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Multivariate Discrete and Continuous
Time Stationary Processes

Marko Voutilainen*
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In this paper, we give an autoregressive model of order 1 type of characterization covering

all multivariate strictly stationary processes indexed by the set of integers. Consequently,

under square integrability, we derive continuous time algebraic Riccati equations for the

parameter matrix of the characterization. This provides us with a natural way to define

the corresponding estimator. In addition, we show that the estimator inherits consistency

from autocovariances of the stationary process. Furthermore, the limiting distribution is

given by a linear function of the limiting distribution of the autocovariances. We also

present the corresponding existing results of the continuous time setting paralleling them

to the discrete case treated in this paper.

Keywords: time-series analysis, stationary processes, characterization, multivariate Ornstein-Uhlenbeck

processes, generalized Langevin equation, algebraic Riccati equations, estimation, consistency

1. INTRODUCTION

Stationary stochastic processes provide a significant instrument for modeling numerous temporal
phenomena related to different fields of science. In particular, due to the evidence of long
dependence structures in the real financial data, stationary processes possessing long-memory have
been widely applied in mathematical finance.

When discrete time is considered, stationary data is typically modeled by applying
autoregressive–moving-average (ARMA) processes or their extensions. One focal reason for
popularity of ARMA processes is that for every stationary process with a vanishing autocovariance
γ (·) and for every n ∈ N there exists an ARMA process X such that γX(k) = γ (k) for |k| ≤ n.
For a comprehensive overview of ARMA processes we mention [1–3]. The immense ARMA family
include for example SARIMA (seasonal autoregressive integrated moving-average) models, where
a seasonal ARMA process is obtained by differencing the original data. We mention also different
GARCH (generalized autoregressive conditional heteroskedasticity) models originating from [4]
and [5] that are commonly used in financial modeling taking account of the time-dependent
volatility. ARMA processes, their extensions and estimation in these models have been concerned
e.g., in [6–16], to name but a few. Moreover, in [17] we showed that all univariate strictly stationary
processes indexed by the integers are characterized by the AR(1) (autoregressive model of order
1) equation

Xt − φXt−1 = Zt , t ∈ Z.

However, contrary to the classical AR(1), the noise Z belonging to a certain class of stationary
processes is not necessarily white. Established on the characterization, we proposed an estimation
method for φ in the case of a square integrable stationary process. This method has several
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advantages over conventional ones such as maximum likelihood
and least squares fitting of ARMA models. Furthermore, in
[18] we applied our method in estimation of a generalization
of the ARCH model involving a covariate process that can
be interpreted as the liquidity of an asset. We would like to
emphasize that the proposed method is applicable in estimation
of essentially any square integrable one-dimensional stationary
process. Hence, it also covers stationary solutions, which are
often of central interest, of models of the vast ARMA family.

In the case of continuous time, the Ornstein-Uhlenbeck
process X given by the Langevin equation

dXt = −θXtdt + dBt , t ∈ Z, (1)

where θ > 0 and B is a two-sided Brownian motion, can
be seen as the analog of the discrete time AR(1) process. By
posing a suitable initial condition, (1) yields a stationary solution.
The foregoing can be generalized, for example, by replacing
Brownian motion with other stationary increment processes
satisfying certain integrability conditions. One popular option as
the replacement is fractional Brownian motion recovering the
fractional Ornstein-Uhlenbeck process introduced in [19]. This
kind of generalized Ornstein-Uhlenbeck processes are applied
e.g., in mathematical finance to describe mean-reverting systems
under the influence of shocks, and they are a highly active topic
of research. Equations of type (1) with varying driving forces, and
estimation in such models have been concerned e.g., in [20–32],
to mention but a few. Furthermore, in [33] we showed that a
generalized version of (1) characterizes all multivariate strictly
stationary processes with continuous paths. Consequently, we
proposed an estimation method for the parameter matrix of (1).
The method is based on continuous time algebraic matrix Riccati
equations (CAREs) and it is applicable in estimation of essentially
any square integrable multivariate stationary process.

Algebraic Riccati equations, occurring naturally e.g., in
optimal control and filtering theory, is an intensively studied
topic in the literature on its own. In many applications, real-
valued CAREs often take the symmetric form

B⊤A+ AB− ACA+ D = 0, (2)

where C and D are symmetric, and symmetric solutions A are to
be found. For a general approach to algebraic Riccati equations
the reader may consult for example [34]. The existence and
uniqueness of a solution to (2) is a well-studied topic, especially
when C and D are positive semidefinite [see e.g., [35–37]].

The main contribution of this paper is to extend the
characterization and the consequent estimation method of
discrete stationary processes of [17] to multivariate settings.
Serving as an instrument for the characterization, we also
define a multivariate discrete Lamperti transform giving a one-
to-one correspondence between stationary and H-self-similar
processes with a positive definite matrix H. The characterization
leads to covariance based symmetric CAREs for the related
parameter matrix providing us with a novel estimation method
of multivariate discrete stationary processes. In outline, this
results in the following correspondence between the continuous

time case. When the concepts of noises are extended from the
conventional ones, the reputed analogous AR(1) and Langevin
equations characterize discrete and continuous time stationary
processes, respectively. The characterizations provide us with
models of stationary processes yielding symmetric CAREs for the
corresponding parameter matrices. Furthermore, these equations
can be applied in a similar manner in estimation in both cases.
For readers’ interest and to highlight the obtained connection
between discrete and continuous time, we also give the key results
of [33].

