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Abstract In this paper we study a problem of determining when entities
are active based on their interactions with each other. We consider a set of
entities V and a sequence of time-stamped edges E among the entities. Each
edge (u, v, t) ∈ E denotes an interaction between entities u and v at time t.
We assume an activity model where each entity is active during at most k time
intervals. An interaction (u, v, t) can be explained if at least one of u or v are
active at time t. Our goal is to reconstruct the activity intervals for all entities
in the network, so as to explain the observed interactions. This problem, the
network-untangling problem, can be applied to discover event timelines from
complex entity interactions.

We provide two formulations of the network-untangling problem: (i) min-
imizing the total interval length over all entities (sum version), and (ii) mini-
mizing the maximum interval length (max version). We study separately the
two problems for k = 1 and k > 1 activity intervals per entity. For the case
k = 1, we show that the sum problem is NP-hard, while the max problem can
be solved optimally in linear time. For the sum problem we provide efficient
algorithms motivated by realistic assumptions. For the case of k > 1, we show
that both formulations are inapproximable. However, we propose efficient al-
gorithms based on alternative optimization. We complement our study with
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an evaluation on synthetic and real-world datasets, which demonstrates the
validity of our concepts and the good performance of our algorithms.

Keywords Temporal networks · complex networks · timeline reconstruction ·
vertex cover · linear programming · 2-sat

1 Introduction

New data abstractions emerging from modern applications require new def-
initions for data-summarization and synthesis tasks. In particular, for many
data that are typically modeled as networks, temporal information is nowa-
days readily available, leading to temporal networks (Holme and Saramäki,
2012; Michail, 2016). In a temporal network G = (V,E), edges describe in-
teractions over a set of entities V . For each edge (u, v, t) ∈ E, the time of
interaction t, between entities u, v ∈ V is also available.

In this paper we introduce a new problem formulation for summariz-
ing temporal networks. Network summarization is a well-established problem
with applications to data compression, visualization, interactive analysis, and
noise elimination. However, temporal network summarization is a rather novel
and challenging topic, because of the large variety of temporal network sum-
maries being proposed. An extensive survey for both static and temporal net-
work summarization was compiled by Liu et al. (2018). Many of the tem-
poral summaries (such as temporal motifs (Kovanen et al., 2013; Paranjape
et al., 2017a), temporal graphlets (Hulovatyy et al., 2015; Lahiri and Berger-
Wolf, 2008), vocabulary-based summaries (Shah et al., 2015), evolutionary
patterns (Wackersreuther et al., 2010; Berlingerio et al., 2009), community
evolution (Pietilänen and Diot, 2012; He and Chen, 2015)) are rather complex
and may be hard to interpret. Here we propose a simple and intuitive model
for activity summarization. Our main idea is to introduce an activity model
where entities can be active over latent time intervals. An edge (interaction)
between two entities can be explained if, at the time of the interaction, at least
one of the two entities is active. Our summarization task is to find the latent
activity intervals for all entities. The output of this process yields an activity
timeline for the whole network.

Intuitively, an active entity can help “explaining” interactions of that en-
tity with other entities. Finding short time intervals and corresponding active
entities, which explain the observed interactions in the temporal network, cor-
responds to finding the most salient events. To further motivate our summa-
rization task, consider the following example.

Example. Consider a stream of tweets related to global news in the first half
of June 2018: the G7 summit takes place in Canada on June 8-9, where US
president D. Trump spars with other world leaders about import tariffs, argues
with the prime minister of Canada J. Trudeau, while many fear an imminent
trade war. A few days later, on June 15, president Trump announces 25%
tariffs on Chinese goods, prompting China to retaliate, and increasing trade
war concerns, while analysts still discuss the G7 summit aftermath.
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A standard approach to analyze such data is to create a co-occurrence graph
of the key entities, e.g., frequent Twitter hashtags, mentioned in the news
stories. A toy instance of such a hashtag co-occurrence graph for the above
example is shown in the left side of Fig. 1. In this paper we consider retaining
temporal information for each pair of co-occurring entities and representing
the data as a temporal network, as shown in the right side of Fig. 1. This
is clearly a richer representation providing more data-analysis opportunities.
In this paper we aim to find event timelines, represented as a succinct set of
(entity, time-interval) pairs that explain the observed data. The timelines for
the data in Fig. 1 are shown in Fig. 2. We see two main events, corresponding to
the G7 summit and the tariffs on Chinese goods announcement, described by a
key entity each and corresponding time intervals. We see how the key entities
explain the occurrence of the other entities, many of which are common. ut

Motivated by the previous example we introduce the network-untangling
problem, where the goal is to reconstruct an activity timeline from a temporal
network. We consider a simple model in which we assume that each entity
can be active during at most k time intervals. We say that a temporal edge
(u, v, t) is covered if at least one of u and v is active at time t. The objective is
to find a set of activity intervals, k for each entity, so that all temporal edges
are covered, and the length of the activity intervals is minimized. We consider
two definitions for interval length: total length (sum) and maximum length
(max).

#g7

#trudeau

#trump #china

#tariffs

#tradewar

time

#trudeau
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#trump

#tradewar
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#china

Fig. 1 A toy example motivating our problem definition. Left: co-occurrence graph of
hashtags as they may appear on a social-media platform, such as Twitter. Right: more fine-
grained representation of the co-occurrence hashtag graph as a temporal network; edges now
include time information

time
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Fig. 2 The solution to the timeline discovery problem, defined in this paper, for the
temporal network of Fig. 1. A timeline of events that explain all temporal edges is identified.
The timeline consists of intervals during which certain hashtags are active
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Table 1 Common notation used throughout the paper

G = (V,E) network G with V nodes and E edges
n, m number of nodes, number of edges
t(e) time stamp of edge e
E(v) edges adjacent to vertex v
A(v) edge indices adjacent to vertex v
T (v) time stamps of edges adjacent to vertex v
T set of activity time intervals
Iv = [sv , ev ] active time interval for v
σ(Iv) duration of a time interval
S(T ) sum of durations activity time intervals
∆(T ) max of durations activity time intervals

When there is only one activity interval per node, i.e., k = 1, we show
that the max problem can be mapped to 2-sat, and solved optimally in linear
time. On the other hand, the sum problem is NP-hard. In the general case,
k > 1, we show that both problem variants — max and sum — are not only
NP-hard but also inapproximable. We approach these problems by offering
four iterative algorithms that rely on subproblems that can be solved approxi-
mately or optimally. In all cases the subproblems can be solved by linear-time
algorithms, yielding overall very practical and efficient methods.

We complement our theoretical results with an experimental evaluation,
where we demonstrate that our methods can find ground-truth activity in-
tervals planted on synthetic datasets. Additionally we conduct a case study
where it is shown that the discovered intervals match the timeline of real-world
events and related sub-events.

The rest of the paper is organized as follows. In Section 2 we formally
define the problems we study. Sections 3 and 4 are dedicated to optimizing the
maximum activity interval length with k = 1 and k > 1. Whereas Sections 5
and 6 are describing optimizing the total activity interval length with k = 1
and k > 1. In all sections we establish the computational complexity of the
different problem variants along with presenting our solutions. In Section 7
we discuss the related work and in Section 8 we present our experimental
evaluation. Finally, Section 9 is a short conclusion.

An earlier version of this work appeared in the ECML PKDD 2017 con-
ference (Rozenshtein et al., 2017). The conference version addressed only the
single activity-interval case (k = 1). The current version extends the problem
definition and algorithms to the general case (k > 1).

2 Preliminaries and problem definition

Let G = (V,E) be a temporal network, where V is a set of vertices and E is
a set of time-stamped edges. The edges in E are triples of the form (u, v, t),
where u, v ∈ V and t is a time stamp indicating the time that an interaction
between vertices u and v takes place. The edges are undirected. We do not
preclude the case that two vertices u and v interact multiple times. As it is
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customary, we denote by n the number of vertices in the graph, and by m the
number of edges. For our algorithms we assume that the edges are given in
chronological order, if not, they can be sorted in additional O(m logm) time. If
there are edges with the same time stamp, then any tie-breaking order among
those edges will suffice.

Given a vertex u ∈ V , we write E (u) to denote the set of edges adjacent to
u, i.e., E (u) = {(u, v, t) ∈ E}. We write N (u) = {v | (u, v, t) ∈ E} to represent
the set of vertices adjacent to u, and T (u) = {t | (u, v, t) ∈ E} to represent the
set of time stamps of the edges containing u. Finally, we write t(e) to denote
the time stamp of an edge e ∈ E.

We denote by A(v) the indices of edges that are adjacent to v. Given an
edge ei with a index i, we will often write t(i) to mean t(ei).

Given a vertex u ∈ V and two numbers su and eu, we consider the interval
Iu = [su, eu], where su is a start time and eu is an end time. We refer to Iu as
the activity interval of vertex u. Intuitively, we think of Iu as the time interval
in which the vertex u has been active. A set of activity intervals T = {Iu}u∈V ,
one interval for each vertex u ∈ V , is an activity timeline for the temporal
network G.

Given a temporal network G = (V,E) and an activity timeline T =
{Iu}u∈V , we say that T covers G if for each edge (u, v, t) ∈ E, we have t ∈ Iu
or t ∈ Iv, that is, for each edge in the network at least one of its endpoints is
active.

Note that there is a trivial timeline that provides a cover. Such a timeline,
defined by Iu = [min T (u) ,max T (u)], may have unnecessarily long intervals.
Instead, we aim at finding a timeline that has as compact intervals as possible.
We measure the quality of a timeline by the total duration of all activity
intervals in it. More formally, we define the total span, or sum-span, of a
timeline T = {Iu}u∈V by

S (T ) =
∑
u∈V

σ(Iu) ,

where σ(Iu) = eu − su is the duration of a single interval. An alternative way
to measure the compactness of a timeline is by the duration of its longest
interval,

∆(T ) = max
u∈V

σ(Iu) .

We refer to ∆(T ) as the max-span of the timeline T .
For the two quality measures, sum-span and max-span, we define corre-

sponding problem variants.

