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Structural Properties of Nonanticipatory Epsilon Entropy of
Multivariate Gaussian Sources

Charalambos D. Charalambous, Themistoklis Charalambous, Christos Kourtellaris,
and Jan H. van Schuppen

Abstract— The complete characterization of the Gorbunov
and Pinsker [1], [2] nonanticipatory epsilon entropy of multi-
variate Gauss-Markov sources with square-error fidelity is de-
rived, which remained an open problem since 1974. Specifically,
it is shown that the optimal matrices of the stochastic realization
of the optimal test channel or reproduction distribution, admit
spectral representations with respect to the same unitary ma-
trices, and that the optimal reproduction process is generated,
subject to pre-processing and post-processing by memoryless
parallel additive Gaussian noise channels. The derivations and
analyses are new and bring out several properties of such op-
timization problems over the space of conditional distributions
and their realizations.

I. INTRODUCTION

Motivated by a wide range of applications in which
information is required to be transferred in real time or
with low latency, Gorbunov and Pinsker [1], [2] introduced
the nonanticipatory epsilon entropy and message generation
rates of sources with respect to a fidelity criterion. This is
a variant of the rate distortion function (RDF) and its rate
of lossy compression [3]-[5], i.e., the optimal performance
theoretically attainable (OPTA) by noncausal codes, with
an additional causality constraint imposed on the optimal
reproduction distribution (i.e., the test channel distribution.

Despite the broad range of applications of nonanticipatory
epsilon entropy, often called nonanticipative rate distortion
function (NRDF), in causal and zero-delay codes, and control
over limited rate channels (e.g., [6]-[13]), with focus on
Gauss-Markov sources, its characterization for multivariate
Gaussian sources is currently not known. In particular, the
only complete characterizations of nonanticipatory epsilon
entropy known today, are for scalar Gaussian Markov sources
with pointwise square-error fidelity due to Gorbunov and
Pinsker [2, Example 2], and the scalar Gaussian Markov
source with total square-error fidelity presented in [10]. For
multivariate Gauss-Markov sources with pointwise square-
error fidelity a partial characterization of nonanticipatory
epsilon entropy is given by Gorbunov and Pinsker in [2,
Theorem 5]. Specifically, the properties of the matrices that
define the realization, and induce the optimal test channel

C. D. Charalambous and C. Kourtellaris are with the Department of Elec-
trical and Computer Engineering, University of Cyprus, Nicosia, Cyprus.
Emails: {chadcha, kourtellaris.christos}@ucy.ac.cy.

T. Charalambous is with the Department of Electrical Engineering and
Automation, School of Electrical Engineering, Aalto University, Espoo,
Finland. Email: themistoklis.charalambous@aalto.fi.

J. H. van Schuppen is affiliated with the company Van
Schuppen  Control  Research, Amsterdam, Netherlands. Email:
jan.h.van.schuppen@xs4all.nl.

distribution are not identified in [2, Theorem 5], and re-
mained to this date unknown. In view of the difficulties
to characterize and compute the nonanticipatory epsilon
entropy for multivariate Gauss-Markov sources subject to a
point-wise fidelity, numerical algorithms are developed based
on semidefinite programming [9]. However, the technical
question whether the numerical algorithm produces a valid
realization of the optimal test channel distribution is not
apparent. Another attempt reported recently in [11] for the
multivariate Gauss-Markov process with average fidelity, led
to characterization of the nonanticipatory epsilon entropy,
i.e., the NRDF, through Kuhn-Tucker conditions, via the
solution of a certain difference algebraic Riccati equation.
However, due to the lack of knowledge of fundamental struc-
tural properties of the realization that induces the optimal test
channel distribution, a suboptimal water-filling solution is
proposed, that corresponds to an upper bound on the NRDF.