The rest of the paper is organized as follows. In section
2.1, we first give an AR(1) type of characterization covering all
multivariate strictly stationary processes indexed by the integers.
Consequently, under the assumption of square integrability, we
obtain a set of symmetric CAREs for the model parameter matrix
serving as a basis for estimation. Finally, we state theorems
for consistency and asymptotic distribution of the parameter
(matrix) estimator. In section 2.2, we present the main results
of [33], while at the same time comparing them to the results
obtained in discrete time. For the reader’s convenience, all
technical proofs are postponed to section 3.

2. MAIN RESULTS

We begin with some preliminaries and a short notational
introduction. The processes we consider in this paper are n-
dimensional, real-valued and indexed by I ∈ {Z,R}. For such
a process Y we write Y = (Yt)t∈I , where the ith component

of the random vector Yt is denoted by Y
(i)
t . Equality of the

distributions of two random vectors Yt and Zt is denoted by

Yt
law
= Zt . Similarly, equality of two processes Y and Z in the

sense of finite dimensional distributions is denoted by Y =

(Yt)t∈I
law
= (Zt)t∈I = Z. Throughout the paper, we investigate

strictly stationary processes meaning that (Xt+s)t∈I
law
= (Xt)t∈I for

every s ∈ I. Consequently, we omit the word “strictly” and simply
say that X is stationary. By writing A ≥ 0 or A > 0 we mean
that the matrix A is positive semidefinite or positive definite,
respectively. We denote an eigendecomposition of a symmetric
matrix by A = Q3Q⊤, where 3 = diag(λi). Furthermore, the
L2 vector norm and the corresponding induced matrix norm is
denoted by ‖ · ‖.

In sections 2.1 and 2.2, we introduce models for discrete
and continuous time stationary processes, respectively.
Consequently, this leads to symmetric CAREs for the model
parameter matrix of the form

B⊤A+ AB− ACA+ D = 0, (3)

where C,D ≥ 0, and we are solving the equation for a positive
definite A. There exists a vast amount of literature on existence
and uniqueness of a solution [see e.g., [35] or [36]] in the
described setting. In particular, if C,D > 0, then there exists
a unique positive semidefinite solution to (3). Furthermore,
there exists several numerical methods for finding the positive
semidefinite solution of (3) [see e.g., [38, 39] or monograph [40]].

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 2 September 2020 | Volume 6 | Article 43

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


Voutilainen Modeling of Multivariate Stationary Processes

Hence, provided that the solution to (3) is unique, a prospective
estimation method of A can be based on the equation.

2.1. Discrete Time
In this subsection, we extend the characterization of discrete
(I = Z) stationary processes of [17] to multivariate
settings. Consequently, we derive quadratic equations for the
corresponding model parameter matrix providing us with a
natural way to define an estimator for the parameter. Finally,
we pose theorems for consistency and asymptotic distribution.
A strong analog with the continuous time case I = R covered in
[33] is obtained. We start by providing some definitions.

DEFINITION 2.1. Let G = (Gt)t∈Z be an n-dimensional
stationary increment process. We define a stationary process1G =

(1tG)t∈Z by

1tG = Gt − Gt−1.

Next, we define a class of stationary increment processes
having sub-exponentially deviating sample paths. These
processes serve as the noise in the subsequent AR(1) type of
characterization of stationary processes.

DEFINITION 2.2. Let H > 0 be a positive definite n× n matrix,
and let G = (Gt)t∈Z be an n-dimensional stochastic process with

stationary increments and G0 = 0. If

lim
l→−∞

0
∑

k=l

ekH1kG (4)

exists in probability and defines an almost surely finite random
variable, we denote G ∈ GH .

REMARK 2.3. Lemma 3.1 shows that existence of a logarithmic
moment is sufficient for G ∈ GH for all H > 0. Particularly, this is
the case if G is square integrable. On the other hand, an example of
an one-dimensional stationary increment process G with G0 = 0,
but G /∈ GH for any H > 0 was provided in [41]. Moreover,
Definition 2.2 could also be stated without the assumption of
positive definiteness. However, in the one-dimensional case with
H ≤ 0, the convergence of (4) would imply G ≡ 0. As expected,
we encounter a similar kind of dimensional degeneracy when
considering e.g., symmetric matrices with non-positive eigenvalues.
Hence, the assumption H > 0may be regarded as natural. See also
Remark 3.3.

The next theorem characterizes all multivariate stationary
processes, including processes possessing long-memory.

THEOREM 2.4. Let H > 0 be a positive definite n × n matrix,
and let X = (Xt)t∈Z be an n-dimensional stochastic process. Then

X is stationary if and only if limt→−∞ etHXt
P
= 0 and

1tX = (e−H − I)Xt−1 + 1tG (5)

for G ∈ GH and t ∈ Z. Moreover, the process G ∈ GH is unique.

COROLLARY 2.5. Let H > 0 be a positive definite n × n
matrix, and let X be stationary. Then X admits an AR(1) type of
representation

Xt − 8Xt−1 = 1tG, (6)

where 8 = e−H and G ∈ GH .

By using (6) and the expression (14) from the proof
of Theorem 2.4, it is straightforward to show that 1G is
centered and square integrable if and only if X is centered
and square integrable, respectively. In what follows, we assume
these two attributes and write γ (t) = E

(

XtX
⊤
0

)

and r(t) =

E
[

(1tG)(10G)
⊤
]

. Furthermore, since

Gt =

t
∑

k=1

1kG, t ≥ 1,

in this case also G is centered and square integrable, and we
denote v(t) = cov(Gt) = E

(

GtG
⊤
t

)

. We would like to point out
that centeredness can be assumed without loss of generality (see
Remark 2.11).

Under the discussed assumptions, we obtain an expression for
γ (t) in terms of the noise process.

REMARK 2.6. The autocovariance function γ (t) is given by

γ (t) = e−tH
t
∑

k=−∞

0
∑

j=−∞

ekHr(k− j)ejH .