Problem 1 (MinTimeline+) Given a temporal network G = (V,E), find a
timeline T = {Iu}u∈V that covers G and minimizes the sum-span S (T ).

Problem 2 (MinTimeline∞) Given a temporal network G = (V,E) find a
timeline T = {Iu}u∈V that covers G and minimizes the max-span ∆(T ).
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Multiple intervals. Additionally, we extend our problem definitions to al-
low k active intervals per vertex. We define a k-activity timeline as a set of
activity intervals T = {Ivj}v∈V,j∈[1,k]. Note that we allow empty intervals, so
in practice some vertices may have less than k intervals.

We define the k-sum-span of a k-activity timeline T by

S (T ) =
∑
j∈[1,k]

∑
u∈V

σ(Iuj) ,

where σ(Iuj) = euj−suj is the duration of the j-th activity interval of vertex u.

The max-span of the timeline T is defined similarly as the duration of the
longest interval,

∆(T ) = max
j∈[1,k]

max
u∈V

σ(Iuj) .

We can now extend Problems MinTimeline+ and MinTimeline∞ to the
case of k activity intervals per vertex.

Problem 3 (k-MinTimeline+) Given a temporal network G = (V,E), find a
timeline T = {Ivj}v∈V,j∈[1,k] that covers G and minimizes the sum-span S (T ).

Problem 4 (k-MinTimeline∞) Given a temporal networkG = (V,E), find a
timeline T = {Ivj}v∈V,j∈[1,k] that covers G and minimizes the max-span ∆(T ).

The choice between problems MinTimeline+ and MinTimeline∞ de-
pends largely on the application setting we are working with. With problem
MinTimeline∞ (or k-MinTimeline∞) we obtain a worst-case bound for the
length of all activity intervals. This property can be useful in scenarios where
we anticipate all activity intervals to be of comparable length, for example, for
creating a timeline of events with a daily cycle. On the other hand, problems
MinTimeline∞ and k-MinTimeline∞ are sensitive to outliers: the presence
of a single long interval, which may be caused due to noise in the data, is
sufficient to lead to solutions with unreasonably large cost, despite all other
intervals being sufficiently short. In this case, it is more appropriate to use
problems MinTimeline+ and k-MinTimeline+, since they provide greater
flexibility and can accomodate intervals of varying lengths. Thus, the use of
problems MinTimeline+ and k-MinTimeline+ is recommended when there
is high variability in the length of the events that we expect to discover in the
activity timeline.

3 Exact algorithm solving MinTimeline∞

In this section we provide an algorithm solving MinTimeline∞ in O(n log n)
time. This is done by solving a budget version of the problem, and then using
binary search to find the optimal cover.
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3.1 Binary search method for MinTimeline∞

Our algorithm for MinTimeline∞ relies on the idea of using a subproblem
that is easier to solve.

In this case, we consider as subproblem an instance in which, in addition
to the temporal network G, we are also given a set of budgets {bv} of interval
durations; one budget bv for each vertex v. The goal is to find a timeline
T = {Iu}u∈V that covers the temporal network G and the length of each
activity interval Iv is at most bv. We refer to this problem as Budget.

Problem 5 (Budget) Given a temporal network G = (V,E) and a set of
budgets {bv}v∈V , find a timeline T = {Iu}u∈V that covers G and satisfies
σ(Iv) ≤ bv for each v ∈ V .

Surprisingly, the Budget problem can be solved optimally in linear time.
The algorithm is presented in Section 3.2. Note that this result is compatible
with the NP-hardness of MinTimeline+, since here we know the budgets for
individual intervals, while in MinTimeline+ there is one budget for the total
interval length.

We can now use binary search to find the optimal value ∆(T ). We call this
algorithm Budget.

To guarantee a small number of iterations during binary search, some at-
tention is required: let T = t1, . . . , tm be all the time stamps, sorted. As-
sume that we have L, the largest known infeasible budget and U , the small-
est known feasible budget. To define a new candidate budget, we consider
W (i) = {tj − ti | L < tj − ti < U}. The optimal budget is either U or one of
the numbers in W (i). If every W (i) is empty, then the answer is U . Otherwise,
we compute m(i) to be the median of W (i), ignoring any empty W (i), and
we test the median of all m(i) (weighted by |W (i)|) as a new budget. We can
show that at each iteration

∑
|W (i)| is reduced by 1/4, that is, only O(logm)

iterations are needed. We can determine the medians m(i) and the sizes |W (i)|
in linear time since T is sorted, and we can determine the weighted median
in linear time by using a modified median-of-medians algorithm. This leads to
running time yielding an O(m logm) algorithm. In our experiments we use a
straightforward binary search by testing (U + L)/2 as a budget.

3.2 Exact algorithm for Budget

We develop a linear-time algorithm for problem Budget. We are given a
temporal network G, and a set of budgets {bv}, and all activity intervals
should satisfy σ(Iv) ≤ bv.

The idea is to map Budget into 2-sat. To do that we introduce a boolean
variable xvt for each vertex v and for each timestamp t ∈ T (v). To guarantee
the solution will cover each edge (u, v, t) we add a clause (xvt ∨ xut). To make
sure that we do not exceed the budget we require that for each vertex v and
each pair of time stamps s, t ∈ T (v) such that |s− t| > bv either xvs is false or
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xvt is false, that is, we add a clause (¬xvs∨¬xvt). It follows immediately, that
Budget has a solution if and only if 2-sat has a solution. The solution for
Budget can be obtained from the 2-sat solution by taking the time intervals
that contain all boolean variables set to true. Since 2-sat is a polynomially-
time solvable problem (Aspvall et al., 1979), we have the following.

Proposition 1 Problem Budget can be solved in polynomial time.

To see this, first we recall that solving 2-sat can be done in linear-time
with respect to the number of clauses (Aspvall et al., 1979). However, in our
case we may have O

(
m2
)

clauses. Fortunately, the 2-sat instances created
with our mapping have enough structure to be solvable in O(m) time. This
speed-up is described in the remainder of the section.

Let us first review the algorithm by Aspvall et al. (1979) for solving 2-sat.
The algorithm starts with constructing an implication graph H = (W,A). The
graph H is directed and its vertex set W = P ∪ Q has a vertex pi in P and
a vertex qi in Q for each boolean variable xi. The edges A are as follows: a
clause (xi∨xj) induces two edges (qi → pj) and (qj → pi), a clause (¬xi∨¬xj)
induces two edges (pi → qj) and (pj → qi), and a clause (xi ∨ ¬xj) induces
two edges (qi → qj) and (pj → pi).

In our case, the edges A are divided to two groups A1 and A2. The set
A1 contains two directed edges (qvt → put) and (qut → pvt) for each edge
e = (u, v, t) ∈ E. The set A2 contains two directed edges (pvt → qvs) and
(pvs → qvt) for each vertex v and each pair of time stamps s, t ∈ T (v) such
that |s− t| > bv. Note that A1 goes from Q to P and A2 goes from P to Q.
Moreover, |A1| ∈ O(m) and |A2| ∈ O

(
m2
)
.

Next, we decompose H in strongly connected components (SCC), and or-
der them topologically. If any strongly connected component contains both
pvt and qvt, then we know that 2-sat is not solvable. Otherwise, to obtain
the solution, we start enumerating over the components, children first: if the
boolean variables corresponding to the vertices in the component do not have
a truth assignment,1 then we set xvt to be true if pvt is in the component, and
xvt to be false if qvt is in the component

The bottleneck of this method is the SCC decomposition, which requires
time O(|W |+ |A|), and the remaining steps can be done in O(|W |) time.
Since |W | ∈ O(m), we need to be able to perform the SCC decomposition
in time O(m). We will use the algorithm by Kosajaru (see Hopcroft and Ull-
man (1983)), which consists of two depth-first search (DFS) computations,
performing constant-time operations on each visited vertex. Thus, we need to
only optimize the DFS.

To speed-up the DFS computation, we design an oracle such that given
a vertex p ∈ P it returns an unvisited neighboring vertex q ∈ Q in constant
time. Since |Q| ∈ O(m), DFS spends at most O(m) time processing vertices
p ∈ P . On the other hand, if we are at q ∈ Q, then we can use the standard

1 Due to the property of implication graph, either all or none variables will be set in the
component.
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DFS to find the neighboring vertex p ∈ P . Since |A1| ∈ O(m), this guarantees
that DFS spends at most O(m) time processing vertices q ∈ Q.

Next, we describe the oracle: first we keep the unvisited vertices Q in lists
`[v] = (qvt ∈ Q; qvt is not visited) sorted chronologically. Assume that we are
at pvt ∈ P . We retrieve the first vertex in `[v], say qvs, and check if |s− t| > bv.
If true, then qvs is a neighbor of pvt, so we return qvs. Naturally, we delete
qvs from `[v] the moment we visit qvs. If |s− t| ≤ bv, then test similarly the
last vertex in `[v], say qvs′ . If both qvs′ and qvs are non-neighbors of pvt, then,
since `[v] is sorted chronologically, we can conclude that `[v] does not have
unvisited neighbors of pvt. Since pvt does not have any neighbors outside `[v],
we conclude that pvt does not have any unvisited neighbors.

Using this oracle we can now perform DFS in O(m) time, which in turns
allows us to do the SCC decomposition in O(m) time, which solves Budget
in O(m) time.

4 Algorithm for k-MinTimeline∞

Next, we consider a k-extension of MinTimeline∞. Unlike the simpler pre-
vious problem, this extension is not only computationally infeasible but also
inapproximable.

Proposition 2 k-MinTimeline∞ and k-MinTimeline+ are inapprox-
imable, unless P = NP.

Proof The proof can be found in Appendix A.

4.1 Iterative method with budgets for k-MinTimeline∞

As a heuristic we consider two nested subproblems. In the first one, k-
Partition, we assume that for each node we are given a set of k − 1 points
{gvi}v∈V,i∈[1,k−1], which belong to the gaps between k activity intervals (i.e.,

inactive points).
More formally, given a timeline T = {Ivj}v∈V,j∈[1,k], we say that {gvi}

interleaves with T if gvi is between Ivi and Iv(i+1), where we do not allow
gvi to “touch” the border of the intervals. Among these timelines, we look for
the ones that cover all interactions and minimize the maximum length of an
interval.

