wang et al. (2017) developed two probabilistic models for interpretable classifica-
tion by constructing rule sets in the form of Disjunctive Normal Forms (DNFs). In this 
work, interpretability is achieved similar to Letham et al. (2015), using prior distributions 
which favor rule sets with a smaller number of short rules. In Wang (2018), the authors 
extended (Wang et al. 2017) by presenting a multi-value rule set for interpretable classifi-
cation, which allows multiple values per condition and thereby induces more concise rules 
compared to single-value rules. As in Wang et al. (2017), interpretability is characterized 
by a prior distribution that favors a smaller number of short rules. Popkes et  al. (2019) 
built up an interpretable Bayesian neural network for clinical decision-making tasks, where 
interpretability is attained by employing a sparsity-inducing prior over feature weights. For 
more examples, see Kim et al. (2015), Hara and Hayashi (2018), Yang et al. (2017), Guo 
et al. (2017).

A common practice in model-level interpretability is to use simple models as inter-
pretable surrogates to highly predictive black-box models (Craven and Shavlik 1996; 
Zhou and Hooker 2016; Bastani et  al. 2018; Lakkaraju et  al. 2019; Kuttichira et  al. 
2019). Craven and Shavlik (1996) were among the first to adopt this approach for 
explaining neural networks. They used decision trees as surrogates and trained them to 
approximate predictions of a neural network. In Zhou and Hooker (2016), the authors 
presented an approach to approximate the predictive behavior of a random forest by use 
of a single decision tree. With the same objective as Zhou and Hooker (2016), Bastani 
et  al. (2018) developed an approach to interpret random forests using simple decision 
trees as surrogates. They employed active learning to construct more accurate decision 
trees with help from a human. Lakkaraju et al. (2019) established an approach to inter-
pret black-box classifiers by highlighting the behavior of the black-box model in sub-
spaces characterized by features of user interest. In Kuttichira et al. (2019), the authors 
used decision trees to extract rules to describe the decision-making behavior of black-
box models. For more examples of this approach, see Breiman and Shang (1996), Mein-
shausen (2010), Wu et  al. (2018), Deng (2019). The common characteristic of these 
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approaches is that they seek an optimal trade-off between interpretability of the sur-
rogate model and its faithfulness to the black-box model. To the best of our knowledge, 
there is no Bayesian counterpart for this approach in the interpretability literature.

We argue that an interpretability prior is not the best way to optimize interpretability 
in the Bayesian framework for the following reasons: 

1. Interpretability is about users’ preferences, not about our assumptions about the data. 
The prior is meant for the latter. One should distinguish the data generation mechanism 
from the decision-making process, which in this case includes optimization of interpret-
ability.

2. Optimizing interpretability may sacrifice some of the accuracy of the model. If inter-
pretability is pursued by revising the prior, there is no reason why the trade-off between 
accuracy and interpretability would be optimal. This has been shown for a different but 
related scenario in Piironen et al. (2018) where the authors showed that fitting a model 
using sparsity-inducing priors that favor simpler models results in performance loss.

3. Formulating an interpretability prior for certain classes of models such as neural net-
works could be difficult.

To address these concerns, we develop a general principle for interpretability in the 
Bayesian framework, formalizing the idea of approximating black-box models with 
interpretable surrogates. The approach can be used to both constructing, from scratch, 
interpretable Bayesian predictive models, or to interpreting existing black-box Bayesian 
predictive models. The approach consists of two steps: first, a highly accurate Bayesian 
predictive model, called a reference model, is fitted to the training data without com-
promising the accuracy. In the second step, an interpretable surrogate model is con-
structed which best describes locally or globally the behavior of the reference model. 
The proxy model is obtained by optimizing a utility function, referred to as interpreta-
bility utility, which consists of two terms: (1) a term to minimize the discrepancy of the 
proxy model from the reference model, and (2) a term to penalize the complexity of the 
model to make the proxy model as interpretable as possible. Term (1) corresponds to 
selection of reference predictive model in the Bayesian framework (Vehtari and Ojanen 
2012, Section 3.3).

The proposed approach can be used both for constructing interpretable Bayesian pre-
dictive models and to generate post-hoc interpretation for black-box Bayesian predictive 
models. When using the approach for post-hoc interpretability, it can be used to gener-
ate both global or local interpretation. The approach is model-agnostic, meaning that 
neither the reference model nor the interpretable proxy are constrained to a particular 
model family. However, when using the approach to construct interpretable Bayesian 
predictive models, the surrogate model should be from the family of Bayesian predic-
tive models. We also emphasize that the proposed approach is feasible for non-Bayesian 
models as well, which can be interpreted to produce point estimates of the parameters of 
the model instead of posterior distributions. Table 1 compares the characteristics of the 
proposed approach with some of the related works from literature.

We demonstrate with experiments on real-world data sets that the proposed approach 
generates more accurate and more stable interpretable models than the alternative of 
fitting an a priori interpretable model to the data, i.e., using the interpretability prior 
approach. For the experiments in this paper, decision trees and logistic regression were 
used as interpretable proxies, and Bayesian additive regression tree (BART) models 
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(Chipman et  al. 2010), Bayesian neural networks, and Gaussian Processes (GP) were 
used as reference models.

1.1  Our contributions

Main contributions of this paper are:

• We propose a principle for interpretable Bayesian predictive modeling. It combines 
a reference model with interpretability utility to produce more interpretable models 
in a decision-theoretically justified way. The proposed approach is model agnostic 
and can be used with different notions of interpretability.