Furthermore, if G has independent components, we obtain

γ (t) =
e−tH

2

t
∑

k=−∞

0
∑

j=−∞

ekH
(

v(k− j+ 1)+ v(k− j− 1)

−2v(k− j)
)

ejH .

The following lemma writes the quadratic equations for the
model parameter 8 = e−H presented in [17] in our multivariate
setting.

LEMMA 2.7. Let H > 0 be a positive definite n× n matrix, and
let X be stationary of the form (6). Then

r(t) = 8γ (t)8 − γ (t + 1)8 − 8γ (t − 1)+ γ (t) (7)

for every t ∈ Z.

REMARK 2.8. In the proof of the lemma, we utilize the increment
process 1G similarly as in [17] yielding quadratic equations for 8

in terms of r and γ . One could consider an estimation method for
8 based on the above equations. However, for a general stationary
X, (7) is a symmetric CARE only if t = 0, and even in this
case, existence of a unique positive semidefinite solution is not
guaranteed.
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By adapting the approach of [33], we obtain a set of symmetric
CAREs on which we construct an estimator for the model
parameter 8 = e−H . For this, we define the following matrix
coefficients.

DEFINITION 2.9. We set

Bt =

t
∑

k=1

γ (k− 1)− γ (k)⊤

Ct =

t
∑

k=1

t
∑

j=1

γ (k− j)

Dt = v(t)− 2γ (0)+ γ (t)+ γ (t)⊤

for every t ∈ N.

THEOREM 2.10. Let H > 0 be a positive definite n × n matrix,
and set 2 = I − e−H . Let X = (Xt)t∈Z be stationary of the form
(5). Then the CARE

B⊤t 2 + 2Bt − 2Ct2 + Dt = 0 (8)

is satisfied for every t ∈ N.

REMARK 2.11. Equations (7) and (8) are covariance based.
Consequently, they hold also when X and G in Theorem 2.4 are
not centered.

REMARK 2.12. It is worth to emphasize the interplay between
the parameter matrix H and the noise G in the context of a
fixed stationary X. The noise in Theorem 2.4 and Corollary 2.5
is unique only after H > 0 is fixed. On the other hand, if we fix
some covariances of the noise process such that the equations of
Theorem 2.10 (or Lemma 2.7) yield a positive definite solution,
then we may set H according to this solution. Furthermore,
the corresponding noise is now given by Corollary 2.5 and its
covariance satisfies the set prerequisites. In practice, the parameter
matrix H is estimated by assuming some information on the noise,

and by estimating the autocovariance of the observed stationary
process X. The estimation will discussed in more detail at the end
of this subsection. See also the following examples illustrating how
to obtain familiar noise terms in the case of two stationary ARMA
type of processes.

We give a couple of examples on how some basic multivariate
processes of ARMA type can be presented in the form (6),
and how to derive the corresponding noise G together with its
covariance function v.

EXAMPLE 2.13. Let X be an n-dimensional stationary AR(1)
type of process given by

Xt − φXt−1 = ǫt ,

with 0 < φ = Q3Q⊤, ‖φ‖ < 1 and ǫ ∼ iid(0,6). Then, we
may set H = −Qdiag(log λi)Q

⊤ giving 8 = φ. Now 1G = ǫ

and Gt =
∑t

k=1 ǫk. Furthermore, v(t) =
∑t

k=1 cov(ǫk) = t6 for
t ≥ 1.

EXAMPLE 2.14. Let X be an n-dimensional stationary
ARMA(1, q) type of process given by

Xt − φXt−1 = ǫt + θ1ǫt−1 + . . . + θqǫt−q,

with 0 < φ, ‖φ‖ < 1 and ǫ ∼ iid(0,6). Similarly as above, we
may set 8 = φ and now 1G equals to the MA(q) process on the
right. Consequently, for t ≥ 1,

Gt =

t
∑

k=1

ǫk + θ1ǫk−1 + . . . + θqǫk−q

and

v(t) =

q
∑

i,j=0

max(0, t − |i− j|)θi6θ⊤j ,

where θ0 = I.

In [17], we proposed an estimation method of one-
dimensional stationary processes based on equations (7). In
particular, we showed that the method is applicable except in
some special class of stationary processes. In [42], we provided a
comprehensive analysis of the class, and proved that it consists
of highly degenerate processes. On the other hand, due to the
strong dependence structure, the failure of different estimation
methods is expected. Fundamentally, a stationary process X
belongs to the class if there exists two values H and H̃ such that
the corresponding processes 1G and 1G̃ in (6) have identical
autocovariance functions. Next, we state a lemma showing that
these degenerate processes have a special characteristic also under
the new set of Equations (8).

LEMMA 2.15. Let X be a one-dimensional stationary process
and let H > 0 be fixed. Set 8 = e−H and

Xt − 8Xt−1 = 1tG, t ∈ Z.

If the equation

γ (t)82 − (γ (t + 1)− γ (t − 1))8 + γ (t)− r(t) = 0 (9)

yields the same two solutions 8, 8̃ > 0 for every t ∈ Z, then also
the equation

Ct2
2 − 2Bt2 − Dt = 0 (10)

yields the same two solutions 2 = 1−8 and 2̃ = 1− 8̃ for every
t ∈ N.

The following remark illuminates the connection between
the coefficient matrices of Definition 2.9 and uniqueness of the
solution to (8), which we discussed in the beginning of section 2.

REMARK 2.16. By Lemma 3.8, the matrix 2 is positive definite.
Since

Ct = E





t
∑

k=1

Xk−1

(

t
∑

k=1

Xk−1

)⊤


 = cov

(

t
∑

k=1

Xk−1

)

,

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 4 September 2020 | Volume 6 | Article 43

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


Voutilainen Modeling of Multivariate Stationary Processes

the matrix Ct is positive semidefinite. Furthermore, if the smallest
eigenvalue of v(t) grows enough in time, Dt becomes positive
definite [see [33]]. This is the case e.g., when the noise G has
independent components with growing variances.

