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Abstract
This paper proposes a real-time method for estimating an unbalanced grid impedance using a three-
phase converter. In the method, a periodic single-frequency or multi-frequency excitation signal is added
to the converter voltage reference. The converter measures currents and voltages at the point of common
coupling. The impedance estimate is obtained from the measurements using sliding discrete Fourier
transform (SDFT). The method is experimentally validated.

1. Introduction
Grid converters provide an interface between renewable energy sources and the grid. For control of these
converters, the grid is often modeled as a three-phase voltage source and a balanced series impedance.
The balanced impedance Zg can be expressed with a transfer function such as Zg(s) = sLg +Rg, where
Lg is the inductance and Rg is the resistance of the grid. Several methods for estimating the balanced
grid impedance using a converter have been proposed, see [1–10] and the papers cited therein. Generally,
the impedance can be estimated either in the frequency domain, e.g., using the discrete Fourier transform
(DFT) [1–4] or band-pass filters [5], or in the time domain applying model-based methods [6–10]. The
estimation result is typically the frequency response Zg(jω) or the values of Lg and Rg. The impedance
estimate can be used, e.g., to detect islanding conditions [1,5] or to optimize converter control tuning [6].

When the per-phase impedances are unequal, the grid impedance is unbalanced (asymmetric). Then, the
space-vector model of the impedance becomes an asymmetric 2×2 transfer-function matrix in stationary
αβ coordinates [11]. Real-time estimation of the unbalanced impedance has been addressed in [12–14].
Compared to estimation of the balanced impedance, estimation of the unbalanced impedance is more
complicated due to increased amount of parameters. In [12] and [13], the estimation relies on the as-
sumption of the inductive-resistive grid. In [12], a model-based recursive least squares algorithm is used.
In [13], the estimation is based on dual-frequency injection and DFTs of the currents and voltages. If the
assumption of the inductive-resistive grid is violated, such as in the case of capacitive elements in the
grid, these methods provide biased results. In a wavelet-based estimation method [14], this assumption
is not needed. However, the method requires measurement of three line-to-neutral voltages. Therefore,
contrary to the methods in [12, 13], it cannot be applied if the neutral-point is not available or only
line-to-line voltages are measured.

Estimation of a 2 × 2 impedance matrix in synchronous (dq) coordinates has been studied in [3, 15]
assuming time-invariant impedance during the estimation. If an αβ-asymmetric impedance is trans-
formed to synchronous coordinates, the resulting 2 × 2 transfer-function matrix becomes time variant,
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Fig. 1: Real-time grid impedance estimation as a part of the converter control system.

i.e., it depends on the angle of the coordinate system [11]. Therefore, instead of αβ-asymmetric systems,
the methods in [3, 15] are suitable only for time-invariant dq-asymmetric grid impedances. The output
impedance of a three-phase grid converter is typically asymmetric in dq coordinates [16,17]. Hence, the
grid impedance may also be time-invariant dq-asymmetric when the converters have notable effect on it.

This paper presents an SDFT-based method for real-time frequency-domain estimation of an unbalanced
grid impedance in αβ or dq coordinates. The method estimates the elements of the impedance matrix
from two successive tests at a single frequency or multiple frequencies at the same time. To provide two
linearly independent tests, an excitation signal is added to converter voltage reference in two different
directions periodically, first in one direction and then in its orthogonal direction. Depending on the
frequencies of interest, the excitation signal is a pulsating single-frequency or a multi-frequency space
vector. Line-to-line voltages can be used in the estimator, and no a-priori assumptions on the grid type
are needed. If the inductive-resistive grid is assumed, the obtained estimation result can be translated to
per-phase inductances and resistances. The method is validated through simulations and experiments.