• For the special case of classification and regression tree (CART) (Breiman et  al. 
1984) as interpretable models and BART as the black-box Bayesian predictive 
model, we show that the proposed approach outperforms the earlier interpretabil-
ity prior approach in accuracy, explicating the trade-off between explanation fidelity 
and interpretability. Further, through experiments with different reference models, 
i.e., GP and BART, we demonstrate that the predictive power of the reference model 
positively affects the accuracy of the interpretable model. We also demonstrate that 
our proposed approach can find a better trade-off between accuracy and interpret-
ability when compared to its non-Bayesian counterparts, i.e., BATrees (Breiman and 
Shang 1996) and node harvest (Meinshausen 2010).

• We propose a systematic approach to compare stability of interpretable models and 
show that the proposed method produces more stable models.

2  Motivation

In this section, we discuss the motivation for formulating interpretability optimization 
in the Bayesian framework as a utility function. We also discuss how this formulation 
allows to account for model uncertainty in the explanation. Both discussions are accom-
panied with illustrative examples.

Table 1  Characteristics of different intereptation approaches

G global, L local, DT Decision Tree, DR Decision Rules, M/A Model Agnostic, TE Tree Ensemble, NN 
Neural Network, C Classification, R Regression

Approach References Domain Interp. model Black-box model Task Bayesian

Trepan Craven and Shavlik (1996) G DT NN C ✘
– Bastani et al. (2018) G DT TE C ✘
BATrees Breiman and Shang (1996) G DT TE C/R ✘
inTrees Deng (2019) G DR TE C ✘
– Kuttichira et al. (2019) G M/A M/A C/R ✘
Node harvest Meinshausen (2010) G TE TE R ✘
Our approach – G/L M/A M/A C/R ✔
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2.1  Interpretability as a decision‑making problem

Bayesian modeling allows encoding prior information into the prior probability distribu-
tion (similarly, one might use regularization in maximum likelihood based inference). 
This might be tempting to change the prior distribution to favor models that are easier for 
humans to understand, as has been done in earlier works, using some measure of interpret-
ability. A simple example is to use shrinkage priors in linear regression to find a smaller set 
of practically important covariates. However, we argue that based on the observation, inter-
pretability is not an inherent characteristic of data generation processes. The approach can 
be misleading and results in leaking user preferences about interpretability into the model 
of the data generation process.

We suggest to separate the construction of a model for the data generating process from 
construction of an interpretable proxy model. In a prediction task, the former corresponds 
to building a model that predicts as accurately as possible, without restricting it to be 
interpretable. Interpretability is introduced in the second stage by building an interpret-
able proxy to explain the behavior of the predictive model. We consider the second step 
as a decision-making problem, where the task is to choose a proxy model that trades off 
between human interpretability and fidelity (w.r.t. the original model).

2.2  The issue with interpretability in the prior

Let M denote the assumptions about the data generating process and I  the preferences 
toward interpretability. Consider an observation model for data y, p(y ∣ �,M) , and alterna-
tive prior distributions p(� ∣ M) and p(� ∣ M, I) . Here, � can, for example, be continuous 
model parameters (e.g., weights in a regression or classification model) or it can index a set 
of alternative models (e.g., each configuration of � could correspond to using some subset 
of input variables in a predictive model). Clearly, the posterior distributions p(� ∣ D,M) 
and p(� ∣ D,M, I) (and their corresponding posterior predictive distributions) are in gen-
eral different and the latter includes a bias towards interpretable models. In particular, 
when I  does not correspond to prior information about the data generation process, there 
is no guarantee that p(� ∣ D,M, I) provides a reasonable quantification of our knowledge 
of � given the observations D , or that, p(ỹ ∣ D,M, I) provides good predictions. We will 
give an example of this below. In the special case, where I  does describe the data genera-
tion process, it can directly be included in M.

Lage et al. (2018) propose to find interpretable models in two steps: (1) fit a set of mod-
els to data and take ones that give high enough predictive accuracy, (2) build a prior over 
these models, based on an indirect measure of user interpretability (human interpretability 
score). In practice, the process requires the set of models for step 1 to contain interpret-
able models, which means that there is still the possibility of leaking user preferences for 
interpretability into the knowledge about the data generation process. This may lead to an 
unreasonable trade-off between accuracy and interpretability.

2.2.1  Illustrative example

We give an example to illustrate the effect of adding interpretability constraints to the prior 
distribution when these constraints do not match data generating process. For simplic-
ity, we define a single interpretability constraint which is over the structure of the model: 
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regression tree with a fixed depth of 4. The interpretability prior approach corresponds to 
fitting an interpretable model with the above constraint directly to the training data. In the 
alternative approach, first a reference model is fitted to the data, and then the reference 
model is approximated with a proxy model that satisfies the interpretability constraint, 
using the interpretability utility introduced in Sect. 3. For simplicity of visualization, we 
use a one-dimensional smooth function as the data-generating process, with Gaussian 
noise added to observations (Fig. 1: left, black curve and red dots). Regression tree is a 
piece-wise constant function which does not correspond to the true prior knowledge about 
the ground-truth function, i.e. being a 1D smooth function. A Gaussian process with the 
MLP kernel function is used as a reference model for the two-stage approach (Fig. 1: left, 
magenta).

