
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or 
part of any of the repository collections is not permitted, except that material may be duplicated by you for 
your research use or educational purposes in electronic or print form. You must obtain permission for any 
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not 
an authorised user.

Malitckii, Evgenii; Fangnon, Eric; Vilaca, Pedro
Study of correlation between the steels susceptibility to hydrogen embrittlement and hydrogen
thermal desorption spectroscopy using artificial neural network

Published in:
Neural Computing & Applications

DOI:
10.1007/s00521-020-04853-3

Published: 01/09/2020

Document Version
Publisher's PDF, also known as Version of record

Published under the following license:
CC BY

Please cite the original version:
Malitckii, E., Fangnon, E., & Vilaca, P. (2020). Study of correlation between the steels susceptibility to hydrogen
embrittlement and hydrogen thermal desorption spectroscopy using artificial neural network. Neural Computing
& Applications, 32(18), 14995-15006. https://doi.org/10.1007/s00521-020-04853-3

https://doi.org/10.1007/s00521-020-04853-3
https://doi.org/10.1007/s00521-020-04853-3


ORIGINAL ARTICLE

Study of correlation between the steels susceptibility to hydrogen
embrittlement and hydrogen thermal desorption spectroscopy using
artificial neural network

Evgenii Malitckii1 • Eric Fangnon1 • Pedro Vilaça1

Received: 3 September 2019 / Accepted: 14 March 2020 / Published online: 24 March 2020
� The Author(s) 2020

Abstract
Steels are the most used structural material in the world, and hydrogen content and localization within the microstructure

play an important role in its properties, namely inducing some level of embrittlement. The characterization of the steels

susceptibility to hydrogen embrittlement (HE) is a complex task requiring always a broad and multidisciplinary approach.

The target of the present work is to introduce the artificial neural network (ANN) computing system to predict the

hydrogen-induced mechanical properties degradation using the hydrogen thermal desorption spectroscopy (TDS) data of

the studied steel. Hydrogen sensitivity parameter (HSP) calculated from the reduction of elongation to fracture caused by

hydrogen was linked to the corresponding hydrogen thermal desorption spectra measured for austenitic, ferritic, and

ferritic-martensitic steel grades. Correlation between the TDS input data and HSP output data was studied using two ANN

models. A correlation of 98% was obtained between the experimentally measured HSP values and HSP values predicted

using the developed densely connected layers ANN model. The performance of the developed ANN models is good even

for never-before-seen steels. The ANN-coupled system based on the TDS is a powerful tool in steels characterization

especially in the analysis of the steels susceptibility to HE.

Keywords Hydrogen embrittlement � Artificial neural network � Thermal desorption spectroscopy � Hydrogen sensitivity

parameter

1 Introduction

Susceptibly of steels and alloys to hydrogen embrittlement

(HE) is a problem of many aspects. Depending on the

material microstructure, stress state, hydrogen diffusivity,

and solubility, the mechanism of the hydrogen-induced

damage and HE varies. A number of HE mechanisms of

damage of the structural steels were proposed such as

hydrogen-enhanced decohesion (HEDE) [1, 2], stress-in-

duced hydride formation and cleavage [3, 4], hydrogen-

enhanced localized plasticity (HELP) [5–7], adsorption-

induced dislocation emission (AIDE) [8, 9] and hydrogen-

enhanced stress-induced vacancy (HESIV) [10–12]

mechanisms. However, in most cases a combination of the

mechanisms was involved in the hydrogen-assisted damage

of steels that makes complicate the modeling and predic-

tion of the hydrogen-induced crack nucleation and growth.

Hydrogen can diffuse into the steels and accumulate during

all the stages of the lifecycle of the steels, namely during

production at the mills, manufacturing of the structural

components, and exploitation. For example, quenching of

steels in water, oil, and even air quenching can cause the

total hydrogen concentration growth reaching levels

enough for hydrogen-induced cracking [13, 14] of high-

strength steels. For continuous galvanizing process, the

steels are prepared for coating in an H2–N2 furnace.

