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ABSTRACT

Human activity follows a circadian rhythm. In online activity, this rhythm is visible both at the level of individuals as well as at the population
level from Wikipedia edits to mobile telephone calls. However, much less is known about circadian patterns at the level of network structure,
that is, beyond the day–night cycle of the frequency of activity. Here, we study how the temporal connectivity of communication networks
changes through the day, focusing on sequences of communication events that follow one another within a limited time. Such sequences can
be thought to be characteristic of information transfer in the network. We find that temporal connectivity also follows a circadian rhythm,
where at night a larger fraction of contacts is associated with such sequences and where contacts appear more independent at daytime. This
result points out that temporal networks show richer variation in time than what has been known thus far.

© 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0004856

The circadian rhythm is an omnipresent feature in human behav-
ior—our activity levels and sleep patterns are locked to the diur-
nal cycle. This daily variation is generally visible in human activ-
ity, including our online behavior. Time-stamped data on human
online activity have revealed circadian patterns at the popula-
tion level (e.g., in the overall frequency of Wikipedia edits1 or
phone calls2) as well as at the level of individuals (see, e.g., Refs. 3
and 4). Here, we ask what happens between these microscopic and
macroscopic levels of individuals and populations—do the daily
activity patterns of individuals translate into daily rhythms in the
mesoscopic connectivity of temporal networks?

I. INTRODUCTION

The dynamics of social systems and population-level behav-
ioral patterns emerge from the behavior of individuals. While the
emergence of certain social-network features, such as the abundance
of triangles, is well understood, the picture is far less clear when the
temporal dimension is included in the picture. Here, we focus on
one prominent temporal feature of social activity: circadian patterns
in communication.

Circadian patterns in mobile phone use have been shown to
be strong enough that data recorded with tracking apps allow one
to determine the so-called chronotypes of individual people (their
morningness or eveningness).4 Mobile telephone data also hint that
our social behavior might be different at day and at night: often, peo-
ples’ communication narrows down to selected, specific others at the
later hours.3 However, beyond this picture of individual behavior,
not much is known beyond the obvious circadian rhythms in the
overall frequency of online activity (see, e.g., Refs. 1, 2, 5 and 6).

In this article, we study what happens between the microscopic
level of individuals and the macroscopic level of entire (tempo-
ral) networks. We ask how the daily activity patterns of individuals
translate into the daily rhythms of temporal networks at the meso-
scopic level, between individual behavior and the daily population-
level cycle in the frequency of communication events. We focus
on the circadian variation of temporally correlated multi-node and
multi-link patterns in human communication. More specifically, we
look at the daily variation in so-called 1t-triggered communication
events.7–10 We label an event 1t-triggered if its initiator node has
participated in other events within a time window of 1t time units
before the focal event. We also monitor variation in the properties
of larger temporal-network structures, 1t-connected subgraphs.
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We show that in mobile telephone communication, the fraction
of 1t-triggered events shows a clear circadian pattern, where they
are more frequent at night than expected. 1t-connected subgraphs
show a similar variation with respect to their expected size. Part of
this behavioral shift can be attributed to a specific, more night-active
population with idiosyncratic communication habits.

This paper is structured as follows: first, we will introduce the
necessary concepts (1t-triggering, 1t-connectivity, and temporal
subgraphs) and the data that we use. Then, we will first show how
1t-triggering varies throughout the day in mobile telephone data
and compare this to a randomized reference. We then “zoom out”
and look at broader patterns spanned by 1t-connected events in
the form of temporal subgraphs and their daily cycles. We then also
address the issue of whether this population-averaged behavior is
representative, or whether the observations are caused by shifts in
the relative activity levels of some specific subpopulations. Finally,
we discuss our conclusions.

II. METHODS

A. Data

Call detail records used in this study consists of 1.35×109 calls
and 465 ×106 text messages from a 29 week period. Calls were
made by 32×106 individuals and messages were sent by 16.6×106

individuals in a single European country. The aggregated call net-
work consists of 100×106 directed edges, and the message network
consists of 39.6×106 directed edges.