The regression tree of depth 4 fitted directly to the data (blue line) overfits and does 
not give an accurate representation of the underlying data generation process (black line). 
The two-stage approach, on the other hand, gives a clearly better representation of the 
smooth, increasing function. This is because the reference model (green line) captures the 
smoothness of the underlying data generation process and this is transferred to the regres-
sion tree (magenta line). The choice of the complexity of the interpretable model is also 
easier because the tree can only “overfit” to the reference model, meaning that it becomes a 
more accurate (but possibly less easy to interpret) representation of the reference model as 
shown in Fig. 1: right.

2.3  Interpreting uncertainty

In many applications, such as medical treatment effectiveness prediction (Sundin et  al. 
2018), knowing the uncertainty in the prediction is important. Any explanation of the 

Fig. 1  Left: The reference model (green) is a highly predictive non-interpretable model that approximates 
the true function (black) well. The interpretable model fitted to the reference model (magenta) approxi-
mates the reference model (and consequently the true function) well, while the interpretable model fitted to 
the training data (blue) fails to approximate the predictive behavior of the true function. Right: Root Mean 
Squared Errors (RMSE) compared to the true underlying function as the tree depth is varied. By increasing 
the complexity of the interpretable model (decreasing its interpretability), predictive performance of the 
reference model and its corresponding interpretable model converge; the interpretable model overfits to the 
reference model (Color figure online)
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predictive model should also provide insight about the uncertainties and their sources. The 
posterior predictive distribution of the reference model contains both the aleatoric (pre-
dictive uncertainty given the model parameter, i.e., noise in the output) and the epistemic 
uncertainty (uncertainty about model parameters). We can capture both of these into our 
interpretable model, since it is fitted to match the reference posterior predictive distribu-
tion. The former is captured by conditioning the interpretable model on a posterior draw 
from the reference model, while the latter is captured by fitting the interpretable model 
on multiple posterior draws. Details will be given later in Sect. 3. Here, we demonstrate 
with an example that the proposed method can provide useful information about model 
uncertainty.

2.3.1  Practical example

We demonstrate uncertainty interpretation in locally explaining a prediction of a Bayesian 
deep convolutional neural network in the MNIST dataset of images of digits (LeCun et al. 
1998). The reference model is classifying between digits 3 and 8. We use the Bernoulli 
dropout method (Gal and Ghahramani 2016a, b), with a dropout probability of 0.2 and 20 
Monte Carlo samples at test time, to approximate Bayesian neural network inference (the 
posterior predictive distribution). Logistic regression is used as the interpretable model 
family.1

Since we are classifying images, we can conveniently visualize the explanation model. 
Figure  2 shows visually the logistic regression weights for a digit, comparing the ref-
erence model in an early training phase (upper row) and fully trained (lower row). The 
mean explanations show that the fully trained model has spatially smooth contributions 
to the class probability, while the model in early training is noisy. Moreover, being able 
to look at the explanations of individual posterior predictive samples illustrates the epis-
temic uncertainty. For example, the reference model in early training has not yet been able 

Fig. 2  Mean explanation, explanation variance, and three sample explanations for a convolutional neural 
network 3-vs-8 MNIST-digit classifier early in the training and fully trained. Colored pixels show linear 
explanation model weights, with red being positive for 3 and blue for 8 (Color figure online)

1 The optimization of the interpretable model follows the general framework explained in Sect.  3, with 
logistic regression used as the interpretable model family instead of CART. No penalty for complexity was 
used here, since the logistic regression model weights are easy to visualize as pseudo-colored pixels.
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to confidently assign the upper loop to either indicate a 3 or an 8 (samples 1 and 2 have 
reddish loop, while sample 3 has bluish). Indeed, the variance plot shows that the model 
variance spreads evenly over the digit. On the other hand, the fully trained model has little 
uncertainty about which parts of the digit indicate a 3 or an 8, with most model uncertainty 
being about the magnitude of the contributions.

3  Method: interpretability utility for bayesian predictive models

Here we first explain the procedure to obtain interpretability utility for regression tasks. 
The case of classification models is similar and is explained in Sect. 3.3.

3.1  Regression models

Let D =
{(

xn, yn
)}N

n=1
 denote a training set of size N, where xi =

[

xi1,… , xid
]T is a 

d-dimensional feature vector and yi ∈ ℝ is the target variable. Assume that a highly predic-
tive (reference) model M is fitted to the training data without concerning interpretability 
constraints. Denote the likelihood of the reference model by p(y ∣ x,�,M) and the pos-
terior distribution p(� ∣ D,M) . Posterior predictive distribution of the reference model 
obtains as p(ỹ ∣ D) = ∫

𝜃
p(ỹ ∣ 𝜃)p(𝜃 ∣ D)d𝜃 . Our goal is to find an interpretable model that 

best explains the behavior of the reference model locally or globally. We introduce an inter-
pretable model family T  with likelihood p(y ∣ x, �, T) and posterior p(� ∣ D, T) , belongs 
to a probabilistic model family with parameters � . The best interpretable model is the one 
closest to the reference model prediction–wise, and at the same time easily interpretable. 
To measure the closeness of the predictive behavior of the interpretable model to the ref-
erence model, we compute the Kullback-Leibler (KL) divergence between their posterior 
predictive distribution. Assuming we want to locally interpret the reference model, and fol-
lowing simplifications of Piironen et al. (2018) for computing the KL divergence of poste-
rior predictive distributions, the best interpretable model can be found by optimizing the 
following utility function:

where KL denotes the KL divergence, � is the penalty function for the complexity of the 
interpretable model, and �x(z) is a probability distribution defining the local neighborhood 
around x , data point the prediction of which is to be explained. Minimization of the KL 
divergence verifies that the interpretable model has similar predictive performance to the 
reference model while the complexity penalty cares for the interpretability of the model.