Problem 6 (k-Partition) Given a temporal network G = (V,E) and a set
of inactive points {gvi}v∈V,i∈[1,k−1], find a timeline T = {Iuj}u∈V,j∈[1,k] that

covers G, interleaves with {gvi}, and minimizes the max-span ∆(T ).

Problem k-Partition can be solved in polynomial time through iteration
of Problem k-Budget, which sets a budget for each interval.
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Problem 7 (k-Budget) Given a temporal network G = (V,E), a set of
budgets {bvj}v∈V,j∈[1,k], and a set of inactive points {gvi}v∈V,i∈[1,k−1], find

a timeline T = {Iuj}u∈V,j∈[1,k] that covers G, interleaves with {gvi}, and

σ(Ivj) ≤ bvj for each v ∈ V and j ∈ [1, k].

Given an algorithm for k-Budget we use binary search for budgets to find
the optimal value ∆(T ). To solve k-MinTimeline∞ we can apply an iterative
heuristic similar to k-Inner: we guess k−1 initial inactive points for each node
u ∈ V , solve k-Partition optimally by binary search over the given budgets,
update the set of inactive points and repeat until there is no improvement.

In the experiments we use the following simple and natural strategy to
initialize and update the inactive points: to initialize the inactive points for
a fixed node u ∈ V we find the k − 1 largest intervals between consecutive
time stamps of interactions of u. Then gvi is set to the mean point of the
i-th interval. Once k-Partition outputs the timeline T = {Iuj}u∈V,j∈[1,k],
we update gvi as the mean between two consecutive activity intervals: gvi =
(sIvi

+eIv(i+1)
)/2. We iterate the process until there is no improvement. In our

experiments, we refer to this algorithm as k-Budget.

4.2 Exact algorithm for k-Budget

We extend the previous approach to k-MinTimeline∞.
We again map k-Budget to 2-sat. We introduce a boolean variable xvt for

each vertex v and for each timestamp t ∈ T (v) and add a clause (xvt ∨ xut).
Then for each vertex v and each pair of time stamps t1, t2 ∈ T (v), which
lie between the two consecutive gap points gvi and gv(i+1) (or between the
last/first gap point and corresponding end point of the time-series) and have
|t1 − t2| > bvi, we add a clause (¬xvt1 ∨ ¬xvt2).

Similarly to Budget, we solve this instance of 2-sat using speed-up oracles
for DFS. The only difference is that DFS oracle for Q vertices now keeps k
chronologically ordered lists of unvisited points for each node v ∈ V , each
list li[v] with i = [1, . . . , k] contains points qvt between two consecutive gap
points with timestamps t(gv(i−1)) and t(gvi) (or between a border point of the
timeseries and a gap point in cases of i = 1 and i = k). We keep additional
index to identify in constant time to which list li point pvt belongs and thus
total complexity remains O(m).

5 Algorithm for MinTimeline+

We next consider MinTimeline+. Unlike, MinTimeline∞ this problem is
NP-hard.

Proposition 3 The decision version of the MinTimeline+ problem is NP-
complete. Namely, given a temporal network G = (V,E) and a budget `, it is
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NP-complete to decide whether there is timeline T ∗ = {Iu}u∈V that covers G
and has sum-span S (T ∗) ≤ `.

Proof The proof can be found in Appendix A.

5.1 Inner point iterative method for MinTimeline+

We now turn our attention to algorithm for solving MinTimeline+. Our ap-
proach is to consider a meaningful subproblem. Assume that we are given a
temporal network G = (V,E) and a set of time points {mv}v∈V , i.e., one
time point mv for each vertex v ∈ V , and we ask whether we can find an
optimal activity timeline T = {Iu}u∈V so that each interval Iv contains the
corresponding time point mv, i.e., mv ∈ Iv, for each v ∈ V . This problem
definition is useful when we know one time point that each vertex was active,
and we want to extend this to an optimal timeline. We refer to this problem
as Coalesce.

Problem 8 (Coalesce) Given a temporal network G = (V,E) and a set
of inner time points {mv}v∈V , find a timeline T = {Iv}v∈V that covers G,
satisfies mv ∈ Iv for each v ∈ V , and minimizes the sum-span S (T ).

Interestingly, we can show that the Coalesce problem can be approxi-
mated within a factor of 2 in linear time. This 2-approximation algorithm is
presented in Section 5.2.

Motivated by Coalesce, we propose an algorithm for MinTimeline+,
which uses Coalesce as a subroutine: initialize mv = (min T (v) +
max T (v))/2 to be an inner time point for vertex v. We then use our ap-
proximation algorithm for Coalesce to obtain a set of intervals {Iv} =
{[sv, ev]}v∈V . We use these intervals to set the new inner points, mv =
(sv + ev)/2, and repeat until the score no longer improves. We call this al-
gorithm Inner.

5.2 Algorithm for Coalesce

As noted in Problem 8, the input to the Coalesce problem is a temporal
network G = (V,E) and a set of interior time points {mv}v∈V .

Consider a vertex v and the corresponding interior point mv. For an edge
index i we define the peripheral indices p(i; v) to be the indices that are on
the other side of i than mv (see Figure 3 for example),

p(i; v) =

{
{j | j ∈ A(v) , j ≥ i} if t(i) ≥ mv,

{j | j ∈ A(v) , j ≤ i} if t(i) < mv.

Our next step is to express Coalesce as an integer linear program. Let xvi ∈
{0, 1} be a variable for each vertex v ∈ V and index i ∈ A(v). Instead of going
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3 5 6 8 = mv 10 11 13

1 2 3 4 5 6 7

p(5; v) = {1, 2} p(2; v) = {5, 6, 7}

time

index

Fig. 3 Toy example of peripheral indices used in a linear program solving Coalesce.

for the obvious construction, where xvi = 1 indicates that v is active at time
i, we follow a different formulation: in our program xvi = 1 indicates that t(i)
is either the beginning or the end of the active region of v. It follows that the
integer program

min
∑

v∈V,i∈A(v)

|t(i)−mv|xvi,

such that
∑

j∈p(i;v)

xvj +
∑

j∈p(i;u)

xuj ≥ 1, for all ei = (u, v, t) ∈ E

solves Coalesce. Minimizing the first sum corresponds to minimizing the
sum-span of the timeline, while the constraint on the second sum ensures that
the resulting timeline covers the temporal network. Note that we do not require
that each vertex should have exactly one beginning and one end. However, the
minimality of the optimal solution ensures that this constraint will be satisfied,
too.

Relaxing the integrality constraint and considering the program as linear
program, allows us to write the dual. The variables in the dual can be viewed
as positive weights αe on the edges, with the goal of maximizing the total sum
of these weights. Let us write αi for αei .

To express the constraints on the dual, let us define an auxiliary function
h(v; i) as the sum of the weights of adjacent edges between i and mv,

h(v; i) =

{∑
{αj | j ∈ A(v) , j ≤ i, t(j) ≥ mv} if t(i) ≥ mv,∑
{αj | j ∈ A(v) , j ≥ i, t(j) < mv} if t(i) < mv.

The dual can now be formulated as

max
∑
ej∈E

αj ,

such that h(v; i) ≤ |t(i)−mv|, for all v ∈ V, i ∈ A(v) ,

that is, we maximize the total weight of edges such that for each vertex v and
for each index i, the sum of adjacent edges is bounded by |t(i)−mv|.

We say that the solution to dual is maximal if we cannot increase any edge
weight αe without violating the constraints. An optimal solution is maximal
but a maximal solution is not necessarily optimal.
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Algorithm 1: Maximal, yields 2-approximation to Coalesce.

b[v]←∞ for v ∈ V ;
a[v]← 0 for v ∈ V ;
foreach e = (u, v, t) ∈ E in chronological order do

αe ← min{z(u), z(v)} ; {see Eq. (1)}
if t < mv then b[v]← min{b[v]− αe,mv − t− αe} ;
else a[v]← a[v] + αe ;
if t < mu then b[u]← min{b[u]− αe,mu − t− αe} ;
else a[u]← a[u] + αe ;

Our next result shows that a maximal solution can be used to obtain a
2-approximation cover.

Proposition 4 Consider a maximal solution {αe}e∈E to the dual pro-
gram. Define a set of intervals T = {Iv} by Iv = [min {t(i) | i ∈ Xv} ,
max {t(i) | i ∈ Xv}], where

Xv = {i ∈ A(v) | h(v; i) = |t(i)−mv|} .

Then T is a 2-approximation solution for the problem Coalesce.

Proof The proof can be found in Appendix B.

We have established that as long as we can obtain a maximal solution for
the dual, we can extract a timeline that is 2-approximation.

Next, we introduce a linear-time algorithm that computes a maximal dual
solution. The algorithm visits each edge e in chronological order and increases
αe as much as possible without violating the dual constraints. To obtain a
linear-time complexity we need to determine in constant time by how much
we can increase αe. The pseudo-code is given in Algorithm 1, and the remaining
section is used to prove the correctness of the algorithm.

As the algorithm goes over the edges, we maintain two counters per each
vertex, a[v] and b[v]. Let ej = (u, v, t) be the current edge. The counter a[v] is
maintained only if t ≥ mv, and the counter b[v] is maintained if t < mv. Our
invariant for maintaining the counters a[v] and b[v] is that at the beginning of
the j-th round they are equal to

a[v] = h(v; j) and b[v] = min
i<j
{t(i)−mv − h(v; i)},

Moreover, we have weights αi = 0, for i ≥ j. The following lemma tells us how
to update αj using a[v] and b[v].

Lemma 1 Assume that we are processing edge ej = (u, v, t). We can increase
αj by at most min{z(u), z(v)},

where z(w) =

{
t−mw − a[w] if t(j) ≥ mw,

min{mw − t, b[w]} if t(j) < mw.
(1)
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Proof The proof can be found in Appendix B.