B. 1t-triggering in temporal networks

We study temporal networks G = (VG, EG, T), where VG is
the set of nodes and EG ⊂ VG × VG × [0, T] is the set of time-
stamped communication events between the nodes. The events
happen within some limited period of observation [0, T]. We denote
a communication event initiated by i and received by j at time t with
e(i, j, t, τ), where τ ≥ 0 is the duration of the event; the duration is
set to 0 for text messages. We require that one node is only allowed to
participate in one event at any given point in time. The time differ-
ence between two consecutive events e1(i, j, t1, τ1) and e2(j, k, t2, τ2)

with t2 > t1 + τ1 is defined as δt(e1, e2) = t2 − (t1 + τ1).
Because we want to detect circadian rhythms of temporal pat-

terns beyond the activity levels of individual users, we first focus on
the temporal–topological proximity of events—our aim is to detect
events that are related through common node(s) and that rapidly
follow one another. The motivation here is that such events may
have a causal relationship: Alice calls Bob who then calls Carol in
response.

To this end, we go through every event (call, text message) of
every user. For each event e(i, j, t, τ), we check whether the user has
been involved in another event in the time window [t − 1t, t], where
1t is a parameter. In other words, we check whether there is an event
e′(k, l, t′, τ ′) so that t > t′, δt(e, e′) ≤ 1t and |{i, j} ∩ {k, l}| > 0. If an
event e′ that satisfies these conditions exists, we label the event e as
1t-triggered. See Fig. 1 for a visual example.

Because it is well known that the time series of events in com-
munication networks contain many return events, visible as bursty
trains of repeated communication exchange between two users,11

FIG. 1. A schematic diagram of the concept of 1t-triggered events. Both pan-
els show the timelines of three nodes, i, j, and k, with arrows indicating events,
pointing from the originator of the communication event to its recipient (e.g.,
caller to callee). (a) The red arrows indicate two events whose initiator node
has participated in other events within a preceding time span of 1t; we call
these events 1t-triggered. The first triggered event is a return event j return-
ing a call to i who earlier called j. The fraction of 1t-triggered events is 2/5. (b)
The same, but with an additional restriction that return events are not counted
as 1t-triggered (“non-backtracking”), leaving out the j − i event. Therefore, the
fraction of 1t-connected events is smaller, f1 = 1/5.

we also use a “non-backtracking” definition of 1t-triggering where
two events may share only one node and return events are not
allowed. That is, the conditions for event e to be labeled as 1t-
triggered are that there is at least one event e′ so that e′(k, l, t′, τ ′) so
that t > t′, δt(e, e′) ≤ 1t and |{i, j} ∩ {k, l}| = 1. This is to separately
count events where it is possible that information is being forwarded
from one user to another through an intermediary. We will clearly
indicate when this additional constraint is being imposed.

Now, given a temporal network and a choice of the parameter
1t, we for each hour of the day compute the ratio f1(t) between the
number of 1t-triggered events that take place during that hour and
the number of all events that take place during that hour.

However, we can expect that much of the intraday variation of
f1(t) comes trivially from the circadian pattern of the overall fre-
quency of events: the more events, the more likely it is that some
of them will be 1t-triggered. To account for this, we also employ
the standard time-shuffled randomized reference model.12,13 In this
reference model, the time stamps of all events in the data are ran-
domly shuffled. The outcome is a new event timeline that has the
same circadian variation as the original in terms of overall event
frequency. The number of events between each pair of nodes is
conserved. All other temporal correlations are, however, destroyed.
Therefore, measuring f1(t) in the reference model yields variation
that is purely caused by the daily pattern in event frequency. Con-
sequently, if we normalize the original f1(t) by that of the reference

model, we arrive at the normalized f̃1(t) that measures the excess
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FIG. 2. (a) The fraction f1(t) of 1t-triggered calls for each hour of the day (blue triangles) and the corresponding fraction for the time-shuffled reference model (orange
circles). The shaded area (light blue) shows the fraction of all calls (1t-triggered or not) at a given hour. The numbers have been averaged over 203 days. (b) The same

quantities obtained with the “non-backtracking” definition of 1t triggering that discards returned calls. (c) The ratio f̃1(t) between the original and time-shuffled curves of
panel (a). (d) The same for the “non-backtracking” triggering.

variation in 1t-triggering that cannot be explained by variation of
the event frequency.