We compute the expectation in Eq.  1 with Monte Carlo approximation by drawing 
{zs}

S
s=1

 samples from �x(z):

for l = 1,… , L posterior draws from p(� ∣ D,M) . Equation 2 can be solved by first draw-
ing a sample �(l) from the posterior of the reference model and then finding a sample �(l) 
from the posterior of the interpretable model that minimizes the objective function. It has 
been shown in Piironen et al. (2018) that minimization of the KL-divergence in Eq. 2 is 

(1)�̂ = argmin
� ∫ 𝜋x(z) KL

[

p(ỹ ∣ z,�,M) ∥ p(ỹ ∣ z, �, T)
]

dz +𝛺(�)

(2)�̂(l) = argmin
�

1

S

S
∑

s=1

KL
[

p(ỹs ∣ zs,�
(l),M) ∥ p(ỹs ∣ zs, �, T)

]

+𝛺(�),
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equivalent to maximizing the expected log-likelihood of the interpretable model over the 
likelihood obtained by a posterior draw from the reference model:

Using this equivalent form and by adding the complexity penalty term, the interpretability 
utility obtains as

The complexity penalty term should be chosen to match the resulting model; possible 
options are the number of leaf nodes for decision trees, number of rules and/or size of the 
rules for rule list models, number of non-zero weights for linear regression models, etc. 
Although the proposed approach is general and can be used for any family of interpretable 
models, in the following, we use CART models with tree size (the number of leaf nodes) 
as the measure of interpretability. With this assumption, similar to the illustrative example 
in Sect. 2.2.1, the interpretability constraint is defined over the model space; it could also 
be defined over the parameter space of a particular model, such as tree shape parameters of 
Bayesian CART models (Chipman et al. 1998). The interpretability prior approach corre-
sponds to fitting a CART model to the training data, i.e. samples drawn from the neighbor-
hood distribution of x.

A CART model describes p(y ∣ z, �) with two main components � = (T ,�) : a binary 
tree T with b terminal nodes and a parameter vector � = (�1,�2,… ,�b) that associates the 
parameter value �i with the ith terminal node. If z lies in the region corresponding to the 
ith terminal node, then y ∣ z, � has distribution f (y ∣ �i) , where f denotes a parametric prob-
ability distribution with parameter �i . For CART models, it is typically assumed that, con-
ditionally on � , values y within a terminal node are independently and identically distrib-
uted, and y values across terminal nodes are independent. In this case, the corresponding 
likelihood of the interpretable model for the lth draw from the posterior of � has the form

where yi ≡ (yi1,… , yini ) denotes the set of the ni observations assigned to the partition gen-
erated by the ith terminal node with parameter �(l)

i
 , and Z is the matrix of all the zs . For 

regression problems, assuming a mean-shift normal model for each terminal node i,2 the 
likelihood of the interpretable model is defined as

where �(l) = (�(l) = {�
(l)

i
}b
i=1

, �2(l)) . With this formulation, the task of finding an interpret-
able proxy to the reference model M is reformed to find a tree structure T with parameters 

(3)argmax
�

1

S

S
∑

s=1

Eỹs∣zs ,�
(l)

[

log p
(

ỹs ∣ zs, �
)]

.

(4)argmax
�

1

S

S
∑

s=1

Eỹs∣zs,�
(l)

[

log p
(

ỹs ∣ zs, �
)]

−𝛺(�).

(5)p
(

y ∣ Z, �(l)
)

=

b
∏

i=1

f
(

yi ∣ �
(l)

i

)

=

b
∏

i=1

ni
∏

j=1

f
(

yij ∣ �
(l)

i

)

,

(6)f
(

y ∣ �(l)
)

=

b
∏

i=1

ni
∏

j=1

N
(

yij ∣ �
(l)

i
, �2(l)

)

,

2 In the mean-variance shift model, each terminal node has its own �2

i
 variable and the number of param-

eters is 2 × b.
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�(l) such that its predictive performance is as close as possible to M, while being as inter-
pretable as possible. Interpretability is measured by the complexity term �.

The log-likelihood of the tree with the S samples drawn from the neighborhood of x 
is

Projecting this into Eq. 4, the interpretability utility has the following form:

where ȳij and �2
ij
 are respectively the mean and variance of the reference model for the jth 

sample in the ith terminal node. �(T) is a function of the interpretability of the CART 
model. Here we set it to �b using � as a regularization parameter. The pseudocode of the 
proposed approach is shown in Algorithm 1.

When fitting a global interpretable model, instead of drawing samples from �x , we 
use training inputs {xn}Nn=1 with their corresponding output computed by the reference 
model {yrefn }N

n=1
 as the target value.

The next subsection explains how to solve Eq. 8 for CART models.