Our final step is to how to maintain a[v] and b[v]. Maintaining a[v] is trivial:
we simply add αj to a[v]. The new b[v] is equal to

min
i≤j
{t(i)−mv − h(v; i)} = min{b[v]− αj ,mv − t(j)− αj}.

Clearly the counters a[v] and b[v] and the dual variables αe can be maintained
in constant time per edge processed, making Maximal a linear-time algorithm.

6 Algorithm for k-MinTimeline+

Our final algorithm is for k-MinTimeline+. We have already showed that
k-MinTimeline+ is inapproximable in Proposition 2. Hence, we propose an
iterative method, similar to Inner.

6.1 Inner point iterative method for k-MinTimeline+

As with MinTimeline+ we consider a subproblem that can be solved effi-
ciently with an approximation guarantee. In particular, we assume that we
are given a set of k time points for each node, {mvj}v∈V,j∈[1,k]. We ask to find

an optimal activity timeline T = {Ivj}v∈V,j∈[1,k] so that the interval Ivj of

vertex v contains the corresponding time point mvj , that is, mvj ∈ Ivj , for
each v ∈ V and j ∈ [1, k]. These inner points can be located anywhere within
the interval. We refer to this problem as k-Coalesce.

Problem 9 (k-Coalesce) Given a temporal network G = (V,E) and a set
of time points {mvj}v∈V,j∈[1,k], find a timeline T = {Ivj}v∈V,j∈[1,k] that covers

G, satisfies mvj ∈ Ivj for each v ∈ V and j ∈ [1, k], and minimizes the sum-
span S (T ).

Below we show how to extend our approach for Problem Coalesce and
design a 2-approximation linear time algorithm. Given an algorithm for k-
Coalesce, we can guess initial k active time points for each node and iterate
solving k-Coalesce and updating the inner points.

In the experiments, we initialize {mvj}v∈V,j∈[1,k] by using the centroids

of a k-clustering algorithm, performed on the time-stamps of the edges that
contain vertex v. In particular, we start with a clustering that minimizes the
total diameter of the clusters. Such a clustering can be obtained efficiently
by locating the k − 1 largest intervals between two consecutive interactions
of v in E. Then mvj is set to be the mean of the cluster interval j. After
solving k-Coalesce we update mvj ’s as the middle points of the new activity
interval and we iterate until there is improvement in the solution. We call this
algorithm k-Inner.
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3 5 = mv1 6 8 10 11 13 = mv2

1 2 3 4 5 6 7

lp(4; v) = {3, 4} rp(4; v) = {4, 5, 6, 7}

Sv2 = {3, . . . , 7}

θv4 = 3 ηv4 = 5

time

index

Fig. 4 Toy example of variables used by the linear program for solving k-Coalesce. Note
that Sv2 does not contain edge index 2 but contains 13. This is done due to notational
convenience when proving the correctness of k-Maximal.

6.2 Algorithm for k-Coalesce

Next, we show how to solve k-Coalesce. Assume we are given k inner points
for each vertex, denoted by mvi. Let us write mv0 = −∞ and mv(k+1) =∞.

The middle points divide the timeline of each vertex in k + 1 segments,

Sv` =
{
i ∈ A(v) | mv(`−1) < t(i) ≤ mv`

}
.

We extend the definition of peripheral time stamps to handle k inner points.
Next we define peripheral time stamps. In order to handle multiple inner points,
we will explicitly differentiate left time stamps and right time stamps. Given
an edge index i that belongs to Sv` we define

lp(i; v) = {j ∈ Sv` | j ≤ i} , and rp(i; v) = {j ∈ Sv` | j ≥ i} ,

that is we split Sv` in two halves at index i. See Figure 4 for a toy example.
For the integer linear programming we define two variables xvi, yvi for each

vertex v ∈ V , and an edge index i ∈ A(v) The assignment xvi = 1 indicates
that t(i) is the end of an active interval while yvi = 1 indicates that t(i) is the
beginning of an active interval.

It follows that the integer program with xvj , yvj ∈ {0, 1}

min
∑

v,i∈A(v)

(mv` − t(i))xvi + (t(i)−mv(`−1))yvi,

such that
∑

j∈lp(i;v)

xvj +
∑

j∈rp(i;v)

yvj +
∑

j∈lp(i;u)

xuj +
∑

j∈rp(i;u)

yuj ≥ 1,

for all ei = (u, v, t) ∈ E

solves k-Coalesce.
We relax the integrality constraint and write the dual. The variables in

the dual can be viewed as positive weights αe on the edges, with the goal of
maximizing the total sum of these weights.
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As before, we write αi for αei . Given an edgex index i, we define two
auxiliary functions summing the weights eihter from the left side or from the
right side,

lh(v; i) =
∑

j∈lp(i;v)

αj , and rh(v; i) =
∑

j∈rp(i;v)

αj .

Let ei = (u, v, t) be an edge. Let ` be the index such that i ∈ Sv`. We
define the distances of t to the inner points as

θvi = t−mv(`−1) and ηvi = mv` − t.

See Figure 4 for a toy example.
The dual can now be formulated as

max
∑
e∈E

αe,

such that lh(v; i) ≤ θvi and rh(v; i) ≤ ηvi, for all v ∈ V, i ∈ A(v) .

Recall that the solution to dual is maximal if we cannot increase any edge
weight αe without violating the constraints. However, unlike in the previous
section, this will not be enough for us, and we need a stronger condition.

Assume that {αe} is a maximal solution. Let ei = (u, v, t) be an edge. We
say that ei is left-maximal if at least one of the four following cases hold

(i) rh(v; j) = ηvj , for some j ∈ lp(i; v),
(ii) rh(u; j) = ηuj , for some j ∈ lp(i;u),

(iii) lh(v; i) = θvi,
(iv) lh(u; i) = θui.

Note that the last two cases are more strict than the regular maximality. If all
edges are left-maximal, then we say that {αe} is left-maximal. The next pro-
portion shows how to obtain a solution for k-Coalesce given a left-maximal
solution for the dual.

Proposition 5 Let {αi} be a left-maximal solution. Define

Xv` = {t(i) | i ∈ Sv`, rh(v; i) = ηvi} ,

and let xv` = min(Xv` ∪ {mv`}). Define also

Yv` = {t(i) | i ∈ Sv`, lh(v; i) = θvi, t(i) < xv`} ,

and yv` = max(Yv` ∪
{
mv(`−1)

}
). Define a set of intervals

T =
{

[xv`, yv(`+1)]
}
v∈V,`=1,...,k

.

Then T is a 2-approximation solution for k-Coalesce.

Proof The proof can be found in Appendix C.
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Algorithm 2: k-Maximal, produces a left-maximal dual solution,
yielding 2-approximation to k-Coalesce.

b[v, `]←∞ for v ∈ V ;
a[v, `]← 0 for v ∈ V ;
foreach ei = (u, v, t) ∈ E in chronological order do

`← smallest index with mv` ≥ t;
r ← smallest index with mur ≥ t;
z1 ← min(θvi − a[v, `], ηvi, b[v, `]);
z2 ← min(θui − a[u, r], ηui, b[u, r]);
αe ← min(z1, z2);
a[v, `]← a[v, `] + αe;
a[u, r]← a[u, r] + αe;
b[v, `]← min {b[v, `]− αe, ηvi − αe};
b[u, r]← min {b[u, r]− αe, ηui − αe};

We now move to describe the algorithm for obtaining a left-maximal so-
lution. The pseudo-code, given in Algorithm 2, is an extension of Maximal.
Similarly, it visits each edge e = (u, v, t) in chronological order and increases
αe as much as possible without violating the dual constraints. Since we pro-
cess edges in chronological order, we also ensure the left-maximality. Time
complexity is linear as we determine in constant time by how much we can
increase αe.

As the algorithm goes over the edges, we maintain 2(k + 1) counters per
each vertex, a[v, `] and b[v, `]. These counters are only maintained when we are
processing Sv`. Note that at the extreme segments, we only need one counter
but for notational simplicity we keep updating both.

Finally, we establish that k-Maximal yields 2-approximation to k-
Coalesce.

Proposition 6 The solution {αi} provided by k-Maximal is feasible and left-
maximal.

Proof The proof can be found in Appendix C.

7 Related work

To the best of our knowledge, the problem we consider in this paper has not
been studied before in the literature. In this section we review briefly the lines
of work that are most closely related to our setting.

Vertex cover. Our problem definition can also be considered a temporal ver-
sion of the classic vertex-cover problem, one of 21 original NP-complete prob-
lems in Karp’s seminal paper (Karp, 1972). A factor-2 approximation is avail-
able for vertex cover, by taking all vertices of a maximal matching (Hartmanis,
1982). Slightly improved approximations exist for special cases of the problem,
while assuming that the unique games conjecture is true, the minimum vertex
cover cannot be approximated within any constant factor better than 2 (Khot
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and Regev, 2008). Nevertheless, our formulation cannot be mapped directly
to the static vertex-cover problem, thus, the proposed solutions need to be
tailor-made for the temporal setting.

Modeling and discovering burstiness on sequential data. Modeling and
discovering bursts in time sequences is a very well-studied topic in data mining.
In a seminal work, Kleinberg (2003) discovered burstiness using an exponential
model over the delays between the events. Ihler et al. (2006) proposed an
alternative approach by modelling event counts in a sliding window with a
Poisson process. Similarly, Fung et al. (2005) used a Binomial distribution.
Zhu and Shasha (2003) used wavelet analysis to detect bursts for multiple
windows. Vlachos et al. (2004) defined a distance between two bursts that can
be used to query similar bursts. He and Parker (2010) modelled burst events
as dynamic physical systems. Finally, Lappas et al. (2009) used the notion of
discrepancy to mine maximal bursts.