For estimation, it is desirable that (8) admits a unique
positive semidefinite solution. In this case, the solution is the
correct parameter matrix 2 by the construction. Moreover, it
guarantees that a convergent numerical scheme has the desired
limit 2. In the sequal, we simply assume that t is chosen in
such a way that Ct ,Dt > 0 ensuring the uniqueness of the
solution, and we omit the subindex t from Equation (8). We
have justified the assumption of positive definiteness in detail
in continuous time [see section 2.1 and Remark 2.11 in [33]].
Furthermore, we assume that v(t) is known and the stationary
process X is observed up to the time T > t, and the coefficient
matrices B,C, and D are estimated from these observations by
replacing the autocovariances γ (·) with some estimators γ̂T(·).
The coefficient estimators are denoted by B̂T , ĈT , and D̂T , and
we set

1TB = B̂T − B, 1TC = ĈT − C, 1TD = D̂T − D.

Next, we define an estimator 2̂T for the matrix 2 = I −

8 = I − e−H . The proofs of the related asymptotic results
allow a certain amount of flexibility in the definition. Thus, we
give a definition that probably is the most convenient from the
practical point of view. Consistency and the rate of convergence
of 2̂T are inherited from autocovariance estimators γ̂T(·) of the
observed stationary process. In addition, the limiting distribution
is obtained as a linear function of the limiting distribution of the
autocovariance estimators.

DEFINITION 2.17. The estimator 2̂T is defined as the unique
positive semidefinite solution to the perturbed CARE

B̂⊤T 2̂T + 2̂T B̂T − 2̂TĈT2̂T + D̂T = 0

whenever ĈT , D̂T > 0. Otherwise, we set 2̂T = 0.

THEOREM 2.18. Let C,D > 0. Assume that

max
s∈{0,1,...,t}

‖γ̂T(s)− γ (s)‖
P

−→ 0.

Then

‖2̂T − 2‖
P

−→ 0,

where 2̂T is given by Definition 2.17.

THEOREM 2.19. Let l(T) be a rate function. If

l(T)











vec(γ̂T(0)− γ (0))
vec(γ̂T(1)− γ (1))

...
vec(γ̂T(t)− γ (t))











law
−→ Z,

where Z is a (t + 1)n2-dimensional random vector, then:

(1) Let Z̃ be the permutation of elements of Z corresponding to the
order of elements of











vec
(

(γ̂T(0)− γ (0))⊤
)

vec
(

(γ̂T(1)− γ (1))⊤
)

...

vec
(

(γ̂T(t)− γ (t))⊤
)

.











Define a linear mapping L1 :R
(t+1)n2 → R

3n2 by

L1(Z) =









































∑t−1
k=0(t − k)









Z(kn2+1)

...

Z((k+1)n2)









+
∑t−1

k=1(t − k)









Z̃(kn2+1)

...

Z̃((k+1)n2)









∑t
k=1









Z((k−1)n2+1) − Z̃(kn2+1)

...

Z(kn2) − Z̃((k+1)n2)

















Z(tn2+1) + Z̃(tn2+1)

...

Z((t+1)n2) + Z̃((t+1)n2)









− 2









Z(1)

...

Z(n2)

















































,

where
∑0

1 is an empty sum. Then

l(T) vec(1TC,1TB,1TD)
law
−→ L1(Z).

(2) If D,C > 0 and 2̂T is given by Definition 2.17, then

l(T) vec(2̂T − 2)
law
−→ L2(L1(Z)),

where L2 :R
3n2 → R

n2 is a linear mapping expressible in terms
of 2, t and r.

2.2. Continuous Time
Wehave collected themain results (Theorems 2.21, 2.28, 2.32 and
2.33) of [33] concerning continuous time multivariate stationary
processes into this subsection. In addition, in order to complete
the analog between discrete and continuous time, we derive
quadratic equations for the model parameter (Proposition 2.24)
that correspond to the equations of Lemma 2.7. Throughout
the subsection, we assume that the considered processes have
continuous paths almost surely and hence, the related stochastic
integrals can be interpreted as pathwise Riemann-Stieltjes
integrals. Again, we start by defining the class GH of stationary
increment processes for H > 0.

DEFINITION 2.20. Let H > 0 be a positive definite n×nmatrix,
and let G = (Gt)t∈R be an n-dimensional stochastic process with
stationary increments and G0 = 0. If

lim
s→−∞

∫ 0

s
eHudGu

exists in probability and defines an almost surely finite random
variable, we denote G ∈ GH .
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As in discrete time, it can be shown that existence of some
logarithmic moments ensure that G ∈ GH for all H > 0. In
particular, square integrability of G suffices, which is the case in
our second moment based estimation method.

The next theorem is the continuous time counterpart
of Theorem 2.4 showing that all stationary processes are
characterized by the Langevin equation, whereas in discrete
time, the characterization was given by an AR(1) type
of equation.

THEOREM 2.21. Let H > 0 be a positive definite n × n matrix,
and let X = (Xt)t∈R be an n-dimensional stochastic process. Then
X is stationary if and only if

X0 =

∫ 0

−∞

eHudGu

and

dXt = −HXtdt + dGt , (11)

for G ∈ GH and t ∈ R. Moreover, the process G ∈ GH is unique.

COROLLARY 2.22. From Theorem 2.21 it follows that X is the
unique stationary solution

Xt = e−Ht

∫ t

−∞

eHudGu (12)

to (11).