Hydrogen uptake after galvanization process increases with

the increase in the hydrogen content in the annealing

atmosphere and depends significantly on the steel

microstructure [15]. Hydrogen uptake is controlled mainly

by a diffusion process; however, a possible chemistry

effect during coating of the steel cannot be excluded. And
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there are many other processes such as surface-chemical

cleaning, electroplating, electrochemical machining, pick-

ling, cathodic protection, welding, carbonizing, etc., which

cause the hydrogen uptake into the steel as raw material or

components.

The effect of hydrogen-assisted damage can be signifi-

cantly decreased by heat treatment at some stages of the

steel processing causing the reduction of the total hydrogen

concentration in the solid solution [14, 16, 17]. Worth to

note is the diffusivity of the hydrogen in steels typically

increases with tempering due to recovery and recrystal-

lization resulting in a reduction of the defects density

affecting the hydrogen detrapping and diffusion [18, 19].

However, tempering at about 500 �C may cause some

decrease of hydrogen diffusivity associated apparently with

precipitation of nonmetallic inclusions (NMI) as it was

observed by Sakamoto et al. [18] for martensitic type 403

stainless steel. Greater resistance to HE was observed in

X37CrMoV5-1 steel after austempering at the bainitic

transformation zone compared to the tempered martensite

structure of the same material [18]. Improved performance

of the steel in presence of hydrogen was attributed to the

large density of interfaces of the retained austenite, which

trap the hydrogen and reduce the diffusivity and perme-

ability of hydrogen through the steel [20–22]. During

exploitation, hydrogen can originate from the corrosion

reactions [23–25], transmutation reactions [26] or during

exposure to hydrogen-enriched environment [27, 28].

From above, one can conclude that the diffusivity of

hydrogen in steels is a key parameter controlling the HE.

At the same time, the diffusivity is significantly depended

on the microstructure of steels. Interfaces of dissimilar

phases or NMIs in steels, as well as other defects of high

density, can suppress the hydrogen diffusion toward the

stress-affected zone increasing the time until the hydrogen-

assisted damage occurs. However, some defects may act as

stress concentrators facilitating the hydrogen-assisted

damage in the presence of stress. One can assume that the

susceptibility of steels and alloys to hydrogen embrittle-

ment can be evaluated from the knowledge of hydrogen

diffusivity and microstructure of studied steel. A practical

tool evaluating the sensitivity of steels to hydrogen can

improve significantly the reliability and durability of steel

components in many engineering applications such as heat

exchangers, boiler tubes, steam pressure vessels, hydrogen

storage and transport, etc., by selecting the most appro-

priate steel from different grades or different batches of the

same grade at early beginning of the construction work.

Use of the ANN is a growing trend in the material sci-

ence and engineering research community [29–33]. A huge

database of the experimental results collected during the

last decades finds its implementation in the ANN models

targeting to solve a variety of engineering problems [29].

Often, the chemical composition of steels and alloys

together with their mechanical properties and other

experimental parameters are considered as the input data

for the ANN model in many applications [29–31]. The

present work is aimed to predict the hydrogen-induced

ductility reduction using only hydrogen thermal desorption

spectroscopy (TDS) data assuming the TDS contains the

required information about the hydrogen diffusion, trap-

ping and detrapping, which depend, at the same time, on

the microstructure of the studied materials. One can assume

that the study of the relationship between the thermal

desorption spectroscopy data and the ductility reduction of

steel is a classic problem on fuzzy logic (FL) [34]. In the

field of artificial intelligence, the neuro-fuzzy was proposed

as the combination of ANN and FL [35, 36]. The main

strength of the neuro-fuzzy systems is that they can inter-

pret the if–then rules, where thermal desorption spec-

troscopy data and ductility reduction are labels of the fuzzy

sets which can be characterized by an appropriate mem-

bership function. Neuro-fuzzy systems were designed to

incorporate the human-like reasoning style; however, we

assume the relationship between the hydrogen thermal

desorption spectroscopy and hydrogen susceptibility of

steels has a complex mathematical justification that prop-

erly developed ANN system is able to help to reveal. The

present work is focused on the use of simple nonlinear

artificial neurons as units of the ANN model. Advanced

fuzzy logic algorithms will be considered in future work

[37, 38]. Interest in ANN implementation for spectroscopy

data analysis is growing among chemists, while in material

science this approach is novel [32, 33]. Nevertheless, use of

the ANN is a promising way to check the hypothesis about

the correlation between the hydrogen thermal desorption

spectroscopy and hydrogen-induced degradation of the

mechanical properties of the steels and alloys.