A highly related approach for discovering bursty events is segmentation,
where the goal is to segment a sequence in k coherent pieces, so that each
period of high activity occurs in its own segment. If the overall score is additive
with respect to the segments, then this problem can be solved in O

(
n2k

)
time (Bellman, 1961). Moreover, under mild assumptions one can obtain a
(1 + ε) approximation in linear time (Guha et al., 2006; Tatti, 2019).

The difference of all these works with our setting is that we consider net-
work data, i.e., sequences of interactions among pairs of entities. By assum-
ing that for each interaction only one entity needs to be active, our problem
becomes highly combinatorial. In order to counter-balance the increased com-
binatorial complexity, we consider a simpler burstiness model than previous
works. However, even with this simplification the previous methods cannot be
applied. Instead, we devise novel combinatorial solutions.

Mining temporal networks. Our work also falls in the broad area of mining
temporal networks (Holme and Saramäki, 2012; Michail, 2016). In the last few
years a lot of research has been devoted in the study and analysis of temporal
networks. Areas of interest include work on counting network motifs (Kovanen
et al., 2013; Paranjape et al., 2017b), finding temporal communities/temporal
clusters (Dakiche et al., 2019; Rossetti and Cazabet, 2018; Hartmann et al.,
2016), summarization temporal networks (Liu et al., 2018), developing stream-
ing algorithms for efficient computation over temporal networks (McGregor,
2014), and more. A recent tutorial on mining temporal networks was presented
in KDD 2019 (Rozenshtein and Gionis, 2019).

Temporal networks summarization. Our work is related to networks sum-
marization as we aim to construct a compact representation of activity in a
temporal network. This topic has been recently extensively studies and an
overview of the advances can be found in a survey (Liu et al., 2018). The
diversity of models and approaches is vast. Some notable approaches include
temporal motif (Kovanen et al., 2013; Paranjape et al., 2017a) and graphlet
counting (Hulovatyy et al., 2015; Lahiri and Berger-Wolf, 2008). Others use
structural and behavioral vocabulary to describe the network as concise as
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possible (Shah et al., 2015). Another direction of summarization is search-
ing for temporal backbones (Bogdanov et al., 2011) or evolving communi-
ties (Pietilänen and Diot, 2012; He and Chen, 2015) and evolutionary pat-
terns (Wackersreuther et al., 2010; Berlingerio et al., 2009). To the best of our
knowledge our timeline summary is not directly related to any of temporal
network summarization models from the literature.

In more detail, the network-untangling problem can be considered an event-
detection problem, where the goal is to find time intervals and/or sets of nodes
with high activity. Typical event-detection methods use text or other meta-
data, as they reveal event semantics. One line of work is based on constructing
different types of word graphs (Cataldi et al., 2010; Weng and Lee, 2011; Mela-
dianos et al., 2015). Events are detected as clusters in such graphs, however,
temporal information is not considered directly.

Another family of methods uses statistical modeling for identify events as
trends (Mathioudakis and Koudas, 2010; Becker et al., 2011). Leskovec et al.
(2009) and Yang and Leskovec (2011) consider spreading of short quotes in the
citation network of social media. These methods rely on clustering “bursty”
keywords. Our setting is considerably different as we focus on interactions be-
tween entities and explicitly model entity activity by continuous time intervals.

In a different line of work, researchers have considered the problem of
identifying state changes in a temporal network, and segmenting the network
timeline into a small set of states, e.g., day vs. night, or weekdays vs. week-
end. Gauvin et al. (2014) approach this problem via a tensor-factorization
approach, while Masuda and Holme (2019) extract high-level features from
network snapshots and segment the timeline by a hierarchical clustering al-
gorithm applied on the feature representation. Our work is distinct, as we
are not considering global network features and we are not asking to segment
the network timeline, instead we aim to cover the temporal interactions with
vertex-centered time intervals.

Information maps. From an application point-of-view, our work is loosely
related with papers that aim to process large amounts of data and create maps
that present the available information in a succinct and easy-to-understand
manner. Shahaf et al. have considered this problem in the context of news
articles (Shahaf et al., 2012b, 2013) and scientific publications (Shahaf et al.,
2012a). However, their approach is not comparable to ours, as their input is
a set of documents and not a temporal network, and their output is a “metro
map” and not an activity timeline.

8 Experimental evaluation

In this section we empirically evaluate the performance of our methods.2

2 The implementation of all algorithms and sample scripts used for the experimental
evaluation is available at https://github.com/polinapolina/the-network-untangling-

problem.

https://github.com/polinapolina/the-network-untangling-problem
https://github.com/polinapolina/the-network-untangling-problem
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8.1 Setup

We first test the algorithms on synthetic datasets and then present a case
study on a real-world social-media dataset.

Single interval. For the case of a single activity interval per vertex (k = 1)
we generate dataset Synthetic. We first generate a static network of n =
100 vertices with a power-law degree distribution (we use the configuration
model (Newman, 2003) with power-law exponent set to 2.0). Then for every
vertex we generate a ground-truth activity interval and add m = 100 inter-
actions with random neighbors. These interactions are used to construct an
activity interval of length ` = 99 time units: two interactions are placed on
the borders of the interval, so that we can ensure the interval length, other
interactions are places uniformly at random at any continuous time moment
inside the interval.

We combine these intervals with varying degree of overlap. For control-
ling the overlap we use a parameter p ∈ [0, 0.01, 0.02, . . . , 0.99, 1], indicating
the proportion of time stamps overlapping between two intervals: we set the
starting point of the ith interval to be 1 +m(1− p)(i− 1).

When p = 0, all intervals are disjoint and every time stamp is guaranteed to
have only one interaction, thus, it should be easy to find the correct activity
intervals. E.g., p = 0.01 will mean that the second activity interval starts
at the same time stamp when the first one ends, so two adjacent activity
intervals have one time stamp in common, but the length the interval overlap
is 0 time units. p = 0.02 will mean that adjacent activity intervals have an
overlap of 1 time unit, etc. Note that as p increases above 0.5 non-adjacent
intervals also start to overlap, which creates a much more challenging setting.
When p = 1, all activity intervals have exactly the same position, so there
is a large number of solutions whose score is even better than the ground-
truth solution. In all cases Synthetic has 10 000 interactions in total. Unless
specified, we report results averaged over 100 runs and test a fairly complex
case of overlap parameter p = 0.5.

Multiple intervals. For the problem version with k > 1 activity intervals per
vertex we generate dataset Synthetick. We use the same construction method
as for Synthetic, but plant k = 10 activity intervals of length ` = 9 time
units for each vertex. Each interval has m = 10 interactions with random
neighbors, 2 of the interactions are fixed to mark the start and the end of an
activity interval, the rest are placed uniformly at random inside the interval.
To distribute the activity intervals on the timeline, we produce k permutations
of the nodes πr, r = 1, . . . , k. Denote the position of node j in rth permutation
as πr(j). We control overlaps using a parameter p ∈ [0, 0.1, 0.2, . . . , 0.9, 1]: we
set the starting point of the ith interval for node j to be 1 +m(1− p)(πi(j)−
1) +mn(1− p)(i− 1). Synthetick has also 10 000 interactions in total.

Baselines. We compare our algorithms against simple greedy baselines. Before
introducing the baselines, we extend the notations as following. Given a subset
of temporal edges E′ ⊆ E and a node u ∈ V , denote E′(u) a set of edges in
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Algorithm 3: Baseline, produces a baseline timeline TBL for G =
(E, V )

E′ ← E;
TBL ← ∅;
while E′ 6= ∅ do

u = arg minv∈V (E′) S
(
Imink (u | E′)

)
/|E′(u)|;

TBL = TBL ∪ {Im(u | E′)};
E′ = E′ \ E′(u);

return TBL

E′ adjacent to u: E′(u) = {(u, v, t) ∈ E′}. Denote a set of nodes, which
participate in the interactions E′ as V (E′). Denote a set of k ≥ 1 intervals of
minimum total length, which covers all interactions E′(u), as Imink (u | E′) and
their total length as S

(
Imink (u | E′)

)
. For k = 1, interval Imin1 (u | E′) is simply

an interval between the first and the last interactions of u in E′. For k > 1,
these intervals can be computed by finding k − 1 longest intervals between
adjacent uncovered interactions of u, and setting them to be the endpoints of
the activity intervals.

Algorithm Baseline produces a timeline TBL with at most k ≥ 1 activ-
ity intervals per node. Starting from an empty set of activity intervals, the
algorithm iteratively picks a node u and adds to the timeline TBL k intervals
Imink (u | E′), which cover all uncovered interactions of u. Node u is picked
based on its relative cost: the minimum length of k intervals, which cover all
uncovered interactions of u, divided by the number of uncovered interactions
it participates in.

This strategy prevents us from selecting too long and sparse intervals,
as we select the densest Imink with respect to currently uncovered interac-
tions. The strategy is inspired by a classic greedy algorithm for weighted set
cover (Chvatal, 1979). If we were to solve a minimum total length timeline
construction problem which can include only either activity intervals covering
all interactions E(u) of some node u or empty intervals, the greedy leads to a
log(|E|)-approximation.

For k = 1 we refer to the baseline as 1-Baseline and for k > 1 to as
k-Baseline.

Evaluation metrics. To evaluate the quality of the discovered activity inter-
vals we compare the set of discovered intervals with the ground-truth intervals.

For each vertex u we define precision Pu = |TPu|
|Fu| , where TPu is the set of cor-

rectly identified timestamps of T (u) when u was active (a set of interactions,
which are correctly attributed to the activity of u), and Fu is the set of all
discovered active timestamps of T (u). Similarly, we define the recall for ver-

tex u as Ru = |TPu|
|Au| , where Au is the set of true activity timestamps in

T (u). We calculate the average precision and recall: P = 1
|V |
∑
u∈V Pu and

R = 1
|V |
∑
u∈V Ru; and report the F -measure F = 2·P ·R

P+R .
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Fig. 5 Output of Inner, Budget, and 1-Baseline for different overlaps p in the ground
truth activity intervals. (a) F -measure of correctly identified active time-stamped vertices;
(b) M : maximum activity interval length divided by true maximum activity interval length;
(c) L: total activity interval length divided by true total activity interval length.