In order to apply Theorem 2.21 in estimation, we pose the
assumption

sup
s∈[0,1]

E
(

‖Gs‖
2
)

< ∞.

This guarantees that G ∈ GH for all H > 0, and square
integrability of X and G. On the other hand, if X is square
integrable, then G is also. In addition and without loss of
generality, we assume that the processes are centered. Again,
we write γ (t) = E

(

XtX
⊤
0

)

and v(t) = E
(

GtG
⊤
t

)

. Now, the
autocovariance function of the following stationary process is
well-defined.

DEFINITION 2.23. Let G = (Gt)t∈R be a centered square
integrable stationary increment process and let δ > 0. We define a
stationary process 1δG = (1δ

tG)t∈R by

1δ
tG = Gt − Gt−δ

and the corresponding autocovariance function rδ by

rδ(t) = E

[

(1δ
tG)(1

δ
0G)

⊤
]

.

As in discrete time (Lemma 2.7), we obtain quadratic equations
for the model parameter H in terms of rδ and γ . The equations
could potentially be used to construct an estimator forH and they
might be also of independent interest.

PROPOSITION 2.24. Let H > 0 be a positive definite n × n
matrix, and let X be of the form (12). Then

rδ(t) = 2γ (t)−γ (t+δ)−γ (t−δ)+

(∫ t+δ

t
γ (s)ds−

∫ t

t−δ

γ (s)ds

)

H

+H

(∫ t

t−δ

γ (s)ds−

∫ t+δ

t
γ (s)ds

)

+H

(∫ t

t−δ

(s− t + δ)γ (s)ds

+

∫ t+δ

t
(t − s+ δ)γ (s)ds

)

H

for every t ∈ R.

REMARK 2.25. The advantage of the equations above is that we
have to consider γ (s) only for s ∈ [t−δ, t+δ], but as in the discrete
case, for a general stationary X we obtain a symmetric CARE only
when t = 0. In addition, similarly as above, we could set in discrete
time 1k

tG := Gt − Gt−k, k ∈ N. However, this would lead to more
complicated equations in Lemma 2.7.

A significant difference compared to the discrete time Equations
(7) occurs in the univariate case. Namely, the first order termwith
respect to H vanishes.

COROLLARY 2.26. The univariate case yields

rδ(t) = 2γ (t)− γ (t + δ)− γ (t − δ)+H2

(∫ t

t−δ

(s− t + δ)γ (s)ds

+

∫ t+δ

t
(t − s+ δ)γ (s)ds

)

for every t ∈ R.

One could base a univariate estimation method on the above
equations without the concern of existence of a unique positive
solution. However, since we wish to treat also multivariate
settings, we present the most central results of [33] that are
obtained from Theorem 2.21 by considering the noise G directly.
First, we define matrix coefficients corresponding to Definition
2.9. Consequently, we write symmetric CAREs for the parameter
H that are similar to the CAREs (8) for the discrete time
parameter 2.

DEFINITION 2.27. We set

Bt =

∫ t

0
γ (s)− γ (s)⊤ds

Ct =

∫ t

0

∫ t

0
γ (s− u)duds

Dt = v(t)− 2γ (0)+ γ (t)+ γ (t)⊤

for every t ≥ 0.

THEOREM 2.28. Let H > 0 be a positive definite n × n matrix,
and let X = (Xt)t∈R be stationary of the form (12). Then the CARE

B⊤t H +HBt −HCtH + Dt = 0 (13)

is satisfied for every t ≥ 0.
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REMARK 2.29. As in discrete time, the Equations (13) and (14)
are covariance based and hence, they hold also for a non-centered
stationary X.

REMARK 2.30. Contrary to the discrete time Equations (8), the
first order term vanishes in the univariate setting as in (13).

Again, we assume that t is chosen in such a way that Ct ,Dt > 0
ensuring the existence of a unique positive semidefinite solution.
We have discussed this assumption in detail in [33]. We define
an estimator ĤT for the model parameter matrix H identically
to the discrete time by replacing the autocovariances γ (·) in the
matrix coefficients with their estimators γ̂T(·). The below given
definition differs slightly from the definition in [33], but the same
asymptotic results still apply.

DEFINITION 2.31. The estimator ĤT is defined
as the unique positive semidefinite solution to the
perturbed CARE

B̂⊤T ĤT + ĤT B̂T − ĤTĈTĤT + D̂T = 0

whenever ĈT , D̂T > 0. Otherwise, we set ĤT = 0.

As in discrete time, asymptotic properties of ĤT are inherited
from the autocovariance estimators. However, due to the
continuous time setting, instead of pointwise convergence,
we have to consider functional form of convergence of
γ̂T(·). In [33], we have provided sufficient conditions in
the case of Gaussian noise G with independent components,
under which the assumptions of the following theorems are
satisfied. In particular, the results are valid for fractional
Brownian motion that is widely applied in the field of
mathematical finance.

THEOREM 2.32. Let C,D > 0. Assume that

sup
s∈[0,t]

‖γ̂T(s)− γ (s)‖
P

−→ 0.

Then

‖ĤT −H‖
P

−→ 0,

where ĤT is given by Definition 2.31.

THEOREM 2.33. Let Y = (Ys)s∈[0,t] be an n2-dimensional
stochastic process with continuous paths almost surely and let l(T)
be a rate function. If

l(T) vec(γ̂T(s)− γ (s))
law
−→ Ys

in the uniform topology of continuous functions, then:

(1) Let Ỹs be the permutation of elements of Ys that corresponds to

the order of elements of vec
(

(γ̂T(s)− γ (s))⊤
)

. Then

l(T) vec(1TC,1TB,1TD)
law
−→





∫ t
0 (t − s)(Ys + Ỹs)ds
∫ t
0

(

Ys − Ỹs

)

ds

Yt + Ỹt − 2Y0





=: L1(Y).