Results presented in this paper were obtained using
1t = 15 min. A much shorter 1t would lead to too small numbers
of 1t-triggered events, especially at night, whereas much larger 1t
would include many events that are not necessarily related. Chosen
1t of 15 min is between these extremes and calls occurring within
this interval have relatively large probability of being related to each
other.

C. 1t-connectivity and temporal subgraphs

In order to investigate larger temporal-network patterns,
we extend the notion of 1t-triggering to 1t-adjacency and
1t-connectivity and finally temporal subgraphs. We follow the
approach and terminology of Saramäki et al.14

To begin, we define a pair of events e1(i, j, t1) and e2(k, l, t2) to
be temporally adjacent, denoted e1 → e2, if they share at least one
node, |{i, j} ∩ {k, l}| > 0, and they are consecutive in time but not
simultaneous, that is, δt(e1, e2) > 0.

If, similarly to 1t-triggering, we now impose a constraint
on the time difference between the two events, we arrive at the
definition of 1t-adjacency: two events e1 and e2 are 1t-adjacent,

denoted e1
1t
−→ e2, if they are temporally adjacent and the time dif-

ference δt(e1, e2) between them is less than 1t, i.e., δt(e1, e2) ≤ 1t.
This means that every 1t-triggered event and its triggering event are
also 1t adjacent.

To move beyond pairs of events, we first define weak tempo-
ral connectivity as follows: Two events, ei and ej, are temporally
weakly connected if there is a sequence of temporally adjacent events
between them.

Similarly to 1t-adjacency, we can then impose an addi-
tional constraint on the temporal relationship between adja-
cent event pairs: two events, ei and ej, are weakly 1t-connected
if there is a sequence of 1t-adjacent events between them,
when taking the directions of the adjacency relationships into
account.

Using the above definition, we arrive at our key object of
interest, the temporal subgraph. A 1t-connected temporal subgraph
consists of a set of events where all pairs of events are weakly
1t-connected. The subgraph is called valid if no events are skipped
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FIG. 3. (a) The fraction f1(t) of 1t-triggered text messages for each hour of the day (blue triangles) and the corresponding fraction for the time-shuffled reference model
(orange circles). The shaded area (light blue) shows the fraction of all text messages (1t-triggered or not) at a given hour. The numbers have been averaged over 203 days.

(b) The same quantities obtained with the “non-backtracking” definition of 1t triggering that discards returned text messages. (c) The ratio f̃1(t) between the original and
time-shuffled curves of panel (a). (d) The same for the “non-backtracking” triggering.

when constructing the subgraph; i.e., for each node’s time span in
the subgraph, all events that can be included are included. Fur-
thermore, the subgraph is called maximal if no more events can be
added to it that satisfy the criterion for 1t adjacency with one of the
existing events.

Our focus will be on the variation of the average size of tem-
poral subgraphs by the hour of the day. There are several com-
plementary ways of measuring temporal subgraph size.10,14 First, as
temporal subgraphs are collections of events, their size can be mea-
sured as the number of constituent events, SE. Second, as the events
take place along a timeline, one can measure the lifetime or dura-
tion ST of a temporal subgraph as the length of the time interval
from its first to its last event. Finally, as all the subgraph’s events
are associated with nodes, one can measure the number of nodes
involved in the subgraph SN. Note that it is possible that SN � SE

because events can recurrently take place within some small sub-
set of nodes—at one extreme, a temporal subgraph may consist of
a large number of events between two nodes. Also note that when
the hourly averages of the above-mentioned measures are calculated,
the subgraph is taken into account only in the average of the hour
when the subgraph was started, i.e., the time of the first event in the
subgraph.