In addition to F -measure, we calculate the relative total length L and the
relative maximum length M . Here, L is the total length of the discovered
intervals divided by the ground-truth total length of the activity intervals.
Similarly, M is the maximum length of the discovered intervals divided by the
true maximum length of activity intervals.

We also test the sensitivity of the algorithms with respect to initialization.
This is more interesting for the setting of k > 1 intervals, where we need to
guess inner- or gap points. Denote by initialization I0 the set of gap/inner
points, taken from the ground truth, and A(I0) the solution obtained by our
algorithm when initialized with I0. We introduce a distortion parameter δ ∈
[0, 1], which captures the fraction of initialization points from I0 that are
substituted by randomly selected points. Denote the distorted initialization
by Iδ and the corresponding solution obtained by our algorithm by A(Iδ).
We experiment with different values of δ and report the normalized Hamming
distance H between the solutions A(I0) and A(Iδ). The value H(A(I0), A(Iδ))
is equal to the fraction of timestamps that are classified in the same way (as
active or inactive) in both solutions.

Please note that the y-scale is different across the figures reporting the same
metrics. This is done to ensure the plots readability. Each figure corresponds
to a different experiment and the algorithms performance varies at a different
scale.

Case study. For the case study we use a Twitter dataset, which records activ-
ity of Twitter users in Helsinki between the period of December 2008 to May
2014. We consider only tweets with more than one hashtag (666 487 tweets)
and build the co-occurrence network of these hashtags: vertices correspond to
hashtags and time-stamped edges correspond to a tweet that mentions both
hashtags. The temporal network contains 304 573 vertices and 3 292 699 edges.

8.2 Results for the single interval setting

We test both algorithms on dataset Synthetic with varying overlap parameter
p. The results are shown in Figure 5. Note that since in Synthetic all intervals
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Fig. 6 Convergence of Maximal algorithm. Overlap p is set to 0.5. (a) Precision, Recall, and
F -measure; (b) M : relative length of the maximum interval; (c) L: relative total length.

have the same length, if during the binary search the correct value of budget
is found, then all vertices receive the correct budget.

Figure 5(a) demonstrates that for algorithm Inner the F -measure is typi-
cally high for all values of the overlap parameter, but drops, when p increases.
Compared to the optimal cost, algorithm Inner finds good solutions with re-
spect to the total length (shown in Figure 5(c)), but not with respect to the
maximum interval length (shown in Figure 5(b)), as it is not designed for
this measure. On the other hand, Budget performs very well with respect to
all measures, for all values of the overlap parameter p. 1-Baseline performs
poorly in terms of all three metrics. It is naive and tends to allocate incorrectly
large intervals for the most active nodes on the first steps and to ignore nodes
with a lower activity rate. The F-measure value of the baseline algorithm in
Figure 5(a) slightly increases after a monotonic decrease when p > 0.9. This
happens due the way we calculate precision and recall (please see evaluation
metrics defined above) and how the baseline operates. In the case of a very
large overlap, such as p > 0.9, every ground truth activity interval spans al-
most the entire timeline. The baseline tends to select dense activity intervals,
but at this degree of overlap the entire timeline is dense. In this case, the
assigned activity intervals are likely to span a very large portion or the entire
timeline. This results in a higher true positive count TPu: even if a particular
interaction of u was not planted as a part of activity of a node u, since it
falls into its ground truth activity interval, it must be counted as correct. As
the numbers |Au| and |Fu| are not affected, a higher TPu results in a higher
F -measure.

In Figure 6 we see the behavior of algorithm Inner as a function of the num-
ber of iterations. After a couple of iterations the value and quality (F -measure,
precision and recall) of the solution improve dramatically. The method con-
verges in less than 10 iterations.

8.3 Results for the k-interval setting, with k > 1

We first report the quality of the solution obtained by algorithms k-Inner and
k-Budget as a function of iterations. Results are presented on Figures 7 and
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Fig. 7 Convergence of k-Inner algorithm from initial active points, set to be mean of the
detected k clusters. (a) Precision, Recall, and F -measure; (b) M : relative length of the
maximum interval; (c) L: relative total length.
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Fig. 8 Convergence of k-Budget Algorithm from initial inactive points, set to be mean of the
largest gaps. (a) Precision, Recall, and F -measure; (b) M : relative length of the maximum
interval; (c) L: relative total length.
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Fig. 9 Effect of the number of intervals on output of k-Inner, k-Budget, and k-Baseline.
Initialization is based on clustering. (a) F -measure; (b) M : relative length of the maximum
interval; (c) L: relative total length.

8, respectively. Both algorithms consistently improve their objectives during
iterations, and both algorithms achieve high F -measure values.

Next, we test how the number of intervals k affects the quality of the
solution. Figure 9 shows that k-Budget produces stable results with respect
to all measures. Results of k-Inner are stable in terms of its cost function
(total length, Figure 9(c)), while the relative maximum length (Figure 9(b))
grows with k. Longer intervals allow k-Inner to compensate for possible
errors in the input inner points and achieve larger F -measure values (Fig-
ure 9(a)). k-Baseline has extremely low F -measure values and high relative
maximum length. However, by design k-Baseline avoids including large gaps
in the activity intervals. This allows achieving lower relative total length than
k-Budget.
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Fig. 10 Sensitivity to initialization. The x-axis shows the percent of initialization points,
which are selected randomly: distortion δ = 1 means that all initialization points were chosen
randomly. (a) F -measure; (b) normalized Hamming distance H(A(I0), A(Iδ)) with solution
for δ = 0; (c) L: relative total length.

On Figure 10 we evaluate the sensitivity to initialization. We experiment
with different initialization distortion parameters δ and report the F -measure,
the normalized Hamming distance H(A(I0), A(Iδ)), and the relative total
length of the solution. k-Budget finds solutions with similar H-distance and
F -measure for all distortions, while k-Inner is more sensitive to the initializa-
tion. However, even with distortion δ = 1.0 (completely random initialization)
the resulting F -measure is quite high. In addition, the cost of the solution
(Figure 10(c)) stays approximately constant.

Scalability. Both methods Budget and Inner (and their extensions k-Budget
and k-Inner) use linear-time algorithms in their inner loops and converge in a
small number of iterations. This makes our methods scalable. Indicatively, we
are able to run Maximal on a power-law network with γ = 2 of 1 million vertices
and 1 billion interactions in 15 minutes, despite using using a non-optimized
Python implementation. More running time results are shown in Figure 11,
where we run k-Inner, k-Budget, and k-Baseline with k = 10 on the first
T interactions of the same synthetic temporal graph. The figure shows that
k-Budget and k-Baseline are not as scalable k-Inner. Both k-Budget and
k-Inner use linear time core subroutines. k-Inner performs iterative search
for inner points of activity intervals. k-Budget does the similar search for inner
points of inactive intervals, but has to run additional logarithmic binary search
for the budgets. Furthermore, we empirically observe that k-Budget needs a
higher number of iterations of inactive points updating. Typically inactive
intervals are much longer than active intervals. Thus, specifying one inactive
point per interval does not contain much informations for a faster convergence.

Case study. Next we present our results on the Twitter dataset. For this
case study we used algorithm Inner since it is faster then Budget and scales
better for real-world data. In Figure 12 we show a subset of hashtags from
tweets posted in November 2013. We also depict the activity intervals for those
hashtags, as discovered by algorithm Inner. Note that for not cluttering the
image, we depict only a subset of all relevant hashtags. In particular, we pick
3 seed hashtags: #slush13, #mtvema and #nokiaegm and the set of hashtags
that co-occur with the seeds. Each of the seeds corresponds to a known event:
#slush13 corresponds to Slush’13 — a startup and tech event organized in
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Fig. 11 Running time in minutes for k-Inner, k-Budget, and k-Baseline for k = 10.

Helsinki in November 13-14, 2013. #mtvema is dedicated to MTV Europe Music
Awards, held on 10 November, 2013. #nokiaegm is Extraordinary General
Meeting (EGM) of Nokia Corporation, held in Helsinki in November 19, 2013.

For each hashtag we depict its activity intervals in blue. All hashtag’s
mentions are shown as small circles on the timeline. A circle is colored blue
if it falls into the hashtag’s discovered activity interval and orange otherwise.
We draw arched edges for interactions (co-occurrences) of two hashtags only
if at the moment of interaction one hashtag is active and another one is not.

Figure 12 shows that the tag #slush13 becomes active exactly at the start-
ing date of the event. During its activity this tag covers many technical tags,
e.g., #zenrobotics (Helsinki-based automation company), #younited (per-
sonal cloud service by local company) and #walkbase (local software com-
pany). Then on 19 November, the tag #nokiaegm becomes active: this event
is very narrow and covers mentions of Microsoft executive Stephen Elop. An-
other large event is occurring around 10 November with active tags #emazing,
#ema2013 and #mtvema. They cover #bestpop, #bestvideo and other related
tags.

Many events have recurrent nature. For example, Slush is an annual event.
In Figure 13 we show a subset of hashtags from tweets posted from January
2011 till December 2013. We run k-Inner with k = 3 and depict the activity
intervals for some hashtags co-occuring with #slush.

Figure 13 shows that, although each year has its own tag for Slush
(#slush11, #slush12, #slush13 and variants), tag #slush becomes active
every November, when the event takes place. As before, it covers many com-
pany names and tech-related hashtags (e.g., #supercell, #sailfish, #jolla,
#aller). On the other hand, hashtags that are always active (such as startup-
related hashtags #startupsauna and #aaltoes) have large activity intervals,
which span the whole timeline.
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Fig. 13 Part of the output of k-Inner algorithm on Twitter dataset years 2011–2013 with
k = 3. Tags, co-occurring with hashtag #slush. Activity intervals and active moments of
interactions (hashtags’ co-occurrences) are colored blue, inactive moments of interactions
are colored orange. Only edges between active and inactive listed hashtags are shown.