(2) If C,D > 0 and ĤT is given by Definition 2.31, then

l(T) vec(ĤT −H)
law
−→ L2(L1(Y)),

where L2 :R
3n2 → R

n2 is a linear mapping expressible in terms
of H, t and the covariance function of G.

3. PROOFS

In the following, we denote the smallest eigenvalue of H > 0
by λmin. Consequently ‖e

kH‖ = ‖Qdiag(eλik)Q⊤‖ = eλmink for a
negative k.

3.1. Discrete Time
The proof of the next lemma follows the lines of the proof
of Theorem 2.2. in [41] that concerns the one-dimensional
continuous time case. However, in our setting, we obtain a weaker
sufficient condition for G ∈ GH for all H > 0.

LEMMA 3.1. Let G = (Gt)t∈Z be an n-dimensional stationary
increment process with G0 = 0. Assume that

E

(

∣

∣log ‖G1‖1{‖G1‖>1}

∣

∣

1+δ
)

< ∞

for some δ > 0. Then G ∈ GH for all positive definite n × n
matrices H.

PROOF. Let H > 0. We apply the Borel-Cantelli lemma
together with Markov’s inequality to show that ‖ekH1kG‖ → 0
almost surely as k → −∞. Let ǫ > 0 be fixed below.

P

(

‖ekH1kG‖ > ǫ

)

≤ P

(

eλmink‖1kG‖ > ǫ

)

= P

(

eλmink‖G1‖ > ǫ

)

= P

(

‖G1‖ >
ǫ

eλmink

)

= P
(

log ‖G1‖ > log ǫ − λmink
)

,

since 1G is stationary and G0 = 0. Furthermore, k(
log ǫ

k
−

λmin) ≥ −Ck for some C > 0 and k ≤ kǫ . Thus, for k ≤ kǫ ,

P

(

‖ekH1kG‖ > ǫ

)

≤ P
(

log ‖G1‖ ≥ −Ck
)

= P
(

log ‖G1‖1{‖G1‖>1} ≥ −Ck
)

≤
E
∣

∣log ‖G1‖1{‖G1‖>1}

∣

∣

1+δ

(−Ck)1+δ
≤ c

1

(−k)1+δ

giving the wanted result. We conclude the proof by noting that

0
∑

k=−∞

‖ekH1kG‖ ≤

0
∑

k=−∞

‖e
1
2 kH‖‖e

1
2 kH1kG‖ ≤

sup
k

‖e
1
2 kH1kG‖

0
∑

k=−∞

e
1
2 λmink < ∞

almost surely.
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Next, we extend the concept of self-similarity to discrete
time multivariate processes. While the following two definitions
are natural, to the best of our knowledge they are not widely
acknowledged in the literature.

DEFINITION 3.2. Let H > 0 be a positive definite n× n matrix,

and let Y = (Yet )t∈Z be an n-dimensional stochastic process. Then
Y is H-self-similar if

(Yet+s )t∈Z
law
= (esHYet )t∈Z

for every s ∈ Z.

REMARK 3.3. Similarly as in Definition 2.2, positive definite
matrices serve as natural counterparts of the conventional
positive scalar valued exponents of self-similarity. In addition,
liml→−∞ Yel does not converge (see the proof of the auxiliary
Lemma 3.7) in the case of a general H-self-similar Y with non-
positive definite H. It seems intuitive to expect the term to be
convergent. However, posing such requirement leads to degeneracy
of Y e.g., when H is symmetric with negative eigenvalues [cf.
Remark 3.2 in [33]]. Furthermore, this indicates a possibility of
dimensional reduction. For details on continuous time self-similar
processes, we refer to [43]. See also the discussion on non-positive
exponents of self-similarity in [44].

The following transform and the corresponding
theorem giving one-to-one correspondence between
self-similar and stationary processes were originally
introduced by Lamperti in the univariate continuous time
setting [45].

DEFINITION 3.4. Let H > 0 be a positive definite n× n matrix,
and let X = (Xt)t∈Z and Y = (Yet )t∈Z be n-dimensional stochastic
processes. We define

(LHX)et = etHXt

and

(L−1
H Y)t = e−tHYet .

THEOREM 3.5. The operator LH together with its inverse L
−1
H

define a bijection between n-dimensional stationary processes and
n-dimensional H-self-similar processes.

PROOF. First, let X be stationary and set Zet = (LHX)et . Then











Zet1+s

Zet2+s

...
Zetm+s











=











e(t1+s)HXt1+s

e(t2+s)HXt2+s

...

e(tm+s)HXtm+s











law
=











e(t1+s)HXt1

e(t2+s)HXt2
...

e(tm+s)HXtm











=











esHZet1
esHZet1

...

esHZetm











for everym ∈ N, t ∈ Z
m and s ∈ Z. Hence, Z is H-self-similar.

Now, let Y be H-self-similar and set Zt = (L−1
H Y)t . Then











Zt1+s

Zt2+s

...
Ztm+s











=











e−(t1+s)HYet1+s

e−(t2+s)HYet2+s

...

e−(tm+s)HYetm+s











law
=











e−t1HYet1

e−t2HYet2

...

e−tmHYetm











=











Zt1
Zt2
...

Ztm











for every m ∈ N, t ∈ Z
m and s ∈ Z. Hence, Z is stationary

completing the proof.

REMARK 3.6. The form of the conventional continuous time
Lamperti transform is not directly applicable in the discrete time
setting due to the scaling of time. Hence, in order to stay within
the given discrete parameter sets, we use exponential clocks with
self-similar processes in Definitions 3.2 and 3.4.