The objective of this paper is to introduce a conceptual

approach for evaluation of steels susceptibility to HE using

the ANN model. In the future, such approach will enable

the steels lifetime assessment predicting the hydrogen-in-

duced degradation of the mechanical properties and

microstructure without extensive time, cost and labor-in-

tensive experimental research (see Fig. 1).

2 Experimental

2.1 Materials

Austenitic stainless steels (ASS), ferritic stainless steels

(FSS) and ferritic-martensitic high-strength steels

(FMHSS) of different microstructures and mechanical

properties were chosen for development and validation of

the ANN models for evaluation of hydrogen sensitivity
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parameter (HSP). Names and chemical composition of the

studied steels are listed in Table 1. The HSS grades

VA1000_M05, VA1000_TM05, VA1200_MTM,

VA1400_TM, VA1400_MTM, with the same chemical

composition, were subjected to the different heat treatment

procedures during manufacturing affecting the

microstructure and mechanical properties. The mechanical

properties, microstructure, and heat treatment procedures

related to the studied high-strength steels are described in

details by Hickel et al. [39].

The steels with different susceptibility to HE were

selected to develop the ANN-based method for evaluation

of hydrogen sensitivity parameter of steels using hydrogen

thermal desorption spectroscopy (TDS) as input data. The

experimental procedure can be divided into three main

steps: mechanical testing, thermal desorption spectroscopy

and artificial neural network modeling.

2.2 Mechanical testing

The studied steels were tested in tensile mode with the

constant extension rate of 10-4 s-1 in as-supplied condition

and during continuous electrochemical hydrogen charging.

Tensile specimens were cut from the steel plates using

electrical discharge machining (EDM). Shape and dimen-

sions of the tensile specimens are shown in Fig. 2. The

electrochemical hydrogen charging was performed using 1

N H2SO4 solution with 20 mg/l of thiourea. Specimens
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pu

t d
at

a

ou
tp

ut
 d

at
a

Prediction of hydrogen-induced
steel degradation using ANN 

Steel specimens extraction and
TDS measurements Processing of TDS data

Material characterisation
and application choice

1 2

3 4

Fig. 1 Overview for quantitative ANN-coupled TDS-based analysis of hydrogen-induced steel properties degradation

Table 1 Chemical composition of the steels selected for training and validation of the ANN models, wt%

Steel\Type\Content C Si Mn Ti Mo Cu Cr Ni Nb N P S

AISI 304 ASS 0.049 0.43 1.49 – – 0.43 18.2 8.2 – 0.047 – –

AISI 316 ASS \ 0.05 \ 0.75 \ 2 – 2.25 – 17 11 – – \ 0.04 \ 0.015

AISI 409 FSS \ 0.03 \ 1 \ 1 0.26 – – 11.75 0.5 – – \ 0.045 0.025

AISI 441 FSS 0.014 0.61 0.42 0.138 0.024 0.12 17.7 0.2 0.393 – 0.03 \ 0.015

1319L2 FSS 0.014 0.31 0.34 0.26 \ 0.01 0.41 21 0.21 0.22 – 0.006 0.004

F82Ha FMHSS 0.09 0.11 0.11 0.01 0.003 0.01 7.68 0.02 – 0.007 0.002 0.002

VA1000_M05 FMHSS

VA1000_TM05 FMHSS

VA1200_MTM FMHSS 0.157 0.19 2.24 0.002 0.004 – 0.46 – 0.022 0.006 0.011 0.001

VA1400_TM FMHSS

VA1400_MTM FMHSS

aSteel contains also W—1.96 wt%, B—0.0002 wt%
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tested during continuous hydrogen charging were pre-

charged to approach the homogeneous hydrogen distribu-

tion through the 1-mm specimens’ thickness. The param-

eters of the electrochemical hydrogen charging defined for

each steel grade are summarized in Table 2.

Hydrogen charging causes the hydrogen concentration

growth into the studied steels leading to the mechanical

properties degradation. Hydrogen-induced reduction of the

elongation to fracture was chosen as the parameter for

evaluation of the steel sensitivity to hydrogen. The

hydrogen sensitivity parameter (HSP) was calculated for

each steel grade as:

HSP ¼ e� eHð Þ
e

� 100% ð1Þ

where e is elongation to fracture of as-supplied specimen,

eH is elongation to fracture of H-charged specimen.