This paper provides for the first time, the complete
characterization of the problem posed and partly solved
by Gorbunov and Pinsker [2], for Gauss-Markov sources
subject to a point-wise square error fidelity. What is shown
in this paper is the structural property that states: the ma-
trices that define the realization of the reproduction process
that induces the optimal test channel distribution admit a
spectral representations with respect to the same unitary
matrices. It then follows the optimal reproduction process
is realized, subject to a pre-processing and post-processing,
by memoryless parallel additive Gaussian noise channels.
This property further implies the rate loss of causal and
zero delay codes with respect to noncausal codes derived in
[7] can be computed explicitly, and the optimal realization
can be transformed into an encoder-decoder pair based on
subtractive dither with uniform scalar quantization (SDUSQ)
and lattice codes, in complete analogy to the RDF of scalar
Gaussian random variables [14]-[16].

II. NOTATION AND PRELIMINARIES

Notation. R £ (—o0,0), Z 2 {...,-1,0,1,...}, Zy =
{0,1,2,...}, N 2 {1,2,...}, N* & {1,....n}, n € N.
For any matrix A € RP*™ (p,m) € N x N, we denote
its transpose by A", and for m = p, we denote its trace by
tr(A), and the matrix with diagonal entries A;;, i =1,...,p
and zero elsewhere by diag{A}. Y denotes the set of
symmetric positive semidefinite matrices A € RP*P, and
Sij_p its subset of positive definite matrices. The statement
A = A’ (resp. A > A’) means that A — A’ is symmetric
positive semidefinite (resp. positive definite). For z € R, we



define {z}* 2 max{1,z}.

Definition 1 (Multivariate Gauss-Markov Source). A mul-
tivariate Gauss-Markov process is an RP-valued random
process X : Q0 - RP t =0,...,n defined by the recursion

= A1 Xp 1+ BaWy, Xo=mo, t=1,...,n (1)
where (1) Ay € RP*P, B, € RP*Y are non-random matrices;
) {Wy : t = 1,...,n} is an RY%valued independent
Gaussian process, N (0, Kw,), Kw, = 0, independent of
Xo, (iii) Xo € R? is Gaussian N(0,Kx,), Kx, = 0.

We evaluate the reproduction Y™ = {Yy,Y:,...,Y,},
Y; : Q = Yy 2 RP, of X™ 2 {Xo,Xy,...,X,}, with
respect to the mean-square error of the total square-error
fidelity, don(-,-), defined by nHE{dOn(Xn Yn>} <D
don(X"Y") 2 S0 |IX, — YillZ,, D € [0,00). We
also consider the special case of pointwise mean square-
error, E{dt(Xt,Yt)Q} < Dy, Dy € [0,00), di(Xy,Yy) £
|| X: — Yi|[2s, t=0,...,n

The next well-known proposition of conditionally Gaus-
sian RVs is extensively used in our derivations.

Proposition 1. Consider a pair of RVs X = (X1,..., Xi)":
Q=R and Y = (Y1,...,Y7)" : Q — R, defined on
Q,F,P). Let G C F be
a sub—o—algebra. Assume the conditional distribution of
(X,Y) conditioned on G, i.e., P(dx,dy|G) is P—a.s. (almost
surely) Gaussian, with conditional means

px|g = E{X‘Q}, py|g = E{Y‘Q}

some probability distribution

QX Y|G é Ccov (X Y g), ny‘g é COV

Then, the vectors of conditional expectations px|y,g

E { X |Y g} and matrices of conditional covariances
Qx x|v,g £ cov (X, X’Kg) are given, P—a.s., by':

.. . A
and conditional covariances Qx x|g = cov ;
A

x|y, = Hx|g + QX,Y|QQ§_/,1y|g (Y - My|g>, (3)
Qx xv.6 £ Qx x16 — Qx,v16Qyy1eQx yigr @

If G is the trivial information, i.e., G = {Q,0}, then G is
removed from the above expressions, and (3), (4) degenerate
to the well-known conditional mean.

From Proposition | then follows Theorem 1 (below),
which we apply to identify a realization of the test channel.