2. Model
Fig. 1 shows a control system for a three-phase grid converter. The system is augmented with a real-time
grid impedance estimator. The estimator is considered as a module that can be plugged in to the existing
control system. The converter is connected to the grid at the point of common coupling (PCC), and the
grid is modeled as a voltage source es

g with a series impedance Zs
g. Three-wire system is assumed, i.e.,

the sum of the grid phase currents is zero iga + igb + igc = 0, where a, b, and c mark the phases. The
system is modeled with real-valued space vectors. The vector of the PCC voltage is us

g = [ugα, ugβ]T,
where ugα and ugβ are the space-vector components. The superscript s denotes stationary coordinates.
The PCC voltage can be further expressed as

us
g(s) = Zs

g(s)is
g(s) + es

g(s) (1)

where is
g = [igα, igβ]T is the grid current vector and Zs

g is the grid impedance

Zs
g(s) =

[
Zαα(s) Zαβ(s)
Zβα(s) Zββ(s)

]
(2)

The model can be transformed to synchronous coordinates resulting in ug(s) = Zg(s)ig(s) + eg(s),
where ug = exp {−Jϑg(t)}us

g, eg = exp {−Jϑg(t)} es
g, ig = exp {−Jϑg(t)} is

g, and Zg is the grid
impedance with the elements Zdd, Zdq, Zqd, and Zqq. In the transformation, ϑg is the angle of the
coordinate system, and J =

[
0 −1
1 0

]
.

The impedance Zs
g(s) can represent a balanced or unbalanced system. To provide an example, let us

consider a three-phase inductive-resistive grid with the per-phase inductances Lga, Lgb, and Lgc, and
resistancesRga, Rgb, andRgc. The per-phase impedances areZa(s) = sLga+Rga, Zb(s) = sLgb+Rgb,
and Zc(s) = sLgc +Rgc. If the coupling between the phases is neglected, the phase voltages at the PCC
can be written

[uga, ugb, ugc]
T = Zabc

g [iga, igb, igc]
T + [ega, egb, egc]

T (3)
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where Zabc
g is a diagonal matrix Zabc

g = diag(Za, Zb, Zc). Transforming the phase quantities to space
vectors as presented in [11], the impedance of this system in stationary coordinates becomes

Zs
g(s) = T 32Z

abc
g (s)T 23 =

[
4Za(s)+Zb(s)+Zc(s)

6

√
3[Zc(s)−Zb(s)]

6√
3[Zc(s)−Zb(s)]

6
Zb(s)+Zc(s)

2

]
, T 32 =

[
2
3 −1

3 −1
3

0 1√
3
− 1√

3

]
(4)

where T 23 = (3/2)TT
32. From (4), it can seen that if the per-phase impedances are equal Za = Zb =

Zc = Zg, the impedance Zs
g reduces to the diagonal matrix Zs

g = diag(Zg, Zg), but in the case of an
unbalanced impedance, all elements of Zs

g are generally nonzero.

3. Impedance Estimator
The frequency response of the grid impedance is estimated at a single frequency ωe or multiple frequen-
cies ωe,1, . . . , ωe,n at a time. For the estimation, a pulsating excitation signal vs

e is added to the converter
voltage reference us

c,ref as shown in Fig. 1.

3.1. Single-Frequency Estimation

For the single-frequency estimation, the excitation signal is

vs
e(t) =

[
veα(t)
veβ(t)

]
= eJϑe(t)

[
ve sin(ωet)

0

]
, J =

[
0 −1
1 0

]
(5)

where ve is the magnitude and ϑe determines the angle of the pulsating vector in stationary coordinates.
In this work, the angle is alternated between ϑe = 0 and ϑe = π/2 to excite the system in α-axis and
β-axis directions periodically

ϑe(t) = 0, when sin(πt/Ti) > 0

ϑe(t) = π/2, otherwise
(6)

where Ti is the sampling interval of the impedance estimation. Two different injection directions are
needed to provide two linearly independent tests for the impedance matrix identification. It is assumed
that the injection-frequency component is not present in the grid voltage or current spectrum before the
injection. Therefore, the frequency ωe of the signal is a grid-frequency interharmonic. An excitation
signal corresponding to (5) and (6) is shown in Fig. 2.

Fig. 3(a) shows the structure of the proposed impedance estimator in the case of single-frequency estima-
tion. The impedance estimator utilizes the PCC voltage and current samples measured by the converter.
Sampled line-to-line voltages and phase currents are turned into corresponding space-vector components
ugα, ugβ , igα, and igβ . The complex phasors Igα(ωe) and Igβ(ωe) of the current components and the
complex phasors Ugα(ωe) and Ugβ(ωe) of the voltage components are continuously calculated in real-
time applying the modulated SDFT algorithm [18]. The internal structure of the SDFT module used in
the proposed method is shown in Fig. 3(b). It is to be noted that due to the sliding window of the SDFT
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Fig. 3: (a) Proposed impedance estimator. (b) Internal structure of the SDFT module. The resonator
coefficient ce = exp(−jωeTs) is set corresponding the angular frequency ωe of the excitation.

algorithm, the calculated phasors are rotating as shown in Fig. 2.