III. RESULTS

A. The fraction of 1t-triggered events peaks at night

for mobile telephone calls and text messages

We begin by counting, for each hour of the day, the fraction of
calls as well as the fraction of 1t-triggered calls, averaged over week-
days (N = 203 in total). In this dataset, the overall daily pattern of
call frequency shows a shape with two peaks, one before noon and
one in the late afternoon/early evening; call frequency temporarily
goes down in the early afternoon [Figs. 2(a) and 2(b)]. Note that this
population-level activity rhythm can reflect cultural conventions,
and it may differ between countries.5

The fraction of 1t-triggered events, f1t(t), follows the over-
all daily pattern of frequency for the day but remains higher at
night. In contrast, as expected, the same fraction calculated for the
time-shuffled null model [Figs. 2(a) and 2(b)] closely mirrors the
variation of call frequency. This suggests that at night, there is an
excess in the fraction of 1t-triggered calls that is not explained
by the variation in call frequency. Indeed, the normalized fraction

of 1t-triggered events, f̃1t(t), reveals this clearly: 1t triggering is
surprisingly frequent at night [Figs. 2(c) and 2(d)]. This means
that a smaller share of calls is isolated than at daytime: nighttime

Chaos 30, 093115 (2020); doi: 10.1063/5.0004856 30, 093115-4

© Author(s) 2020

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

FIG. 4. Hourly variation of the temporal subgraph size. The column on the left is for calls, and the column on the right is for text messages. Panels (a) and (b) show the
average number of events in components, panels (c) and (d) show the average number of users in components and the last row with panels (e) and (f) shows the average
duration of the components. Blue triangles denote temporal subgraph sizes in the original data, while orange circles are for the time-shuffled reference. The red diamonds
indicate the ratio of original to reference.

calls tend to trigger further calls within a short period of time.
These triggered calls are not only return calls, as visible in the
plots in panels (b) and (d) that are computed using forwarded calls
only.

For text messages, we see a similar pattern (Fig. 3). The over-
all daily variation differs slightly from phone calls in that the

early-afternoon drop is less pronounced. There is also a larger dif-
ference between 1t-triggering of forward-only text messages and all
text messages [Fig. 3(a) and Fig. 3(b), respectively]. This is natural,
given that a typical text message is part of a conversation involving
several messages between the two parties. However, when looking at

the normalized fraction of 1t-triggered events, f̃1t(t), we see that it
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varies similarly to mobile phone calls: there is a clear peak at night
and in the very early morning hours.

B. The size and duration of 1t-connected temporal

subgraphs also increases at night

Next, we expand our analysis to larger temporal–topological
patterns in the form of 1t-connected temporal subgraphs (see
Sec. II C). To this end, we detect all 1t-connected temporal sub-
graphs, using the weighted event graph approach;10,14 each temporal
subgraph is a component of the thresholded weighted event graph.
For each component, we compute the three different measures of
component size: the size in events SE, the size in nodes SV, and the
lifetime ST. These are then averaged over each hour of each day of
the week and then over all the 29 weeks. We also compute refer-
ence values for these measures under the time-shuffled null model,
similarly as in the analysis of the fraction of 1t-connected events.

The results for mobile phone calls are shown in Figs. 4(a),
4(c), and 4(e). For all measures of component size—its duration, its
number of calls, and the number of users involved in the compo-
nent—there is a clearly daily pattern, which is very clearly seen in the
curves normalized by the time-shuffled null model numbers. This
indicates that the pattern in 1t connectivity shown above is not lim-
ited to pairs of call events alone; these pairs form larger components.
Therefore, not only the density of the network shows a circadian
pattern, but there is a topological circadian pattern as well. For text
messages, we see a very similar picture [Figs. 4(b), 4(d), and 4(f)].

The timeline of Fig. 4 begins at Thu 00:00, and it is interesting
to see the variation in the peak heights of temporal subgraph size
between the weekends (peaks 2–4) and weekdays (the rest). This is
in line with Krings et al.,15 who observed that the structural features
of call networks differ between weekends and weekdays.

C. The behavioral shift reflected in 1t-connectivity is

partially attributable to a specific subpopulation

Next, we investigated the question of whether the increased 1t-
triggering at night reflects a behavioral shift in the whole population
of users, or whether it is caused by a night-active subpopulation
whose call behavior differs from the rest of the population.

To this end, we computed the hourly fraction of calls for the
top 5% of the population in terms of 1t-triggering and the rest
of the population [Fig. 5(a)]. It is seen that the most 1t-triggered
users display slightly higher call activity in the evening and at night,
indicating that part of the increase at night might be due to this
subpopulation.