Theorem 1 (Equivalent statements). Consider the statement
of Proposition 1. Any two of the following three conditions
imply the third:

Condition 1: QX7Y‘QQ;/1}/‘Q =1 )
Condition 2: px|g = py|g- (6)
Condition 3: px|yg =Y —as.. @)

'If the inverse Q;(ly‘ G does not exists then it is replaced by the pseudo

inverse Q} Yig:

sections, we make wuse of the
following  definitions of conditional means and

)?m £ Eu{Xt’Yt}v )?t\tq £
o~ ~ T
B X s 2 B (X0 R (x0- R) b
~ —~ T
ur A E“{(Xt—Xﬂt_l) (Xt—Xﬂt_l) } with

initial conditions Xo|—1 = E#{Xo} = 0 and
_A 5 s g
S 2K, {(XO - X0|_1) (Xo - XOH) }

III. THE NONANTICIPATIVE RDF OF MULTIVARIATE
GAUSS-MARKOV SOURCES SUBJECT TO MSE FIDELITY

In subsequent

error covariances:

A. Characterization of R{S,(D) of Multivariate Gauss-
Markov Sources with Total MSE Distortion

Theorem 2 (R, (D) of Gauss-Markov processes with total
MSE distortion [11]). Consider the Gauss-Markov process
X" 2 {Xy,...,X,} of Definition | and a total MSE dis-
tortion function dg ,(z",y") 2 Soro |1 X — V3| |2 Assume
&‘;(D) € [0,00) for D € [0, Diax) C [0,00). Then, the
following hold.
(a) The distribution of the joint process (X™,Y™) that
achieves the minimum of the nonanticipative RDF Rg¢, (D)
is jointly Gaussian distribution and it is induced by the
process X" (of Definition 1) and the reproduction process

o

where Hyt = 0,...,n are nonrandom, V; ~
N(0,Kv,),Kv, = Ky, = 0,t = 0,...,n, is independent
and Gaussian, Vi, t = 0,...,n, is independent of Wy, t =
1,...,n, and Xy, and

HoXo + W, t=0,
HtXt + (I — Ht)At—l*)?t—l\t—l + ‘/;5, 0th€VWiS€,

S =Sy = S;H] [HSH] + K] (ST H), ®)
fort=0,...,nand ¥ = Kx,, and
Y, =A% Al + B Kw,B{_,, 9
fort =1,...,n. Moreover, )A(t‘t satisfies the Kalman-filter
recursion

(10)

(3/25 — HtAt_l)?tfl‘tfl - (I - Ht)At—l)?tfl\tfl)v
= ft()?tfl\tfla }/t)a t= 1a teey

)A(t\t = At—l)?tflﬁfl + Z;HZ(HtZt_HZ + Kvt)

n, Xojo = given.

(b) The nonanticipative RDF is given by

ne (D)= inf Zl =" an
0,n QHKV |Zt‘
[0,n]
— T +
= if Zl {'tht Ht+K”} . (12)
ofh kv (p) 2 |Kv,|

[0,n]



where the average distortion constraint is

Qi V(D) 2 {H, e RP*P, Ky, € SP",t=0,....n:

n

ES{ > I1X - Villg, } -

t=0

itr((I—Ht)Z; (I—Ht)T-i—Kvt) <(n+ 1)D}.

t=0

(13)

Theorem 3 (below) is obtained by invoking Hadamard’s
inequality to identify a fundamental structural property of the
realization coefficients { H;, K'y,, X, ¥, } of Theorem 2.

Theorem 3 (Structural properties of realization of Theo-
rem 2). Consider the characterization of nonanticipative
RDF given in Theorem 2. Then, the following hold.

(a) For any element of ngﬁv (D), i.e, (X;,%, Hi, Ky,),
then

% 2": log

t=0
Z log
t=0

- -1
| ‘| I—At[At+UEKWUt}

]

= —% Zn: log
t=0

(1 B )\t’i [At’i + (UtTKVt Ut)n‘] 71)’

(14)

Z_

=

DN | =

i=1

where A, is the diagonal matrix of the spectral representation
of HyXy HY = 0, that is, H;X; H = UANU!, Ay =
diag{/\m, N -7)\t,p}; UtUtT = I, UtTUt = I, )\t,l Z )\t,2 2
ZAt,p) t:(),...,n.

(b) The inequality in (14) holds with equality if and only if
the spectral representation of Ky, > 0 is expressed w.r.t. the
same unitary matrix of HyX; HI =0, fort =0,...,n, ie.,

KW = UtDKvt Utr, DKVt = diag{aml, .
t=0,...,n.