Since the injection-frequency component of es
g is assumed to be zero, the phasors of the PCC voltage at

ωe can be expressed as[
Ugα1(ωe) Ugα2(ωe)
Ugβ1(ωe) Ugβ2(ωe)

]
︸ ︷︷ ︸

Um(ωe)

= Zs
g(jωe)

[
Igα1(ωe) Igα2(ωe)
Igβ1(ωe) Igβ2(ωe)

]
︸ ︷︷ ︸

Im(ωe)

(7)

where Ugα1, Ugβ1, Igα1, Igβ1 are obtained during the first injection direction (first test) and Ugα2, Ugβ2,
Igα2, Igβ2 during the second injection direction (second test). Two different tests provide enough infor-
mation for the impedance matrix estimation, and the estimate is directly calculated as

Ẑ
s
g(jωe) = R̂

s
g(ωe) + jX̂

s
g(ωe) = Um(ωe)I

−1
m (ωe) (8)

where R̂
s
g and X̂

s
g are the resistive and reactive parts of the impedance matrix.

The phasors of the voltages and currents are applicable to impedance estimation only when the system is
in steady state. Since the angle ϑe of the pulsating injection (6) is periodically changed, the steady state
has to be reached before the next change in ϑe. Therefore, the impedance estimation is synchronized
with the excitation signal such that the rotating phasors of the currents and voltages for (8) are sampled
just before the change in ϑe with the sampling frequency of fi = 1/Ti as illustrated in Fig. 2. The
steady-state requirement sets the minimum value for the impedance estimation interval Ti. Moreover,
the time required to reach the steady state depends on the settling time of the existing control system and
phasor calculation. The settling time of the phasor calculation is related to the buffer length N of the
SDFT modules, and N depends on the desired frequency resolution and sampling frequency fs of the
DFT. Therefore, the settling time of the phasor calculation is approximately one fundamental period of
the DFT frequency resolution. The frequency resolution has to be a common divisor of the fundamental
frequency of the grid and the injection frequency. To give an example, if the frequency resolution is 10
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Hz and the sampling frequency is fs = 10 kHz, the buffer size is N = 1000 and the settling time of the
SDFT modules and the phasor calculation is approximately 1/(10 Hz) = 100 ms.

When the system is in steady state, the calculated phasors can be averaged to reduce effect of measure-
ment noise and to increase accuracy of the impedance estimation. For averaging the phasors, the SDFT
structure presented in [18] is augmented with a low-pass filter (LPF). In this paper, a first-order LPF with
the transfer function of αf/(s+αf) and bandwidth of αf is applied due to its simplicity. It is transformed
to discrete time via the mapping s→ (z − 1)/Ts. Alternatively, the LPF can be, e.g., a moving-average
filter which is naturally averaging the phasors over its buffer length. The LPF is inserted inside the
resonator, as shown in Fig. 3(b), where the signals are dc-valued in steady state.

In the SDFT module, the resonator coefficient ce = exp(−jωeTs) selects the frequency of the single DFT
bin for the phasor calculation as explained in [19]. It is to be noted that, ωe has to be integer multiple of
the angular frequency resolution of the SDFT module as in the case of the conventional DFT. Finally, as
Fig. 3(b) shows, only a few multiplications and additions are needed in one sampling period Ts = 1/fs

per SDFT module meaning low computation burden that is an advantage in a real-time control system.

3.2. Multi-Frequency Estimation

The presented single-frequency estimator can be easily extended for multi-frequency impedance esti-
mation with the following modifications: 1) n pulsating sinusoidal components are added at the fre-
quencies of ωe,1, . . . , ωe,n to the converter voltage reference. 2) The SDFT modules are extended for
multi-frequency phasor calculation adding extra resonators, one per frequency, in parallel with the first
resonator as demonstrated in Fig. 4. 3) At every frequency component ωe,1, . . . , ωe,n, the calculated
phasors are sampled and impedance estimate (8) is calculated as explained in the previous section for a
single frequency component.