2.3 Thermal desorption spectroscopy

TDS specimens were cut from the studied steel plates using

EDM with size of about 1 9 5 9 15 mm. The specimens

were grinded with the emery paper 350 using Struers

grinding machine LaboPol-25 and cleaned with acetone

before measurement. All the specimens were tested in as-

supplied condition considering only the metallurgical

hydrogen accumulating into the steels during its production

process.

The hydrogen desorption rate was measured using the

TDS technique in the temperature range from room tem-

perature (RT) to 1070 K with a linear heating rate of 10

K/min. The air-lock chamber 1 hosts the specimen until an

intermediate low pressure is achieved as shown schemati-

cally in Fig. 3. Then, the specimen is transferred to the

furnace located in the ultra-high vacuum (UHV) chamber

2. The measurement is performed in the UHV chamber by

mass spectrometer 3 starting from an ultimate pressure of

about 2 9 10-8 mbar.

2.4 Artificial neural network (ANN) modeling

The thermal desorption spectra were considered as the

inputs for training the artificial regression neural network

models. The target output is the HSP. Database of the

thermal desorption spectra was created, and it contains the

datasets for each material associated with a certain HSP

measured experimentally from CERT. The basic element

of ANN is the neuron or node depicted in Fig. 4.

The input data (x1…xn) is multiplied with the weights

(x1…xn) and their summation gets an addition of bias (b).

The weight and bias transform the input data linearly. The

complex nonlinear transformation between the input data

and output is possible by the activation function that makes

able the ANN to learn faster and efficient [40].

Development, training and validation of the ANN were

performed in Python programming language using Keras

open-source neural network library running on top of

TensorFlow software for machine learning applications.

Figure 5 shows the general view of the deep learning

process of the developed regression ANN model. The ANN

model is feed-forward and comprises a number of densely

connected layers, where each neuron receives the input

from all the neurons of the previous layer [41].

The input vector contains the hydrogen desorption rate

data of the thermal desorption spectra (see Fig. 6a). Nor-

malization procedure is typically applied for the input data

to make them in the range from 0 to 1 [29, 41]. However,

the TDS input data do not go beyond the range and nor-

malization was neglected. The number of neurons in the

first layer of the ANN model corresponds to the input

vector size [29, 41]. The thermal desorption spectra were

interpolated to optimize the number of data points and

Fig. 2 Schematic view of the CERT specimen. Thickness of the

specimen is 1 mm. All sizes are in mm

Table 2 Hydrogen charging parameters for the studied steels

Steel type H-charging potential (V) Pre-charging time (h)

ASS - 1.08 72

FSS - 1.2 2

FMHSS - 1.225 1

Fig. 3 Schematic representation of the TDS technique. 1—air-lock

chamber, 2—ultra-high vacuum chamber (UHV) with furnace, 3—

mass spectrometer
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equalize the size of TDS data to form the input database

comprising 66 data pairs for the ANN learning process.

Two ANN models were developed (see Fig. 6b, c). First

is the regression ANN model consisting of four densely

connected layers (later DANN). The input vector size of

DANN model is 381. Input layer comprises 381 neurons

and rectified linear units (ReLU) activation [42]. Hidden

layer (see Fig. 5) comprises two densely connected layers

of 512 and 1536 neurons, respectively, with the same

activation functions. The network ends with output layer

(see Figs. 5, 6b) comprising a single neuron and the sig-

moid activation function [41, 42]. In general, the DANN

topology can be summarized as 381-512-1536-1. The

second model is a convolutional neural network model

consisting of three convolution (Conv1D) layers (later

CANN) used often for time-series comparison, classifica-

tion or forecasting [41]. The input vector size of CANN

model is 762. Three Conv1D layers comprise 100, 160 and

160 filters, respectively, with the same kernel size of 30

and activation function ReLU. The first convolutional layer

is fed with the TDS data frame of 762 data points. After

each Conv1D layer, the max-pooling operation is added

using MaxPooling1D layers with the pool size of 2 and the

same stride [41]. The densely connected layer (Dense)

comprising a single neuron is added at the end like those in

DANN model. The detailed information about utilized

algorithms is presented in Ref. [41].