5Ttk

Ot1 2 042 2 ... 2 Otp, (15)

Theorem 4 (below) states the following: If there exists
matrix-valued parameters (Hy, Ky,) € RPXP x SP*P ¢ =
0,...,n, in the set QH7KV(D), such that X, = Y, —

[0,7] . e .
a.s.,t =0,...,n, then the reproduction distribution satisfies
Py,yvt-1,x, = Pyv,jv;_1,x,» and hence the joint process

(X™,Y™) that achieves Ry% (D) is Markov.

n
Theorem 4 (R, (D) of Gauss-Markov processes with total
MSE distortion). Consider the statement of Theorem 2.(a).
Then, if there exists (Hy, Ky,) € RP*P XSf_Xp,t =0,...,n,
such that Xy; = Yy — a.s.,t = 0,...,n then the joint
distribution of (X™,Y™) is Markov, and it is induced by
the representation

Xy :Atletfl + Btflwta Xo = x, t=1,...,n,

Vi =HiXo+ (1= Hi)AaYioa + Vi, t=1,0..0m,

Yo =HpXo + V.

and Py, y1—1 xe = Q' (dys|we, ye—1).

Theorem 5 (below) establishes existence of the matrices
(H¢, Ky,) € RPXP x SﬁXp,t = 0,...,n, such that X, =
Y, —a.s.,t =0,...,n holds, by constructing these matrices.

Theorem 5 (Preliminary characterization of Rg9, (D) of
Gauss-Markov processes with total MSE distortion). The
following hold.

(a) Conditions LCI) and (C2) stated below are sufficient for
the equalities X4y =Yy —a.s,t =0,...,n fo hold.

—1
cov (Xt,YHYt_l){cov (Yt,myt—l)} — 1. (I

E? {Xt(yt—l} S {Yt‘Yt‘l}, t=0,....m. (C2)

Moreover, the representation of the reproduction process Y™,
with (Hy, Kv,),t = 0,...,n, defined below, satisfies X, =
Y; —as.,t=0,...,n

Y, =H, X, + (I = H) A Yiot + Vi, t=1,...,n, (16)

Yo =HoXo + Vo, 17)
where (H¢, Kv,),t =0,...,n, are given by
Hy 21 -%(%;) ' € RP*P, (18a)
Ky, £5H] =% — 5¢(3;) '8 = 0, (18b)
fort =0,...,n, and where
Sy 24, 4% 1Al + B Kw,BL_,,  (19)

fort=1,...,nand ¥; = Kx,.
(c) The characterization of the nonanticipative RDF is equiv-
alent to the following optimization problem:

1. (IZx 0+
p4(D)= inf {Qlog{||EX°||}
é[(),n](D) 0

(20)

1 — |[Ai—1X_1 Al + B 1 Kw,Bl_{|\+
+ = log{ / : } }
2 t:Zl 2]
ol
where the constraint set Qyq 1 (D) is characterized by
ol

Qjo,n) (D) 2 {Zt €SP t=0,...,n:
Et j At712t71A§_1 + BtflKWth_l,

1 n
So < Kxo, t=1,....n, —— S tx(3 gD}. 21
0= Kx, n n+1§r( t) 2D

Corollary 1 (Equivalent characterization of R, (D) of
Gauss-Markov processes with MSE distortion). Consider
the Gauss-Markov processes with total MSE distortion of
Theorem 5. Define Z, 2 X, - Y, X, 2 Xy — A1V q,
fft éY; 7At,1}/t,1, XO :Xo, }70 :Yo,f()}’t: 1,..‘,7’L,
where B {X,|Y'"1} = EZ {¥;|Y' "1} = A 1Y 1.

(a) The representation of Theorem 5.(a) is equivalently
expressed as

X, =Y, + Z, (22)
Z, =(I - Ht)AHthl + (I - Ht)BHWt ~ V., (23)

tZl,...,?’L, X():J?Q,

where Zy = zog = xo — Yo. Also,

Yo =H A, 1 Zy 1+ A Vi + H B W + V4,
Yo =HoXo + Vo,

(24)
(25)



where Wy is independent of Zy_1 fort = 0,...,n and (18a)-
(18b) hold. o
(b) Processes (X™, Y™, Z™) satisfy the following recursions.