9 Conclusions

In this paper we introduced and studied a new problem, which we called net-
work untangling problem, and which provides a summarization of a temporal
network. Given a set of temporal interactions, our goal is to discover activity
time intervals for the network entities, so as to explain the observed interac-
tions. We considered two settings: MinTimeline+, where we aim to minimize
the total sum of interval lengths, and MinTimeline∞, where we aim to min-
imize the maximum interval length. We showed that the former problem is
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NP-hard and we developed a practical iterative algorithm where one iteration
requires only a linear time, while the latter problem is solvable in polyno-
mial time. We also considered a model with k activity intervals, and showed
that both problems are inapproximable. We then proposed iterative algorithms
k-Inner and k-Budget for solving k-MinTimeline+ and k-MinTimeline∞,
respectively. Both algorithms are practical: an iteration in k-Inner requires
linear time while an iteration in k-Budget requires O(m logm) time.

The proposed approach to temporal network summarization builds a com-
pact summary of nodes activity over time. The resulting summary can be
used alone for visualization to show key entities and their activity intervals.
The summary can be also used together with the original temporal network
to produce a sparsified temporal network, selecting only interactions covered
by dense or otherwise interesting activity intervals. Then any further tempo-
ral network analysis can be conducted on such “backbone” temporal network,
including evolutionary patterns mining, temporal community detection, find-
ing node importance, or information flow. Of course, such intervals summaries
do not preserve the whole information about interactions and might be not
suitable for fine-grained network analysis.

One limitation of our approach is that we require all temporal edges (inter-
actions) to be covered. This requirement can be too strict, so it is interesting
to develop methods that allow more flexibility and give a partial coverage of
interactions. Another limitation is that all our methods operate in an off-line
fashion. It will be very interesting to develop on-line methods to incrementally
update the discovered activity timeline. One more natural extension of the
problem is to consider non-binary activity levels or other type of constraints.

The considered problem formulations require the number of intervals k
being given as an input parameter. Thus, we assume that the user has some
prior knowledge about the data or can find a suitable k value through an
experimentation with different values. All our formulations and algorithms
can be extended to the case when different k values are specified for different
nodes. Such a setting is highly practical, but it is unrealistic to expect the
user to specify such a large set of parameters. A practical extension, where an
algorithm automatically decides on the number of k activity intervals assigned
for each node, is non-trivial and we leave it as a future work.

In our work we assume that all edges are undirected. An interesting variant
of the considered problems is where a portion of the edges is directed. Here,
we could modify the problem by requiring that the out-node must be active
for each directed edge. Such a setup leads to additional constraints. Budget
(and k-Budget) can be used directly with these constraints: the constraints
translate into preset truth assignments for some of the variables in 2-SAT,
resulting clauses of the form (1 ∨ x) can be removed and clauses (0 ∨ x) can
be substituted by (x ∨ x). Then Budget can be used unchanged. Algorithms
for MinTimeline+ and k-MinTimeline+ do require adjustments. For Min-
Timeline+ it is rather straightforward: if there is a known active point, it
must be used as input inner point for Coalesce; if there are more than one
active points for a node u, then all interactions of this node between the
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active points are automatically covered by the active interval u, since there is
only one interval per node allowed. These interactions can be excluded from
consideration and the cost function of the IP must be adjusted to consider the
earliest and the latest known active points for node u. Similar adjustment can
be done to solve for k-MinTimeline+.
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In: Temporal Networks, Springer, pp 119–133

Lahiri M, Berger-Wolf TY (2008) Mining periodic behavior in dynamic social
networks. In: 2008 Eighth IEEE International Conference on Data Mining,
IEEE, pp 373–382

Lappas T, Arai B, Platakis M, Kotsakos D, Gunopulos D (2009) On burstiness-
aware search for document sequences. In: Proceedings of the 15th ACM
SIGKDD international conference on Knowledge discovery and data mining,
pp 477–486

Leskovec J, Backstrom L, Kleinberg J (2009) Meme-tracking and the dynamics
of the news cycle. In: Proceedings of the 15th ACM SIGKDD international
conference on Knowledge discovery and data mining, pp 497–506



The network-untangling problem 31

Liu Y, Safavi T, Dighe A, Koutra D (2018) Graph summarization methods
and applications: A survey. ACM Computing Surveys (CSUR) 51(3):1–34

Masuda N, Holme P (2019) Detecting sequences of system states in temporal
networks. Scientific reports 9(1):1–11

Mathioudakis M, Koudas N (2010) Twittermonitor: trend detection over the
twitter stream. In: Proceedings of the 2010 ACM SIGMOD International
Conference on Management of data, pp 1155–1158

McGregor A (2014) Graph stream algorithms: a survey. ACM SIGMOD
Record 43(1):9–20

Meladianos P, Nikolentzos G, Rousseau F, Stavrakas Y, Vazirgiannis M (2015)
Degeneracy-based real-time sub-event detection in twitter stream. The In-
ternational AAAI Conference on Web and Social Media (ICWSM) 15:248–
257

Michail O (2016) An introduction to temporal graphs: An algorithmic per-
spective. Internet Mathematics 12(4):239–280

Newman ME (2003) The structure and function of complex networks. SIAM
review 45(2):167–256

Paranjape A, Benson AR, Leskovec J (2017a) Motifs in temporal networks.
In: Proceedings of the Tenth ACM International Conference on Web Search
and Data Mining, pp 601–610

Paranjape A, Benson AR, Leskovec J (2017b) Motifs in temporal networks.
In: Proceedings of the Tenth ACM International Conference on Web Search
and Data Mining, pp 601–610

Pietilänen AK, Diot C (2012) Dissemination in opportunistic social networks:
the role of temporal communities. In: Proceedings of the thirteenth ACM
international symposium on Mobile Ad Hoc Networking and Computing,
pp 165–174

Rossetti G, Cazabet R (2018) Community discovery in dynamic networks: a
survey. ACM Computing Surveys (CSUR) 51(2):1–37

Rozenshtein P, Gionis A (2019) Mining temporal networks. In: Proceedings of
the 25th ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining, pp 3225–3226

Rozenshtein P, Tatti N, Gionis A (2017) The network-untangling problem:
From interactions to activity timelines. In: Joint European Conference on
Machine Learning and Knowledge Discovery in Databases, Springer, pp 701–
716

Shah N, Koutra D, Zou T, Gallagher B, Faloutsos C (2015) Timecrunch: Inter-
pretable dynamic graph summarization. In: Proceedings of the 21th ACM
SIGKDD International Conference on Knowledge Discovery and Data Min-
ing, pp 1055–1064

Shahaf D, Guestrin C, Horvitz E (2012a) Metro maps of science. In: Pro-
ceedings of the 18th ACM SIGKDD international conference on Knowledge
discovery and data mining, pp 1122–1130

Shahaf D, Guestrin C, Horvitz E (2012b) Trains of thought: Generating infor-
mation maps. In: Proceedings of the 21st international conference on World
Wide Web, pp 899–908



32 P. Rozenshtein

Shahaf D, Yang J, Suen C, Jacobs J, Wang H, Leskovec J (2013) Information
cartography: creating zoomable, large-scale maps of information. In: Pro-
ceedings of the 19th ACM SIGKDD international conference on Knowledge
discovery and data mining, pp 1097–1105

Tatti N (2019) Strongly polynomial efficient approximation scheme for seg-
mentation. Information Processing Letters 142:1–8

Vlachos M, Meek C, Vagena Z, Gunopulos D (2004) Identifying similarities,
periodicities and bursts for online search queries. In: Proceedings of the
2004 ACM SIGMOD international conference on Management of data, pp
131–142

Wackersreuther B, Wackersreuther P, Oswald A, Böhm C, Borgwardt KM
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A Proofs regarding computational complexity

Proof (of Proposition 2) To prove the result we provide a reduction from VertexCover.
Assume that we are given a graph H with n vertices and an integer k. We construct a
temporal network G as follows: We place H at time stamp 0. We then add k fully-connected
graphs C1, . . . , Ck with n vertices at time stamps 1, . . . , k. Figure 14 shows an example.

We claim that G has k-interval cover with zero cost if and only if H can be covered
with k vertices. This shows that solving whether there is a zero-cost solution for either k-
MinTimeline+ or k-MinTimeline∞ is NP-complete, which also automatically implies that
these problems are inapproximable.

To prove the claim, first assume that H can be covered with k vertices, say w1, . . . , wk.
Construct a k-activity timeline by first covering w1, . . . , wk at time stamp 0 with zero-length
intervals. Similarly, cover every vertex v at every time stamp t = 1, . . . , k with a zero-length
intervals, except if v = wt. Figure 14 shows an example. By definition H is covered, and
n − 1 vertices in each Ci are also covered. Consequently, the timeline covers G. Since each
vertex uses exactly k intervals, we have proven the first direction.

To prove the other direction, assume that there is a zero-solution for G. Since each Ci
is fully-connected, we must have at least n− 1 vertices covered in each Ci. This means that
we have at most k spare intervals to cover H. The vertices that these intervals cover form a
k-vertex cover, proving the claim. ut

Proof (of Proposition 3) We will prove the hardness by reducing VertexCover to Min-
Timeline+. Assume that we are given a (static) network H = (W,A) with n vertices W =
{w1, . . . , wn} and a budget `. In the VertexCover problem we are asked to decide whether
there exists a subset U ⊆W of at most ` vertices (|U | ≤ `) covering all edges in A.

We map an instance of VertexCover to an instance of MinTimeline+ by creating a
temporal network G = (V,E), as follows. The vertices V consist of 2n vertices: for each
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Fig. 14 Example of a temporal network used in proof of Proposition 2. Circled nodes are
active at the corresponding time points

wi ∈W , we add vertices vi and ui. The edges are as follows: For each edge (wi, wj) ∈ A, we
add a temporal edge (vi, vj , 0) to E. For each vertex wi ∈ W , we add two temporal edges
(vi, ui, 1) and (vi, ui, n+ 2) to E. Figure 15 shows an example.

Let T ∗ be an optimal timeline covering G. We claim that S(T ∗) ≤ ` if and only if there
is a vertex cover of H with ` vertices.