The supervised learning process is intended to map input

examples of TDS data to known HSP targets by changing

the connection weights, which allows the ANN to generate

the outputs as close as possible to the true targets. In order

to evaluate the ANN model performance, the existing

database of input TDS data and its HSP targets was split to

training, validation and test sets. Because of a limited

amount of training and validation data, different validation

approaches were considered. K-fold cross-validation with

shuffling is promoted as the most promising method for the

situation in which a relatively little training data available

[41]. However, this approach makes the developed ANN

models overfitted showing the relatively high misfit on the

validation set of about 10%. The simple hold-out validation

approach implemented in this research was found to be

more efficient [41]. The mean squared error (MSE) loss

function was considered for application in the developed

models as the most commonly used for regression prob-

lems [29, 41]. The MSE value used as a loss score between

the experimental and predicted HSP data can be calculated

by Eq. 2:

MSE ¼ 1

n

Xn

i¼1

Yi � Y 0
i

� �2 ð2Þ

where n is a number of predictions, Yi is the experimental

output data, and Y 0
i is the predicted output data by the

developed ANN. Considering the loss score, the ANN

learning process was performed by RMSprop adaptive

learning rate method, a form of stochastic gradient descent

proposed by Geoff Hinton [43, 44].

Mean absolute error (MAE) is the metric that is moni-

tored during the training of the ANN models to measure the

absolute value of the difference between the predictions

and the targets. MAE is a common regression metric that

allows evaluating the performance of the regression ANN

model [29, 41]. MAE is calculated using Eq. 3:

Output

Fig. 4 The neuron elements of

the artificial neuron network

Optimizer

(RMSprop)

Input layer

Hidden layers

(data transformation)
Weights

Predictions

(HSP')

True targets

(HSP)

Loss function

(MSE)

Loss score

Output layer

Fig. 5 General view of the deep learning process of the ANN model
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MAE ¼ 1

n

Xn

i¼1

Y 0
i � Yi

�� �� ð3Þ

where n is a number of predictions, Yi is the experimental

output data, and Y 0
i is the predicted output data by the

developed ANN model [45].

3 Results and discussion

The elongation to fracture and HSP of the studied steels

tested in as-supplied and H-charged conditions were

obtained from CERT results and summarized in Table 3.

The calculated HSP values were linked with corresponding

thermal desorption spectra for all the studied steels.

MAE-based validation of the developed models has

been carried out to define the appropriate parameters of the

where, n = 381 and 762 for DANN and CANN, respectively.

S1 S2 Sn

381 neurons

512 neurons

1536 neurons

S1 S2 Sn

1x30 (100 filters)

Pooling (1x2)

1x30 (160 filters)

Pooling (1x2)

1x30 (160 filters)

Pooling (1x2)

Reshape

Flattening

ReLU activation function

Sigmoid activation function

Output layer

a

b c

Fig. 6 Description of the proposed ANN models architecture.

Thermal desorption spectra are interpolated producing the input of

the neural network by vector S of hydrogen desorption rate (a). Size
of the input vector is 381 and 762 for DANN and CANN models,

respectively. DANN model consists of five densely connected layers

(b). CANN model consists of the input layer following with a

sequence of Convolutional1D layers and MaxPooling1D layers (c).
The densely connected layer comprising a single neuron is added at

the end as the output layer in both proposed models
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ANN model (called the hyperparameters of the ANN

model), like a number of neurons in the hidden layer,

number of the hidden layers, and number of the training

iterations (epochs) [41]. The validation dataset was sepa-

rated from the training dataset used for training of the

developed ANN models. Training dataset contains 46 data

pairs, while 10 data pairs were reserved for the validation

and test dataset each. Validation MAE was calculated after

each epoch of the ANN training to evaluate the accuracy of

the ANN model (see Fig. 7). The number of hidden layers

with the corresponding neurons was selected by trial-and-

error method since the general-purpose method for defini-

tion of the ANN topology is still not existing [41]. First the

ANN model with one hidden layer containing many neu-

rons was designed to get the model overfit in just a few

epochs. Then, number of neurons was decreased gradually

to define the optimal model topology leading to low

overfitting rate. Number of hidden layers and

corresponding number of neurons were adjusted to

degrease the MAE at the validation dataset. There are,

however, some recommendation to use a single hidden

layer for a little training dataset that improves the capa-

bility of the ANN model to train successfully and predict

the results [46]. The validation MAE decreases during the

first 500 epochs as shown in Fig. 7. However, after 500

epochs the validation MAE starts to grow, evidencing the

ANN model overfitting [41]. The best validation MAE was

obtained by training the ANN model with about 500

epochs using the early stopping of the training process

programmed to save the best model parameters corre-

sponding to the minimum of MAE at the validation dataset.