3.2  Optimization approach

We optimize Eq.  8 by using the backward fitting idea which involves first growing a 
large tree and then pruning it back to obtain a smaller tree with better generalization. 
For this goal, we use the formulation of maximum likelihood regression tree (MLRT) 
(Su et al. 2004).
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3.2.1  Growing a large tree

Given the training data,3 MLRT automatically decides on the splitting variable xj and split 
point (a.k.a. pivot) c using a greedy search algorithm that aims to maximize the log-likeli-
hood of the tree by splitting the data in the current node into two parts: the left child node 
satisfying xj ≤ c and the right child node satisfying xj > c . The procedure of growing the 
tree is as follows: 

1. For each node i, determine the maximum likelihood estimate of its mean parameter �i 
given observations associated with the node, and then compute the variance parameter 
of the tree given {�i}

b
i=1

 : 

 The log-likelihood score of the node is then computed, up to a constant, by 
Li ∝ −ni log(�̂�

2).
2. For each variable xj , determine the amount of increase in the log-likelihood of the node 

i caused by a split r as 

 where LiR
 and LiL

 are the log-likelihood scores of the right and left child nodes of the 
parent node i generated by the split r on the variable xj , respectively.

3. For each variable xj , select the best split r∗
j
 with largest increase to the log-likelihood.

4. Among the best splits, the one that causes the global maximum increase in the log-
likelihood score will be selected as the global best split, r∗ , for the current node, i.e. 
r∗ = maxr∗

j
, j=1,…,d Δ

(

r∗
j
,xj ,i

).

5. Iterate steps 1 to 4 until reaching the stopping criteria.

In our implementation, we used the minimum size of a terminal node (the number of sam-
ples lie in the region generated by the terminal node) as the stopping condition.

3.2.2  Pruning

We adopt the cost-complexity pruning using the following cost function:

Pruning is done iteratively; in each iteration i, the internal node h that minimizes 
� =

(C(h)−C(Ti))
(∣ leaves (Th)∣−1)

 is selected for pruning, where C(h) refers to the cost of the decision tree 
with h as terminal node, C(Ti) denote the cost of the full decision tree in iteration i, and Th 

�̂�i =
1

ni

ni
�

j=1

ȳij

�̂�2 =

∑b

i=1

∑ni
j=1

�

𝜎2
ij
+
�

ȳij − �̂�i

�2
�

S
.

Δ(r,xj ,i)
= LiR

+ LiL
− Li,

(9)C𝛼(T) = log(�̂�2) + 𝛼b.

3 Here, for local interpretation, training data refers to the S samples (with their corresponding predictions 
made by the reference model) taken from the neighborhood distribution to fit the explainable model.
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denotes the subtree with h as its root. The output is a sequence of decision trees and a 
sequence of � values. The best � and its corresponding subtree are selected using 5-fold 
cross-validation.

3.3  Classification models

For classification problems, assuming the CART models as the interpretable model family, the 
form of the interpretability utility is the same as Equation 4 except that the likelihood of the 
interpretable model follows a multinomial distribution with the following log-likelihood:

where I(yjk ∈ Ck) is the indicator function determining wheter or not the jth sample of the 
ith node belongs to the kth category assuming that there are in total K categories. The pik 
denote the probability of the occurrence of the kth category in the ith terminal node and the 
set of parameters are � = {pi =

(

pi1,… , pik
)

}b
i=1

 . Therefore, the final form of the interpret-
ability utility for Bayesian classification models is

where � = (T ,�) and nk =
∑ni

j=1
I
�

yjk ∈ Ck

�

 . The optimization approach is again similar to 
the process explained in Sect. 3.2 with the difference that the maximum likelihood estimate 
of the parameters of each node i obtains as p̂ik =

nk

ni
 . Finally, the log-likelihood score of 

each node i is determined by Li =
∑K

k=1
nk log p̂ik.

3.4  Connection with local interpretable model‑agnostic explanation (LIME)

LIME (Ribeiro et al. 2016) is a prediction-level interpretation approach that fits a sparse linear 
model to the black-box model’s prediction via drawing samples from the neighborhood of the 
data point to be explained. Our proposed approach extends LIME to KL divergence based 
interpretation of Bayesian predictive models (although it can also be used for non-Bayesian 
probabilistic models as well). This is achieved by combining the idea of LIME with the idea of 
projection predictive variable selection (Piironen et al. 2018). The approach is able to handle 
different types of predictions (continuous valued, class labels, counts, censored and truncated 
data, etc.) and interpretations (model-level or prediction-level) as long as we can compute 
KL divergence between the predictive distributions of the original model and the explanation 
model. For a more detailed explanation of the connection, check the preliminary work of Pel-
tola (2018).

4  Experiments

We demonstrate the efficacy of the proposed approach through experiments on several 
real-world data sets. Section  4.1 discusses the experiments related to global intepreta-
tion. We first investigate the effect of reference models with different predictive powers 
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on the performance of the final interpretable model. Secondly, we compare our approach 
with the interpretability prior alternative, of fitting directly an interpretable model to the 
data, in terms of their capability to trade off between accuracy and interpretability. We also 
compare the performance of our approach with non-Bayesian counterparts introduced in 
Sect. 1. Further, we investigate the stability of our approach and the interpretability prior 
approach. Section 4.2 examines local interpretation, where we compare our approach with 
LIME. Our codes and data are available online at https ://githu b.com/homay unafr a/Decis 
ion_Theor etic_Appro ach_for_Inter preta bilit y_in_Bayes ian_Frame work.