As a complementary approach, we also computed the fraction
of 1t-triggered events between 0 and 6 AM for each user. The his-
togram of these values is shown in Fig. 5(b). The histogram shows
that while most of the users do not have any 1t-connected events at
night, there is a tail of users for whom this fraction is non-vanishing.
This, again, indicates that at least part of the observed nighttime
increase in 1t-triggering might be due to a specific subpopulation.

D. Findings generalize to other temporal networks

To investigate whether the observed effects are related to
our particular mobile communication dataset, we applied the 1t-
triggering analysis to four temporal networks dataset that are smaller

FIG. 5. (a) The fraction of 1t-triggered events for each hour of the day for 5% of
phone users with the highest number of1t triggering events (orange circles) and
the rest of the population (blue triangles). (b) Histogram of the number of phone
users with a given fraction of 1t connected events. Mean value is depicted with
dashed red line.

in size and that have shorter observation windows. These datasets
(Messages, Facebook, Forum, and Dating) are all related to commu-
nication on online platforms; events represent messages or com-
munication. Note that as time zone information is not available for
these datasets, t = 0 is an arbitrary hour of the day. For details, see
Table I and the references therein.

TABLE I. Properties of the temporal network datasets. N: number of links, E: number

of events, T : time interval covered by the data, and δt: time resolution.

Name N E T δt

Messages16 22 695 280 717 3 d 1 s
FB17 31 359 566 305 15 000 h 1 s
Dating18 17 009 185 578 250 d 1 s
Forum16 6 625 1 359 075 2 400 d 1 s
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FIG. 6. 1t-triggering in different tempo-
ral-network datasets. Panels (a), (b), (e), (f):
The fraction f1(t) of 1t-triggered events and
the fraction of hourly events in Messages,
Facebook, Dating, and Forum datasets.
Blue triangles: original data, orange circles:
time-shuffled reference. Panels (c), (d), (g),

and (h): The ratio f̃1(t) between the original
and time-shuffled curves of the panels above.
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In all four datasets, we see similar behavior of 1t-triggering as
in the mobile telephone data: the fraction of 1t-triggered events is
in all cases higher in the original data than in the time-shuffled refer-
ence (Fig. 6). Similarly to calls and text messages, the ratio between
the original and the reference does not remain constant through-
out the day, but varies and typically peaks at around the time of
the lowest level of activity in the data (which we can assume is
at night). Therefore, to summarize, temporal-network connectiv-
ity displays a broadly similar circadian pattern in different types
of online communication than in mobile telephone calls and text
messages.

IV. DISCUSSION

We have analyzed the daily variation of connectivity in tempo-
ral networks of human communication, using anonymized mobile
telephone data and the 1t-connectivity framework. We have seen
that the temporal structure of the network displays circadian pat-
terns beyond the variation in communication event frequency. At
night, the calls or text messages that form the network are less iso-
lated than expected on the basis of their number; calls and text
messages appear to trigger further calls and messages more fre-
quently than expected. This also means that if 1t-triggering is taken
as indicative of possible information transmission through series of
calls or texts, at night this happens more often than expected (how-
ever, the overall frequency of communication events is still very
low).

This picture of a population-level behavioral shift in commu-
nication is broadly in line with other observations of different social
behavior at day and at night.3,19 However, our result may also be par-
tially explained by a subpopulation, whose communication displays
more 1t-triggering and who is slightly more active at night.

In terms of the temporal network spanned by calls or text
messages, our findings show that there is indeed a daily cycle,
where temporal-network connectivity patterns vary throughout the
day. This variation, emerging from the variation in individual user
behavior, is reflected in the mesoscale properties (temporal sub-
graphs) of the network, which, in turn, reflect how information is
(or can be) transmitted through the network.

Even though this paper has focused on circadian patterns of
human communication via mobile devices, the data analysis pipeline
presented here can be thought to be more general. It would be, there-
fore, interesting to see whether other complex systems that can be
modeled as temporal networks show systematic temporal variation
in connectivity and properties of temporal subgraphs.
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