The HSP values were predicted from the TDS validation

dataset using the chosen DANN topology and training

parameters. HSP predicted from validation dataset shows a

good correlation with the experimental data (see Fig. 8).

The observed correlation evidences the ability of the

DANN model to be trained to predict the HSP using the

hydrogen thermal desorption spectroscopy data as the

input. Pearson coefficient of correlation (R) was calculated

to understand the accuracy of the developed DANN model.

R-value is a statistical term which indicates a linear cor-

relation between the target variable and the predicted

variable. R-value calculated for the experimental and pre-

dicted HSP values evidences the linear correlation of 0.99

at validation dataset (see Fig. 8). This result denotes that

the developed DANN model provides the statistical rela-

tionship between the rate of the hydrogen thermal des-

orption and the reduction of the elongation to fracture

caused by hydrogen.

Considering the validation dataset, the developed

DANN model can provide the HSP prediction with high

accuracy for the inputs which lies under the probabilistic

distribution of the trained data. However, every time when

the hyperparameters of the DANN model adjusted to

improve the performance on the validation dataset, some

Table 3 The elongation to fracture and HSP obtained from CERT

(Note: three separate batches of VA1400_MTM steel grade were

studied)

# Steel Elongation to fracture (%) HSP (%)

e eH

1 AISI 304 83.7 32.9 60.7

2 AISI 409 33.5 11.3 66.2

3 AISI 441 29.1 7.7 73.3

4 VA1000_M05 6.2 0.84 86.4

5 VA1000_TM05 7.01 0.77 88.9

6 VA1200_MTM 8.3 0.78 90.5

7 VA1400_TM 5.4 0.34 93.7

8 96

9 VA1400_MTM 6.4 0.13 96.4

10 97.9

Fig. 7 Validation MAE by epoch calculated for the developed DANN (a) and CANN (b) models
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information about the validation data leaks into the model

[41]. In general, such the tuning is also the learning process

comprising the search of a good ANN model configuration

in some parameter space. This information leak may result

in overfitting of the developed DANN model to the vali-

dation dataset. Use of a completely new never-before-seen

dataset (test dataset) allows to improve the performance

evaluation for the DANN model [41]. HSP values of the

studied steels were predicted at the test dataset using the

developed DANN model and compared with the experi-

mental data as shown in Fig. 9. MAE of the developed

DANN model to the test dataset was calculated of about

2.8%. R-value was calculated of about 0.98.

The developed DANN model performs better to the

validation dataset compared to the test dataset evidencing

some overfitting due to the information leak caused by the

hyperparameters search. The difference, however, is not

significant, evidencing that the developed DANN model

with topology 381-512-1536-1 trained with the backprop-

agation algorithm can predict the effect of hydrogen on

ductility in form of HSP for specified experimental con-

ditions which lie under the probabilistic distribution of the

trained value. Worth to note is the DANN model was

trained, validated, and tested using a limited training, val-

idation, and test datasets. Increase of a number of the TDS

data in training and validation datasets for each steel grade

can mitigate the overfitting and improve the ANN model

efficiency. One can observe also from Fig. 9 that the

deviation of the predicted HSP values to the test dataset for

the austenitic and ferritic stainless steel grades (specimens

1–3) is much smaller compared to that is for high-strength

steels (specimens 4–10). Such the behavior can be caused

by considerably high microstructural inhomogeneity cou-

pled with a little hydrogen content of the studied high-

strength steel leading to some changes of the hydrogen

diffusivity, trapping, and detrapping.

The artificial CANN model was applied to study the

correlation between the input TDS data and output HSP

values. The hydrogen TDS spectroscopy can be repre-

sented as a sequence of measurement data obtained within

a certain period of time. Since the applied heating rate

during the measurement is linear (10 K/min), the temper-

ature corresponds to the time axis with a coefficient of 10.