4.1  Global interpretation

4.1.1  Data

In our experiments, we use the following data sets: body fat (Johnson 1996), baseball play-
ers (Hoaglin and Velleman 1995), auto risk (Kibler et al. 1989), bike rental (Fanaee-T and 
Gama 2014), auto mpg (Quinlan 1993), red wine quality (Cortez et al. 2009), and Boston 
housing (Harrison Jr and Rubinfeld 1978).

Each data set is divided into training and test set containing 75% and 25% of samples, 
respectively.

4.1.2  Effect of reference model

The purpose of this test is to evaluate how the predictive power of the reference model 
affects the performance of the interpretable model when it is used to globally explain 
the reference model. Three data sets are adopted for this test: body fat, baseball players, 
and auto risk. Furthermore, three reference models with different predictive powers are 
adopted: two BART models, and a Gaussian process (GP).

For the BART models, we used the BART package in R with two different values for 
the “ntree” (number of trees) parameter. For one model, “ntree” is set to the value that 
gives the highest predictive performance on the validation set (blue dotted line in Fig. 3), 
while for another one, this parameter is set to 3, a low value, which gives poor predictive 

Fig. 3  Effect of reference models with different predictive performance on the performance of the interpret-
able models fitted to them. More accurate reference models result in interpretable models with higher pre-
dictive performance. The values of “ntree” used for the BART models are shown by “#”

https://github.com/homayunafra/Decision_Theoretic_Approach_for_Interpretability_in_Bayesian_Framework
https://github.com/homayunafra/Decision_Theoretic_Approach_for_Interpretability_in_Bayesian_Framework
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performance (red-dotted line in Fig. 3). The rest of the parameters are set to their default 
values except “nskip” and “ndpost”, which are set to 2000 and 4000, respectively. For the 
BART models, mean of the predictions of the posterior draws is used as their output. For 
the GP (green-dotted line in Fig. 3), “Matern52” is used as the kernel with variance and 
length scales obtained by cross-validation over a small grid of values.4

CART models are used as the interpretable model family. The size of the tree, i.e., the 
total number of leaf nodes, is used as the measure of interpretability (Bastani et al. 2018; 
Hara and Hayashi 2018).

Figure 3 demonstrates the results, which are averaged over 50 runs. The difference in 
the predictive performance of the interpretable models fitted to different reference models 
suggests that using more accurate reference models (BART in Baseball and Auto risk data 
sets, and GP in Body fat data set) can generate more accurate interpretable models as well. 
This is expected since by the performance of the interpretable model converges to the per-
formance of the reference model; therefore the interpetable model will be more accurate 
when fitted to a more accurate reference model. The gap between the predictive perfor-
mance of the interpretable models and their corresponding reference models is due to the 
limited predictive capability of the interpretable model. For some tasks, this gap can be 
made narrower by increasing the complexity of the interpretable model, while for others, a 
different family of interpretable models may be needed.

Finally, in Fig. 3c, the performance of the interpretable model fitted to the GP reference 
model is better than the reference model itself, for some complexities. This may be because 
of different extrapolation behavior of CART and GP. In the high-dimensional space, the 
test data may be outside the support of the training data; thus, extrapolation behavior mat-
ters. Simpler models can make more conservative extrapolations which may be helpful in 
this case.

4.1.3  Interpretability prior versus interpretability utility

In this subsection, we compare our approach with the interpretability prior approach, in 
terms of the capability of the methods to trade off between accuracy and interpretabilityr. 
BART is used as the reference model, and CART is used as the interpretable model family. 
The interpretability prior approach fits a CART model directly to the training data where 
the prior assumption is that CART models are simple to interpret. On the other hand, our 
approach fits the CART model to the reference model, by optimization of the interpretabil-
ity utility.

Figure 4 demonstrates the results using all the data sets introduced in Sect. 4.1.1. The 
results are averaged over 50 runs. It can be seen that the most accurate models with any 
level of complexity (interpretability) are obtained with our proposed approach.5

5 The single exception happened in auto risk data set with tree size of 3.

4 This may not be the best setting for the GP. We did not attempt to optimize that since our objective is not 
to compare the performance of GP with BART, but instead to compare the performance of the interpretable 
models fitted to them.
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Fig. 4  Comparison of interpretability prior (red) and interpretability utility (blue) approach in trading off 
between accuracy and interpretability when using CART as explainable models and BART as reference 
model. The values of “ntree” used for the BART models are shown by “#” (Color figure online)

Fig. 5  Results of Bayesian t-test that shows the mean and 95% highest density interval of the distribution of 
difference of means. �

1
 and �

2
 refer to the means of the distributions obtained for the interpretability prior 

and interpretability utility approach, respectively
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To test the significance of the differences in the results, we performed the Bayes t-test 
(Kruschke 2013). The approach works by building up a complete distributional informa-
tion for the mean and standard deviation of each group6 and constructing a probability 
distribution over their differences using MCMC estimation. From this distribution, the 
mean credible value as the best guess of the actual difference and the 95% Highest Density 
Interval (HDI) as the range were the actual difference is with 95% credibility are shown 
in Fig. 5. When the 95% HDI does not include zero, there is a credible difference between 
the two groups. As shown in the figure, for all data sets and for highly interpretable mod-
els (highly inaccurate), the difference between the two approaches is not significant (HDI 
contains zero). This is expected since by increasing the interpretability, the ability of the 
interpretable model to explain variability of the data or of the reference model decreases, 
and both approaches provide almost equally poor performance. However, by increasing the 
complexity (equivalently decreasing interpretability) to a reasonable level, we see that the 
differences of the two approaches become significant for all data sets.