To prove the if direction, consider a vertex cover of H, say U , with ` vertices. Consider
the following coverage: cover each ui at n + 2, and each vi at 1. For each wi ∈ U , cover
vi at 0. Figure 15 shows an example. Now every vertex ui has a 0-length activity interval
[n+ 2, n+ 2]. Vertices vi, which correspond to wi 6∈ U , also have 0-length activity intervals
[1, 1]. Only vertices vi, which correspond to wi ∈ U , have 1-length activity intervals [0, 1]. All
vertices in V have activity intervals of total length `. Every interaction in G belongs to some
activity interval: by construction, interactions at t = n+ 2 are spanned by activity intervals
of {ui}, interactions at t = 1 are spanned by activity intervals of {vi}, and interactions at
t = 0 are spanned by activity intervals ` of vertices from {vi}. The resulting intervals are
indeed forming a timeline with a total span of `.

To prove the other direction, first note that if we cover each vi by an interval [0, 1] and
each ui by an interval [n + 2, n + 2], then this yields a timeline T covering G. The total
span of intervals in T is n. Thus, S(T ∗) ≤ S(T ) = n. This guarantees that if 0 ∈ Ivi , then
n+2 /∈ Ivi , so n+2 ∈ Iui . Otherwise T ∗ contains an (n+2)-length interval, this contradicts
to S(T ∗) ≤ n. By the same argument, 1 /∈ Iui and so 1 ∈ Ivi . In summary, if 0 ∈ Ivi , then
σ(Ivi ) = 1. This implies that if S(T ∗) ≤ `, then we have at most ` active vertices at 0. Let
U be the set of those vertices. Since T ∗ is a timeline covering G, then U is a vertex cover
for H. ut

B Proofs regarding Maximal

Proof (of Proposition 4) We first show that a maximal dual solution is a feasible timeline.
Let ei = (u, v, t) be a temporal edge. If p(i; v) ∩ Xv = ∅ and p(i;u) ∩ Xu = ∅, then we
can increase the value of αi without violating the dual constraints, so the solution is not
maximal. Thus t ∈ Iv ∪ Iu, making T a feasible timeline.

Next we show that the resulting solution T is a 2-approximation to Coalesce. Write
xv = min(Xv) and yv = max(Xv). Let T ∗ be the optimal solution. Then

S(T ) =
∑
v∈V
|t(xv)−mv |+ |t(yv)−mv |

=
∑
v∈V

h(v;xv) + h(v; yv)

≤
∑
v∈V

∑
e∈E(v)

αe = 2
∑
e∈E

αe ≤ 2S(T ∗) ,

where the second equality follows from the definition of Xv , the first inequality follows from
the fact that αe ≥ 0, and the last inequality follows from primal-dual theory. ut
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Fig. 15 Example of a temporal network used in proof of Proposition 3. Circled nodes are
active at the corresponding time points

Proof (of Lemma 1) We will prove this result by showing that αj ≤ z(v) if and only if all
dual constraints related to v are valid. Since the same holds also for u the lemma follows.
We consider two cases.

First case: t(j) < mv . In this case we have

z(v) = min {mw − t, b[w]} = min
i≤j
{t(i)−mv − h(v; i)} ,

before increasing αj . This guarantees that if αj ≤ z(v), then h(v; i) ≤ |t(i)−mv |, for every
i ≤ j. Moreover, when αj = z(v) one of these constraints becomes tight. Since these are the
only constraints containing αj , we have proven the first case.

Second case: t(j) ≥ mv . If i < j, the sum h(v; i) does not contain αj , so the corre-
sponding constraint remains valid. If i ≥ j, then the corresponding constraint is valid if and
only if h(v; j) ≤ |t(j)−mv |. This is because α` = 0 for all ` > j. But z(v) = t−mv − a[v]
corresponds exactly to the amount we can increase αj so that h(v; j) = |t−mv |. ut

C Proofs regarding k-Maximal

Proof (of Proposition 5) Let us first prove the feasibility of T , that is, show that every edge
is covered. Let ei = (u, v, t) be an edge, and let ` be an index such that i ∈ Sv`.

At least, one of the four cases of left-maximality must hold. Assume Case (i), that is,
rh(v; j) = ηvj for some j ∈ lp(i; v). Then t(j) ∈ Xv` and xv` ≤ t(i) ≤ mv`, so ei is covered.
Case (ii) is similar.

Assume that Cases (i) and (ii) do not hold. Then Case (iii) or Case (iv) holds. Assume
Case (iii). If xv` ≤ t(i), then ei is covered. Assume that t(i) < xv`. Then, by definition,
t(i) ∈ Yv`. Thus mv(`−1) < t(i) ≤ yv`, so ei is covered. Case (iv) is similar.
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We have shown that T is feasible. Next we show that the resulting solution T is a
2-approximation to k-Coalesce. Let T ∗ be the optimal solution. Then

S(T ) =
k∑
`=1

∑
v∈V
|t(xv`)−mv`|+ |t

(
yv(`+1)

)
−mv`|

=
k∑
`=1

∑
v∈V

rh(v;xv`) + lh(v; yv`)

≤
∑
v∈V

∑
e∈E(v)

αe = 2
∑
e∈E

αe ≤ 2S(T ∗) ,

where the second equality follows from the definition of Xvi and Yvi, the first inequality
follows from the fact that αe ≥ 0 and the intervals in T do not intersect, and the last
inequality follows from primal-dual theory. ut

We will prove Proposition 6 in a sequence of lemmas.
Let us write ai[v, `] and bi[v, `] to be the values of these counters at the beginning of

the ith iteration. We maintain the following invariants. The first counter, ai+1[v, `] matches
lh(v; i). The second counter, bi[v, `] is how much we can afford to increase αi without vio-
lating rh(v; s) ≤ ηvs, where s ≤ i. This is formalized in the next lemma.

Lemma 2 Let v be a vertex and ` = 1, . . . , k+ 1 be an integer. Shorten S = Sv` and write
f(j, i) =

∑
o∈S,j≤o≤i αo.

Then for any i ∈ S,

ai+1[v, `] = lh(v; i) (2)

and

bi+1[v, `] = min
j∈S,j≤i

(ηvj − f(j, i)) . (3)

Proof We prove this claim by induction. Let i be the first index in S. Then ai[v, `] = 0 and
ai+1[v, `] = αi, and bi[v, `] =∞ and bi+1[v, `] = ηvi − αvi.

Assume that i is not the first index in S, and let j ∈ S be the previous index. Since
ai[v, `] = aj+1[v, `], we have

ai+1[v, `] = ai[v, `] + αi = lh(v; j) + αi = lh(v; i) .

Also, bi[v, `] = bj+1[v, `], and

bi+1[v, `] = min(bi[v, `]− αi, ηvi − αi)

= min

(
min

s∈S,s≤j
(ηvs − f(s, i)) , ηvi − αi

)
= min
s∈S,s≤i

(ηvs − f(s, i)) ,

proving the lemma. ut

Our next step is to prove the feasibility of the output of k-Maximal. In order to do that,
we first bound the counters.

Lemma 3 For each vertex v, index ` = 1, . . . , k, and i ∈ Sv`,

ai+1[v, `] ≤ θvi (4)

and

bi+1[v, `] ≥ 0. (5)
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Proof Since, αi ≤ θvi − ai[v, `] we have

ai+1[v, `] = ai[v, `] + αi ≤ θvi.

Also since, αi ≤ min(bi[v, `], ηvi) we have

bi+1[v, `] = min(bi[v, `], ηvi)− αi ≥ 0.

This proves the claim. ut

To prove the feasibility, we first show that αi ≥ 0.

Lemma 4 αi ≥ 0, for all i.

Proof Let (u, v, t) = ei, and let ` such that i ∈ Sv`. Let z1, and z2 be as defined by the
algorithm in the ith round.

If i is the first index in Sv`, then ai[v, `] = 0 and bi[v, `] =∞. Then z1 ≥ 0, and similarly
z2 ≥ 0. Consequently, αi ≥ 0.

Assume that i is not the first index in Sv`, and let j be the previous edge index. Then
Eq. 4 implies

ai[v, `] = aj+1[v, `] ≤ θvj ≤ θvi.
In addition, Eq. 5 implies bi[v, `] ≥ 0, so z1 ≥ 0. Similarly, z2 ≥ 0. Consequently, αi ≥ 0. ut

Next lemma shows that {αi} satisfies the constraints, making the dual solution feasible.

Lemma 5 Let v ∈ V , ` = 1, . . . , k+ 1, and i ∈ Sv`. Then rh(v; i) ≤ ηvi and lh(v; i) ≤ θvi.

Proof Eq. 2 and Eq. 4 give us

lh(v; i) = ai+1[v, `] ≤ θvi.

Moreover, lh(v; i) remains constant in the later rounds.
Let j be the last index in Sv`. Then Eq. 3 and Eq. 5 state that

0 ≤ bj+1[v, `] ≤ ηvi − rh(v; i) .

Moreover, the sum rh(v; i) remains constant in the later rounds. Thus, {αi} is a feasible
dual solution. ut

Proof (of Proposition 6) Let ei = (u, v, t) be an edge, and let ` and r be the indices such
that i ∈ Sv` and i ∈ Sur. We need to show that ei is left-maximal.

If bi+1[v, `] = 0, then Eq. 3 states that there is j ∈ Xv` with j ≤ i such that ηvj =
rh(v; j). This is the definition of Case (i) of left-maximality. Similarly, bi+1[u, r] = 0 leads
to Case (ii).

Assume bi+1[v, `] > 0 and bi+1[u, r] > 0. This can only happen if

αe < min(bi[v, `], ηvi) and αe < min(bi[u, r], ηui).

Consequently, αi = θvi − ai[v, `] or αi = θui − ai[u, r]. If the former, then Eq. 2 states
lh(v; i) = ai+1[v, `] = θvi, leading to Case (iii). Similarly, the latter case leads to Case (iv).
Thus, ei is left-maximal. ut