Before the proof of Theorem 2.4 we state an auxiliary lemma.

LEMMA 3.7. Let H > 0 be a positive definite n× n matrix, and
let (Yet )t∈Z be an n-dimensional H-self-similar process. We define
a process G = (Gt)t∈Z by

Gt =







∑t
k=1 e

−kH1kYek , t ≥ 1
0, t = 0

−
∑0

k=t+1 e
−kH1kYek , t ≤ −1.

Then G ∈ GH .

PROOF. It is straightforward to verify that 1tG = e−tH1tYet

for every t ∈ Z. In addition

lim
l→−∞

0
∑

k=l

ekH1kG = lim
l→−∞

0
∑

k=l

1kYek = Y1 − lim
l→−∞

Yel−1 ,

where by self-similarity of Y

P(‖Yel−1‖ ≥ ǫ) = P(‖eH(l−1)Y1‖ ≥ ǫ) ≤ P(eλmin(l−1)‖Y1‖ ≥ ǫ)

→ 0.

Hence, we set

lim
l→−∞

0
∑

k=l

ekH1kG = Y1.

PROOF OF THEOREM 2.4. Assume that limt→−∞ etHXt
P
= 0

and (5) holds for G ∈ GH . Then, by using (5) repeatedly

Xt = e−HXt−1 + 1tG = e−(n+1)HXt−n−1 +

n
∑

j=0

e−jH1t−jG

= e−(n+1)HXt−n−1 + e−tH
t
∑

k=t−n

ekH1kG = e−tH



e(t−n−1)HXt−n−1 +

t
∑

k=t−n

ekH1kG





for every n ∈ N. Since, as n → ∞, the limit of the sum above is

well-defined, and limn→∞ e(t−n−1)HXt−n−1
P
= 0, we obtain that

Xt = e−tH
t
∑

k=−∞

ekH1kG. (14)
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Letm ∈ N, t ∈ Z
m, and s ∈ Z. Then, by stationary increments of

G, we have









e−(t1+s)H
∑t1

j=−M e(j+s)H1j+sG

...

e−(tm+s)H
∑tm

j=−M e(j+s)H1j+sG









law
=









e−t1H
∑t1

j=−M ejH1jG

...

e−tmH
∑tm

j=−M ejH1jG









for every −M < min{ti}. Since the random vectors above
converge in probability asM → ∞, we obtain that







Xt1+s

...
Xtm+s






=









e−(t1+s)H
∑t1

j=−∞ e(j+s)H1j+sG

...

e−(tm+s)H
∑tm

j=−∞ e(j+s)H1j+sG









law
=









e−t1H
∑t1

j=−∞ ejH1jG

...

e−tmH
∑tm

j=−∞ ejH1jG









=







Xt1
...

Xtm







and hence, X is stationary.
Next, assume that X is stationary. Then, by Theorem 3.5 there

exists a H-self-similar Y such that

1tX = e−tHYet − e−(t−1)HYet−1 = (e−H − I)Xt−1 + e−tH1tYet .

Defining G as in Lemma 3.7 completes the proof of the other
direction.

To prove uniqueness, we use (15). Assume that, forG, G̃ ∈ GH ,

etHXt =

t
∑

k=−∞

ekH1kG =

t
∑

k=−∞

ekH1kG̃

for every t ∈ Z. Then

etHXt − e(t−1)HXt−1 = etH1tG = etH1tG̃.

Since etH is invertible and both processes start from zero, we
conclude that G = G̃.

PROOF OF LEMMA 2.7. We have that

1tG(10G)
⊤ = (Xt − 8Xt−1)(X

⊤
0 − X⊤

−18).

Taking expectations yields

r(t) = 8γ (t)8 − γ (t + 1)8 − 8γ (t − 1)+ γ (t).

PROOF OF THEOREM 2.10. Let

1tX = −2Xt−1 + 1tG.

Then for t ∈ N we have

Gt =

t
∑

k=1

1kG =

t
∑

k=1

1kX+2

t
∑

k=1

Xk−1 = Xt−X0+2

t
∑

k=1

Xk−1.

Hence

cov(Gt) = cov(Xt − X0)+ E

[

(Xt − X0)

t
∑

k=1

X⊤
k−1

]

2

+2E

[

t
∑

k=1

Xk−1(Xt − X0)
⊤

]

+2E





t
∑

k=1

Xk−1

(

t
∑

k=1

Xk−1

)⊤


2

giving (8) since

E

[

(Xt − X0)

t
∑

k=1

X⊤
k−1

]

=

t
∑

k=1

γ (t − k+ 1)− γ (−k+ 1)

=

t
∑

k=1

γ (k)− γ (k− 1)⊤

and

cov(Xt − X0) = E

[

(Xt − X0)(Xt − X0)
⊤
]

= 2γ (0)− γ (t)

− γ (−t) = 2γ (0)− γ (t)− γ (t)⊤

PROOF OF LEMMA 2.15. Assume that 8̃ = e−H̃ satisfies (9) for
every t ∈ Z and set

Xt − 8̃Xt−1 = 1tG̃, t ∈ Z.

Consequently

r̃(t) = γ (t)8̃2− (γ (t+1)−γ (t−1))8̃+γ (t) = r(t), t ∈ Z,

where r̃(t) is the autocovariance function of (1tG̃)t∈Z. Now, since
G0 = G̃0 = 0, we obtain that

var(Gt) = var

(

t
∑

k=1

1kG

)

=

t
∑

k,j=1

cov(1kG,1jG) =

t
∑

k,j=1

r(k− j)

= var

(

t
∑

k=1

1kG̃

)

= var(G̃t)

for all t ∈ N. Hence, both 2 and 2̃ are solutions to (10).