Finally, we further compared the performance of our proposed approach with two non-
Bayesian counterparts, i.e., BATrees (Breiman and Shang 1996) and node harvest (Mein-
shausen 2010). BATrees employs a single decision tree that best mimics the predictive 
behavior of a tree ensemble. Random forest is used as the reference model for BATrees. 
Node harvest simplifies a tree ensemble, i.e., random forest, by use of the shallow parts of 

Table 2  Comparison of our approach with two non-Bayesian counterparts: node harvest and BATrees

The RMSE values are shown in terms of mean ± SD . Sizes are shown in terms of mean ± sd of number 
of leaf nodes for BATrees and number of nodes with non-zero coefficients for node harvest. For BATrees, 
the predictive performance of its reference model is shown in the parantheses. For node harvest, it was not 
possible to obtain the performance of the reference model since the R package provides no means for that. 
Best RMSE values are bolded

RMSE Size

NodeHarvest BATrees Our approach Node Harvest BATrees

Size = 10 Size = 15

Body fat �.�� ± �.��

*
5.26 ± 0.42 5.15 ± 0.36 5.16 ± 0.37 34.4 ± 6.5 19.5 ± 5.7

(4.84 ± 0.38)
Baseball 783.1 ± 72.5

*
1020.1 ± 69.9 ��� ± ��.� 768.6 ± 92.5 35.5 ± 5.4 15.3 ± 6.5

(755.9 ± 67.8)
Auto risk 0.78 ± 0.06

*
0.79 ± 0.1 0.76 ± 0.1 �.�� ± �.� 37.2 ± 12.4 20.4 ± 4.8

(0.64 ± 0.09)
Bike 913.3 ± 67.2

*
907.4 ± 71.5 934.4 ± 68.9 ���.� ± ��.� 47.6 ± 9.1 33.5 ± 6.3

(681.8 ± 60.7)
Auto mpg 3.47 ± 0.33

*
�.�� ± �.�� 3.51 ± 0.31 3.43 ± 0.33 58.8 ± 8.1 28 ± 4.4

(2.83 ± 0.34)
Wine quality 0.67 ± 0.03

*
�.�� ± �.�� 0.67 ± 0.02 �.�� ± �.�� 51.3 ± 7 43 ± 13.2

(0.6 ± 0.02)

6 For each tree size, there are two groups of 50 RMSE values: one for the interpretability prior approach, 
and one interpretability utility approach.
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the trees. We chose these approaches with random forest as their black-box model for the 
comparison for two reasons: 

1. to the best of our knowledge, there is no approach particularly established for explaining 
Bayesian tree ensemble models, i.e., BART. The approach of Hara and Hayashi (2018) 
can be modified for this objective; however, it requires inputs in terms of rules extracted 
from the tree ensemble, which calls for considerable of extra work.

2. BART can be considered as a Bayesian interpretation of random forest, and it has been 
revealed with some synthetic and real-data experiment that they have similar predictive 
performances (Hernández et al. 2018).

For node harvest, we used the R implementation with default setting. For BATrees, the 
Python implementation in Hara and Hayashi (2018) is used with the depth of BATrees 
chosen from {3, 4, 5, 6} using 5-fold cross validation. The measure of complexity for node 
harvest is the total number of nodes with non-zero coefficients.

Table 2 demonstrates the results. The results are averaged over 50 runs with the same 
seed value used for the experiments in Fig. 4. The table shows that our proposed approach 
attained much better trade-off between accuracy and interpretability compared to BATrees 
and node harvest. For 4 data sets, our approach provides higher accuracies even with 
smaller sizes. For the rest, still our approach provides comparable predictive performance 
with a complexity of about half of the complexities of node harvest and BATrees. The dif-
ferences between the bolded RMSE values with the rest of the RMSEs in Baseball, Auto 
risk and Wine quality data sets are significant using the Bayes t-test, while for other data 
sets the differences are not significant. According to the table, node harvest tends to gener-
ate more complex surrogate models. This is expected since in node harvest, the surrogate 
model is still an ensemble of shallow trees.

4.1.4  Stability analysis

The goal of interpretable ML is to provide a comprehensive explanation of the predic-
tive behavior of the black-box model to the decision maker. However, perturbation in the 
data or adding new samples may affect the learned interpretable model and lead to a very 
different explanation. This instability can cause problems for decision makers. Thereby, 
it is important to evaluate the stability of different interpretable ML approaches. For this 
objective, we propose the following procedure for stability analysis of interpretable ML 
approach.