Xi =Ay1Zi1 + B Wy, Xo =i, t=1,...,n, (26)
Y =HiAy1Zy1 + Hi By W + Vi, t=1,...,m, 27)
=H, X+ V;, (28)

Yo =HoXo + Vb, (29)
where Z; satisfies (23), Wy is independent of Z;_1, and
(Hy, Kv,),t =0,...,n, are given by (18). Further, the pay-
off and average MSE of the characterization of nonanticipa-

tive RDF are equivalently expressed as

I(Xo; o) + Y I(X; YalYio1) = I(Xo; Yo) + > I(Xy;Vy)

t=1 t=1
1 |Kx, [\t
-re{ )
2 % | o]
1< |A; 1% 1AL | + By 1 Kw,Bl_ |+
+ = lo { ¢ } ,
32 los 5]

(30)

and
1 n 1 n
EY {ZHXt—nH?}:ES {ZHZAF}
t=0 t=0
=Efil{ZH&—%HQ}:Ztr(&), 31)
t=0 t=0

where A 1%, 1A}, + Bi1Kw,B]_,
1,...,7’L,KXO >~ Eo.

i Etat =

Remark 1 (On Corollary 1). The translated realization in
(28) corresponds to the memoryless realization of Fig. |
(left), while the pay-off and average distortions (30) and (31),
remain invariant with respect to the translation.

Y
+@ Y, -tfz\
+

A 1Y

A

(I — Hy)Ar—q

Fig. 1: Equivalent Realizations-Block diagrams of two realizations
for multivariate Gaussian sources with feedback (top) and without
feedback (bottom). The realization with feedback is coming from
(26)-(28), while the one without feedback from (16).

The next lemma is preliminary to a subsequent main
theorem, on the structural properties of the realization

matrices X, , 3, Hy, Ky,,t = 0,...,n, of Theorem 5. It
identifies sufficient conditions such that the lower bound of
Theorem 3 holds (i.e., Hadamard’s inequality holds with
equality), which then implies H; = Hj, hence H; €
Sﬁxp , i.e., it is symmetric and nonnegative definite, and that
3, , %, Hy, Ky, have spectral decomposition w.r.t. the same
unitary matrix U; U] =1, fort =0,...,n.

Lemma 1 (Preliminary structural properties of realization of
Theorem 5). Consider the optimal reproduction distribution,
and its realization given in Theorem 5. Suppose ¥; € SV
defined by (19) and %, € SU*P commute, that is,

E;Et:EtE;, tZO,...,TL, (32)

where 3 £ A3 1AL, + BiKw, B, t =
L,...,n, % = Kx,. Then, H, & [ — 5,(3;)7! =
H] € 8P Ky, = S, H] = %H, = Ky, € SV,
t=0,...,n, that is, H; is also a symmetric positive semi-
definite matrix, and moreover {¥, %, , Hy, Kv,} have the
same spectral decomposition w.r.t. the same unitary matrix
UUf =1,U/U, =1, for t =0,...,n. Moreover, (32) is a
sufficient condition for (15) to hold, and for the inequality
in (14) to hold with equality.

With the aid of Lemma [, we identify sufficient conditions
for Hadamard’s inequality of Theorem 3 to hold with equal-
ity, and to establish the fundamental structural properties
of the optimal realization coefficients { H;, Kv,, %, 3, }, as
stated in the next theorem. Thus, we complete characteriza-
tion of the nonanticipative RDF Ry% (D).

0,n

Theorem 6 (Complete characterization of Ry, (D)). Con-
sider the Gauss-Markov process X" = {Xo,...,X,} of
Definition 1.(b), and a total square-error distortion function
don(a™,y") 2 S, ||1X0 — Vil[% Assume Ri%,(D) €
[0,00) for D € [0, Dmax) C [0,00). Then, the following
hold.