LEMMA 3.8. The matrix 2 = I − e−H is positive definite.

PROOF. Let a be a real vector of length n, and let H = Q3Q⊤

be an eigendecomposition of H. Then

a⊤(I − e−H)a = ‖a‖2 − a⊤e−Ha,

where

|a⊤e−Ha| ≤ ‖a‖2e−λmin < ‖a‖2

completing the proof.

In order to show that 2̂T is consistent, we simply need to
find suitable bounds for 1TB,1TC and 1TD in terms of the
autocovariance estimators. After that, the same strategy as in [33]
can be applied.
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LEMMA 3.9. Set

Mt,T = max
s∈{0,1,...,t}

‖γ̂T(s)− γ (s)‖.

Then the coefficients of the perturbed CARE satisfy

‖1TD‖ ≤ 4Mt,T

‖1TC‖ ≤ t2Mt,T

‖1TB‖ ≤ 2tMt,T ,

PROOF. First, we recall first that

‖γ̂T(−s)− γ (−s)‖ = ‖γ̂T(s)
⊤ − γ (s)⊤‖ = ‖γ̂T(s)− γ (s)‖.

Now, since v(t) is known,

‖1TD‖ ≤ 2‖γ̂T(0)− γ (0)‖ + ‖γ̂T(t)− γ (t)‖ + ‖γ̂T(t)
⊤

−γ (t)⊤‖ ≤ 4Mt,T .

Moreover

‖1TC‖ ≤

t
∑

k=1

t
∑

j=1

‖γ̂T(k− j)− γ (k− j)‖ ≤ t2Mt,T .

Finally

‖1TB‖ ≤

t
∑

k=1

‖γ̂T(k− 1)− γ (k− 1)‖ + ‖γ (k)⊤ − γ̂T(k)
⊤‖

≤ 2tMt,T .

PROOF OF THEOREM 2.18. The result follows by replacing
sups∈[0,t] ‖γ̂T(s) − γ (s)‖ with Mt,T in Corollary 3.14 and in the
proof of Theorem 2.9 of [33]. The details are left to the reader.

PROOF OF THEOREM 2.19. For the first part of the theorem,
we notice that

Ct =

t
∑

k=1

t
∑

j=1

γ (k− j) =

t
∑

k=1

k−1
∑

l=k−t

γ (l) =

−1
∑

l=1−t

t+l
∑

k=1

γ (l)

+

t−1
∑

l=0

t
∑

k=l+1

γ (l) =

−1
∑

1−t

(t + l)γ (l)+

t−1
∑

l=0

(t − l)γ (l)

=

t−1
∑

l=0

(t − l)γ (l)+

t−1
∑

l=1

(t − l)γ (l)⊤,

where
∑−1

0 and
∑0

1 are interpreted as empty sums. Now we
have that

1TC =

t−1
∑

k=0

(t − k)(γ̂T(k)− γ (k))

+

t−1
∑

k=1

(t − k)
(

γ̂T(k)
⊤ − γ (k)⊤

)

1TB =

t
∑

k=1

γ̂T(k− 1)− γ (k− 1)− γ̂T(k)
⊤ + γ (k)⊤

1TD = 2(γ (0)− γ̂T(0))+ γ̂T(t)− γ (t)+ γ̂T(t)
⊤ − γ (t)⊤

and furthermore

l(T) vec(1TC,1TB,1TD) = l(T)










∑t−1
k=0

(t − k) vec(γ̂T (k)− γ (k))+
∑t−1

k=1
(t − k) vec

(

(γ̂T (k)− γ (k))⊤
)

∑t
k=1

vec(γ̂T (k− 1)− γ (k− 1))− vec
(

(γ̂T (k)− γ (k))⊤
)

−2 vec(γ̂T (0)− γ (0))+ vec(γ̂T (t)− γ (t))+ vec
(

(γ̂T (t)− γ (t))⊤
)











= L1

















l(T)

















vec(γ̂T (0)− γ (0))

vec(γ̂T (1)− γ (1))

.

.

.

vec(γ̂T (t)− γ (t))

































law
−→ L1(Z)

by the continuous mapping theorem. For the second part of the
theorem, the proof of the continuous time case of [33] can be
applied just by replacing sups∈[0,t] ‖γ̂T(s)−γ (s)‖withMt,T in the
definition of the set AT .

3.2. Continuous Time
We only provide the proof of Proposition 2.24, while the other
proofs can be found from [33]

PROOF OF PROPOSITION 2.24. Integrating (11) from 0 to t
gives

Gt = Xt − X0 +H

∫ t

0
Xsds.

Hence

1δ
tG(1

δ
0G)

⊤ =

(

Xt − Xt−δ +H

∫ t

t−δ

Xsds

)

(

X⊤
0 − X⊤

−δ +

∫ 0

−δ

X⊤
s dsH

)

.

Taking expectations yields

rδ(t) = 2γ (t)−γ (t+δ)−γ (t−δ)+

∫ 0

−δ

γ (t−s)−γ (t−δ−s)dsH

+H

∫ t

t−δ

γ (s)− γ (s+ δ)ds+H

∫ t

t−δ

∫ 0

−δ

γ (s− u)dudsH,

where the first order terms can be treated with a simple change of
variables. For the second order term we obtain that

∫ t

t−δ

∫ 0

−δ

γ (s− u)duds =

∫ t

t−δ

∫ s+δ

s
γ (x)dxds

=

∫ t

t−δ

∫ x

t−δ

γ (x)dsdx+

∫ t+δ

t

∫ t

x−δ

γ (x)dsdx

=

∫ t

t−δ

(x− t + δ)γ (x)dx+

∫ t+δ

t
(t − x+ δ)γ (x)dx.
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