The multi-frequency excitation signal is

vs
e(t) =

n∑
k=1

eJϑe,k(t)

[
ve,k sin(ωe,kt+ φe,k)

0

]
(9)

where ve,k is the magnitude and ϑe,k is the angle of the k:th pulsating vector. In addition, every pulsating
component can have different initial phase φe,k at t = 0. The angles ϑe,k, k = 1 . . . n, are alternated
periodically in order to excite the system in different directions and to provide linearly independent
tests for the impedance matrix identification. If the angles ϑe,k are set as in (6) for all components, the
components will excite the system in the same direction, i.e., in α-axis and β-axis directions periodically.
On the contrary, if the angle ϑe,k is not the same for every component, the magnitude |vs

e(t)| of the signal



can be reduced [20]. For example, in the case of dual-frequency excitation, selecting the angles to provide
orthogonal components would minimize the magnitude. The initial phases φe,k, k = 1 . . . n, provide an
additional degree of freedom to shape vs

e(t). For multi-tone signals, several approaches to have been
presented to select these initial phases to minimize the signal magnitude or the crest factor, e.g., [20,21].

3.3. Estimation in Synchronous Coordinates

In Sections 3.1 and 3.2, the proposed estimator is introduced in stationary coordinates for αβ-asymmetric
systems. In order to estimate dq-asymmetric impedances, the estimator can be transformed to syn-
chronous (dq) coordinates. Only two modifications are needed. Firstly, the excitation signal ve is gen-
erated in synchronous coordinates similarly to (5) or (9) and transformed to stationary coordinates as
vs

e = exp {Jϑg(t)}ve, where ϑg is the angle of the synchronous coordinate system. Secondly, the PCC
voltage and current vectors are transformed to synchronous coordinates before the SDFT-based phasor
calculation and impedance estimation as ug = exp {−Jϑg(t)}us

g, and ig = exp {−Jϑg(t)} is
g, re-

spectively. The angle ϑg for the transformations can be obtained, e.g., from a phase-locked loop (PLL)
tracking the PCC voltage. The PLL has to include a band-stop filter at the injection frequency to provide
injection-frequency free angle. If ϑg oscillates at the injection frequency, the estimated impedance can
be significantly biased. With these modifications, the proposed estimator operates in synchronous coor-
dinates and produces an impedance estimate in these coordinates instead of stationary coordinates. The
estimation of a dq-asymmetric impedance may be of interest if other converters connected to the same
grid have a notable impact on the impedance seen from the PCC.

3.4. Comparison

Properties of the proposed estimator are compared with those of the state-of-the-art converter-based
estimators capable for unbalanced grid-impedance estimation. Whereas the methods in [13,14] estimate
the impedance in the natural (abc) reference frame, the method in [12] in the αβ reference frame, and
the methods in [3, 15] in the dq reference frame, the proposed estimator can be configured to estimate
either an αβ- or dq-asymmetric impedance. Access to the neutral-point potential and phase-to-neutral
voltage measurements are required in [14]. On the contrary, when the space vectors are applied in the
estimation, line-to-line voltage measurements can be used and neutral point potential is not needed.

The estimation methods in [12,13] assume inductive-resistive grid model whereas the impedance model
is not fixed in [3, 14] and in the proposed method. In [15], a parametric differential-equation model is
iteratively fitted to measured data. Although a parametric grid model is obtained as an estimation result
in [15], the model order and structure has to be determined which complicates the estimation.

The DFT is used in the frequency-domain impedance estimation in [3, 13] which requires collecting
the measurement data in a buffer before the impedance estimate can be calculated. If the number of
data points is large, the calculation has to be run as a background process of the converter delaying
the estimation. The method in [15] also requires buffers and background processing the measured data
due to its iterative nature. On the contrary, the impedance estimate is updated recursively on a sample-
by-sample basis in [12]. The advantage of the recursive calculation is that the computational load is
spread over the excitation period. In the proposed method, data buffers are needed for the SDFT but the
phasors are recursively calculated on a sample-by-sample basis. This reduces the computational burden
compared to the conventional DFT in the case of a few frequency components in the estimation.