Using a bootstrapping procedure with 10 iterations, we compute pairwise dissimilarities 
of the interpretable models obtained using each approach and report the mean and standard 
deviation of the dissimilarity values as their instability measure (smaller is better). We used 
the dissimilarity measure proposed in Briand et  al. (2009). Assuming we are given two 

Table 3  Bootstrap instability values in the form of mean ± std

Best values are bolded

Interpretability Body fat Baseball Auto risk Bike Auto mpg Wine quality

Prior 0.71 ± 0.11 0.84 ± 0.08 0.79 ± 0.190.79 ± 0.190.79 ± 0.19 0.68 ± 0.090.68 ± 0.090.68 ± 0.09 0.70 ± 0.14 0.74 ± 0.11

Utility 0.62 ± 0.190.62 ± 0.190.62 ± 0.19 0.83 ± 0.070.83 ± 0.070.83 ± 0.07 0.81 ± 0.16 0.68 ± 0.090.68 ± 0.090.68 ± 0.09 0.64 ± 0.140.64 ± 0.140.64 ± 0.14 0.70 ± 0.130.70 ± 0.130.70 ± 0.13
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regression trees T1 and T2 , for each internal node t, the similarity of the trees at node t is 
computed by

where It
k=k�

 is the indicator that determines whether the feature used to grow node t in T1 is 
identical to the one used in T2 ( Itk=k� = 1 ) or not, �t

1
 and �t

2
 are pivots used to grow the node t 

in T1 and T2 , respectively, and range (Xk) is the range of values of feature k. Finally, the dis-
similarity of the two decision trees is computed as d

�

T1, T2
�

= 1 −
∑

t∈ internal _ nodes q
tSt

(1,2)
 

where qt are user specified weight value which we set to 1/b where b is the number of ter-
minal nodes. The reported values are averaged over 45 values (10 bootstraping iterations 
result in (10 × 9)∕2 = 45 pairs of explainable models).

Table 3 compares the two approaches over the data sets introduced in Sect. 4.1.1. The 
interpretability utility approach generated on average more stable models for most data 
sets; however, drawing a general conclusion is not possible because except body fat, for the 
rest of the data sets, the differences are not significant according to the Bayes t-test.

4.2  Local interpretation

We next demonstrate the ability of the proposed approach in locally interpreting the predic-
tions of a Bayesian predictive model. BART 7 is used as the black box model and CART is 
used as the interpretable model family. For the CART model, we set the maximum depth 
of the decision trees to 3 to obtain more interpretable local explanations. We compare 
with LIME8 which is a commonly used baseline for local interpretation approaches. Deci-
sion trees obtained by our approach to locally explain predictions of the BART model, 
used on average 2.03 and 2.4 features for the Boston housing and the auto risk data sets, 
respectively. Therefore, to maximize comparability, we set the feature selection approach 
of LIME to ridge regression and select the 2 features with the highest absolute weights 
to be used in the explanation.9 We use the standard quantitative metric for local fidelity: 
�x

[

loss
(

interpx(x), pred (x)
)]

 where given a test data x , interpx(x) refers to the prediction 
of the local interpretable model (fitted locally to the neighborhood of x ) for x , and pred (x) 

(12)St
(1,2)

= It
k=k�

(

1 −
∣ �t

1
− �t

2
∣

range (Xk)

)

Table 4  Comparison of the 
local fidelity of LIME and 
Interpertability utility when 
being used to explain predictions 
of BART 

Best values are bolded

Dataset LIME Interpret-
ability 
Utility

Boston housing 4.86 �.��

Auto risk 0.014 �.���

9 MSEs of LIME with 3 features are, respectively, 2.48 and 0.006 for Boston housing and Auto risk data 
sets.

7 In this experiment, we set the number of trees to 50 with nskip and ndpost set to 1000 and 2000 respec-
tively, for faster run.
8 We use the ‘lime’ package in R (https ://cran.r-proje ct.org/web/packa ges/lime/lime.pdf) for the implemen-
tation.

https://cran.r-project.org/web/packages/lime/lime.pdf
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refers to the prediction of the black-box model for x . We used locally weighted square loss 
as the loss function with �x = N

(

x, �2I
)

 where � = 1.
Each data set is divided into 90%/10% training/test split. For each test data, we draw 

200 samples from the neighborhood distribution. Table  4 shows that our approach pro-
duces more accurate local explanation for both data sets. Figure 6 shows, as an example, a 
decision tree constructed by our proposed approach to locally explain the prediction of the 
BART model for the particular test data shown in the figure from Boston housing data set. 
It can be seen that using only two features, our proposed approach obtains good local fidel-
ity while maintaining interpretability with a decision tree with only 3 leaf nodes.

Fig. 6  Example of a decision tree obtained by the interpretability utility approach to locally explain the 
prediction of the BART model ( yref  is the mean of the predictions of the 2000 posterior draws) for the par-
ticular test data xtest . Using only 2 features, our approach predicts the output 10.76. LIME with 2 features 
predicts the output to be 14.06, and with 3 features, LIME prediction is 13.18
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5  Conclusion

We presented a novel approach to construct interpretable explanations in the Bayesian 
framework by formulating the task as optimizing a utility function instead of changing the 
priors. This is obtained by first fitting a Bayesian predictive model which does not com-
promise accuracy, termed as a reference model, to the training data, and then project the 
information in the predictive distribution of the reference model to an interpretable model. 
The approach is model agnostic, implying that neither the reference model nor the inter-
pretable model is restricted to a certain model. In the current implementation, the interpret-
able model, i.e., CART, is not a Bayesian predictive model; however, it is straightforward 
to extend the formulation to the case where a Bayesian predictive model, e.g., Bayesian 
CART (Denison et al. 1998), is used as the interpretable model. This remains for future. 
The approach also allows accounting for model uncertainty in the explanations. Through 
experiments, we demonstrated that the proposed approach outperforms the alternative 
approach of restricting the prior, in terms of accuracy, interpretability and stability. Fur-
thermore, we showed that the proposed approach performs comparable to non-Bayesian 
counterparts such as BATrees and node harvest even when they have higher complexities 
(equivalently less interpretability).
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