(a) The RDF R{¢, (D) is completely characterized by

e (D) = inf 1 > log M, (33)
Aoy 7o tr (A,) <D 2= 7 Ay
where
Y, = A 13 1A+ B Kw, Bl
= UtAtUtT, At = dlag {)\t71, ey /\t,p} (34)
X =U AU, Ap=diag{d41,...,0p} (35)

(b) Let (Hy, Kv,,A;),t = 0,...,n denote the optimal
values of R(,(D) of part (a). Then, the realization Y =

Y*™ given below achieves g;(D).
Vi =H{ X, + (I - H)A Y, +VE t=1,...,m,
Yy =HiXo + V),
where (H, Kys),t =0,...,n are given by
HY 21— 5i(5;7) = 0, (36)
Ky+ £S7H" =0, t=0,...,n, (37
S0 2AS AL+ B Kw, B, (38)



fort=1,...,n, 28’7 = KXO and where the following the
property holds: {¥f, %™, Hy , Ky} have the same spectral
decomposition w.r.t. the same unitary matrix U;U" =
LUMU; =1

(c) The optimal Y*™ that achieves Ry (D) is realized by
parallel channels. For the case for which there is feedback,
the realization is shown in Fig. 2.

A

Fig. 2: Feedback realization of the optimal reproduction process by
parallel channels for multivariate Gaussian sources.

B. Characterization of Rgn(Dy,...,Dy) of Multivariate
Gauss-Markov Sources with Pointwise MSE Distortion

From Theorem 6 it also follows the complete characteriza-
tion of Ry, (Do, D1, ..., Dy) as given in the next corollary.

Corollary 2 (Complete characterization of R{% ({D;}1—))-
Consider the Gauss-Markov process X™ = {XO, o Xt
of Definition 1 and a pointwise square-error distortion
function dy(xy,y) 2 [|X: — Yi||%t = 0,...,n. Assume

05.(Do, ..., Dyp) € [0,00) for Dy € [0,Dtmax) C
[0,00),t =0,...,n. Then, the RDF R, ({D;}{—) is given
by the solution of the optimization problem

na n _ : |At

O,R({Dt}tzo) - L inf _ o Z |At
(AT tr (At)th,t_O,...,

where (A, Ay) are the diagonal elements defined by (34)

and (35). The optimal realization of Y*™ of the RDF

0% (Do, ..., Dy) is (36)-(38).

Remark 2 (Upper bound solution of Ry, (Do,...,Dy)
of Gauss-Markov sources using water-filling). Consider
the complete characterization of Ry, (Do, D1,...,Dy) of
Corollary 2, of the Gauss-Markov processes with pointwise
distortion function. Then, a simple upper bound is deter-
mined as follows.

_ 1 |KX0| * _ 1 . Aaj N
+
|E—*| 1 P *J +
D 1 — - ’ 4
Ri(Dy) = 2°g{|2,*;| 2222 , (40)

for t = 1,...,n, where the constants 0; > 0,t = 0,...,n
are uniquely determined by

p
Zmin{)\aj,ﬂo} = Do, 41)
j=1
p
Zmin{,\;j,at} =D, t=1,....n. (42)

IV. NUMERICAL EXAMPLE

We provide a numerical example in which we compute
an upper bound of the nonanticipative RDF of a multivariate
Gaussian process, based on sequential water-filling over the
spatial dimensions of a multi-variate Gauss-Markov source,
as given in Remark 2. Specifically, we choose p = 3, i.e., a
3-dimensional source X; and a time-horizon n = 3. Matrices
A¢, By, Kw,, and Kx, are randomly chosen. The solution
is shown in Fig. 3.

20 I Distortion level
I Reproduced Information level

2

Dimension, [p] Time [n]

Fig. 3: Water-filling subject to pointwise distortion in time-domain
for n = 3 time units.

In Figure 4, we plot the nonanticipative RDF of our
proposed upper bound and of the solution given by [9] via
Semidefinite programming (SDP) (which does not include a
realization of the test channel distribution).

35

— Upper bound
30 — — Solution via SDP||

Nonanticipative RDF

Distortion (D')

Fig. 4: Nonanticipative RDF for different values of pointwise
distortion for the upper bound proposed and for the optimal solution
given via SDP [9].

V. CONCLUSIONS

Structural properties of the optimal matrices that define
two realizations of reproduction processes that induce the
optimal test channel distribution are derived. Additionally,
an upper bound on R, (Do, ..., D,) for Gauss-Markov
sources using space-time water-filling is proposed. It is
shown via simulations that the upper bound is tight.
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