As presented in Sections 3.1 and 3.2, the proposed estimator can be configured for selective single- or
multi-frequency estimation in a flexible manner thanks to its modular structure. In [13] two frequency
components are required in the excitation signal to obtain the estimated inductance and resistance values.
In [3,12,15] the excitation signal has wide frequency band since it is either required in the selected para-
metric estimation method [12, 15] or a wide-band frequency response is of interest [3]. Even though in
the proposed method, the number of frequency components can be increased in the excitation signal and
SDFT modules, the approach [3] with the pseudo-random binary signal excitation and the conventional
DFT becomes more attractive if tens or hundreds of frequency components are of interest.
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Fig. 5: Simulation results: (a) estimated elements of the grid impedance matrix Ẑ
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Fig. 6: Simulation results: estimated elements of the grid impedance matrix Ẑg(ωe) = R̂g(ωe) +

jX̂g(ωe). The actual values are marked with dashed lines.

4. Results
4.1. Simulations
The proposed estimator is first verified with simulations considering a 400-V 12.5-kVA grid converter
system. The existing control system [22] comprises a current-control loop and a PLL. The switching
frequency of the converter is 5 kHz. The sampling frequency of the control system and the SDFT is
fs = 10 kHz. The buffer size for the SDFT is N = 1000 samples per measured current or voltage
component. The impedance estimation interval is set to Ti = 200 ms to ensure that steady state is
reached for the phasor calculation. A single-frequency excitation signal, given in (5) and (6), is used. Its
frequency is an inter-harmonic of ωe = 2π · 110 rad/s, and its magnitude is ve = 0.02 p.u. During the
verification test, the converter injects the power of pg = 0.5 p.u. to the 50-Hz grid.

Fig. 5(a) shows the estimated elements of the grid impedance matrix when the proposed method is
started at t = 1 s to estimate an unbalanced inductive-resistive grid impedance. Per-phase inductances
are Lga = Lgc = 5.5 mH and Lgb = 8.5 mH and resistances are Rga = Rgc = 0.5 Ω and Rgb = 1.9 Ω.
At t = 3 s the b-phase inductance Lgb is reduced from 8.5 mH to 5.5 mH and resistance Rgb is reduced
from 1.9 Ω to 0.5 Ω, i.e., the impedance becomes balanced. If the inductive-resistive grid is assumed
in the estimator, the estimated impedance matrix elements can be translated to per-phase inductance and
resistance estimates based on (4) as Za = (3Zαα − Zββ)/2, Zb = Zββ −

√
3/2 · (Zαβ + Zβα), and

Zc = Zββ +
√

3/2 · (Zαβ + Zβα). The per-phase estimates are demonstrated in Fig. 5(b). As the figure
shows, the method correctly estimates the unbalanced and balanced grid impedance.

The capability to estimate a dq-asymmetric impedance is also verified with simulations. The estimator
is configured as in the first simulation test and transformed to synchronous coordinates as described in
Section 3.3. Fig. 6 shows the estimated elements of the impedance matrix when the estimator is started
at t = 1 s to estimate a balanced grid impedanceRg = 1.5 Ω and Lg = 8.5 mH. At t = 3 s, another 12.5-
kVA three-phase converter with an LCL filter (L1 = 3.3 mH, C = 8.8 µF, L2 = 3.0 mH) is connected
to the PCC and it starts to inject active power of pg = 0.5 p.u. to the grid. Its switching frequency is 4
kHz, and its control system comprises proportional-integral (PI) grid current controller in dq coordinates
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Fig. 8: Measurement results: (a) excitation voltage; (b) spectra of the PCC voltage and current during
the estimation.

with the cross-coupling compensation and a synchronous-reference-frame PLL (SFR-PLL). The gains
of the PI controller correspond the design presented in [23] with the phase margin of π/4. The gains of
the SRF-PLL are kp,pll = 0.272 (1/Vs) and ki,pll = 12.1 (1/Vs2).

As Fig. 6 shows, the other converter at the PCC significantly changes the overall grid impedance seen
by the estimating converter (dashed-lines show the theoretical overall impedance). Nevertheless, the
proposed estimator accurately estimates the impedance in dq coordinates with and without the other con-
verter in the system. Furthermore, it was observed that the switching frequency components originating
from the other converter can cause significant bias in the estimates. To alleviate this bias, a simple 3-kHz
first-order filter was employed as an anti-aliasing filter for the PCC voltage and current measurements.

4.2. Experiments
The verification test was experimentally repeated. A diagram of the setup used in the experiments is
shown in Fig. 7(a). The unbalanced impedance is emulated with 5.5-mH chokes in all three phases and
an extra 3-mH choke and resistance of 1.4 Ω in the b phase as demonstrated in Fig. 7(b). The chokes are
connected between the PCC and the 50-Hz electric power system. Fig. 8(a) shows the excitation signal
during the experiment, and Fig. 8(b) shows the PCC current and voltage spectra when the excitation
signal is enabled. The spectra are calculated over five grid-voltage periods (0.1 s) during one injection
direction when the grid impedance is unbalanced. It can be seen that the magnitudes of the injection-
frequency components are at the same level as typical grid current harmonics. The −50 Hz negative
sequence component originates from the unbalanced impedance.

Fig. 9(a) shows the estimated elements of the grid impedance matrix and Fig. 9(b) the estimated per-
phase inductances and resistances. The estimated per-phase impedances are obtained from the elements
of the impedance matrix as in Section 4.1. The proposed method is started at t = 1 s, and the extra 3-mH
choke and resistance in the b-phase is bypassed around t = 3.5 s [cf. Fig 7(b)] to change the impedance
from unbalanced to balanced. As the results demonstrate, the proposed method can identify the balanced
and unbalanced grid impedance and detect changes well in real time. Compared to the simulation results,
the estimated resistive components are influenced by the noise in the measured signals causing some
variance. The effect of noise can be reduced with averaging the calculated phasors as explained in
Section 3.1. Here, the LPF bandwidth for this purpose was set to αf = 2π · 10 Hz.

Finally, the same test was repeated using a multi-frequency excitation signal (9) to demonstrate the
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Fig. 9: Measurement results with single-frequency excitation: (a) estimated elements of the grid
impedance matrix Ẑ

s
g(ωe) = R̂

s
g(ωe) + jX̂

s
g(ωe); (b) estimated per-phase inductances and resistances.
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Fig. 10: Measurement results with multi-frequency excitation: (a) estimated a-phase inductances and
resistances; (b) estimated b-phase inductances and resistances; (c) estimated c-phase inductances and
resistances.

multi-frequency estimation. The injection frequencies are ωe,1 = 2π · 110 Hz, ωe,2 = 2π · 120 Hz, and
ωe,3 = 2π · 130 Hz, and the amplitudes of the signals are ve,1 = ve,2 = ve,3 = 0.02 p.u. For simplicity,
the injection angles ϑe,k are selected according to (6) and the phase shifts are φe,k = 0 for all k = 1 . . . 3.
Fig. 10 shows the estimated per-phase inductances and resistances at all injection frequencies. Again, the
impedance change is well detected and the estimation results at these frequencies agree with each other.
A drawback of the multi-frequency estimation is increased distortion of grid currents due to multiple
injection components. However, simultaneous estimation of multiple frequency components can provide
more information of the grid impedance within same estimation interval. In addition, calculating the
average of the estimated resistances obtained at different frequencies, e.g., [Ra(110 Hz)+Ra(120 Hz)+
Ra(130 Hz)]/3, helps to reduce variance of the estimated resistances.

5. Conclusions
This paper presented a real-time grid impedance estimation method for three-phase power converters.
While a periodic excitation signal is added to the converter voltage reference, the proposed method
can continuously estimate either unbalanced or balanced impedance at the injection frequency. Due to
lightweight computation of the SDFT algorithm used in the estimation, the proposed method can be
easily implemented in a converter control system. The estimated impedance can be internally applied
in the control system, e.g., to improve control performance. In remote monitoring of converters, the
estimated impedance may provide added value when analyzing a converter or power system status or
possible grid–converter interactions. In addition to grid converter systems, the presented estimation
technique can be applied in other converter systems with similar interfaces, such as in motor drives.
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