Figure 10 shows examples of the hydrogen TDS spectra

obtained from an austenitic, ferritic stainless steel, and

high-strength ferritic-martensitic steel specimens. Each

material TDS spectra reveal a specific pattern. The artificial

CANN model was used to identify the specific patterns

within the hydrogen TDS spectra corresponding to the

sensitivity of the studied steel to the HE.

Developed CANN model performs slightly better on the

validation dataset compared to the DANN model as one

can see from Fig. 11. MAE and R-value were found to be

about 1.1% and 0.99, respectively. However, the accuracy

of the CANN model tested on the test dataset decreases

significantly as shown in Fig. 12. MAE and R-value were

calculated on the test dataset to be about 4.5% and 0.93,

respectively. One can assume, the CANN model is over-

fitted on the validation dataset, however, any attempt for

generalization of the CANN model did not cause a sig-

nificant improvement of the HSP prediction. Worth to note

is the CANN model performs well on the TDS data of the

austenitic and ferritic steel grades. The major misfit with

the experimental data was obtained for the high-strength

steel grades. The reason probably is a relatively high dis-

persion of the TDS data obtained for the HSS grades

compared to that for the austenitic and ferritic steel grades.

Increase of the training and validation dataset of HSS

grades may improve the performance of the CANN model.

One can conclude that the developed DANN model per-

forms better compared to the CANN model.

The HSP values of the steels, which TDS data were not

exposed to developed DANN model during the training

Fig. 8 Correlation between the experimental and predicted HSP

calculated at validation dataset using DANN model

Fig. 9 Correlation between the experimental and predicted HSP

calculated at test dataset using DANN model
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process, were predicted to study the versatility of the

DANN model. The list of chosen steels with the corre-

sponding HSP values predicted using the DANN model is

shown in Table 4. The HSP values measured experimen-

tally for AISI 409 and AISI 441 steels increases from

66.3% to 73.3% with the increase of the chromium content

from 12% to 18% (see Tables 1, 3). The HSP predicted for

1319L2 ferritic stainless steel containing 21% of chromium

follows the trend increasing up to 78.7%. Usually, the

hydrogen-induced fracture initiates at the nonmetallic

inclusions (NMI) of Al/Ti oxides or Nb carbides and

propagates transgranularly forming a quasi-cleavage frac-

ture surface [47, 48]. However, the concentration of chro-

mium in the solid solution and/or formation of chromium

carbides/oxides may result in a change of the hydrogen

diffusion, trapping and detrapping increasing the suscep-

tibility of steel to HE.

The HSP was predicted by TDS data obtained from AISI

316 austenitic stainless steel using the developed DANN

Fig. 10 Examples of the color plot of the TDS spectra. Color bar shows the range of the hydrogen thermal desorption rate

Fig. 11 Correlation between the experimental and predicted HSP

calculated at validation dataset using CANN model

Fig. 12 Correlation between the experimental and predicted HSP

calculated at test dataset using CANN model

Table 4 The HSP values predicted by DANN for the steels not

exposed for the model training

Steel\Type Predicted HSP (%) Measured HSP (%)

AISI 316\ASS 64.1 –

1319L2\FSS 78.7 –

F82H\FMSS 82.3 79.8–99.6 [52]
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model of about 64% that is close to the HSP measured for

AISI 304 austenitic steel (61%) experimentally. AISI 316

steel is less susceptible to stress corrosion cracking (SCC)

compared to AISI 304 steel due to the addition of molyb-

denum [49, 50]. However, the susceptibility of AISI 304

and 316 steel grades to HE was found to be similar that

supports the obtained results [51].

Hydrogen TDS data of F82H martensitic steel were

processed using developed DANN model predicting the

HSP of about 82%. Effect of hydrogen on ductility

reduction of the F82H steel was studied by Beghini et al.

[52] considering the reduction of area at failure as a mea-

sure of the hydrogen sensitivity. The HSP can be calculated

from the experimental results to be 79.8–99.6% depending

on the tempering procedure and concentration of hydrogen

into the steel [52]. The predicted HSP is comparable with

that was measured for the F82H martensitic steel heat-

treated for 2 h at 750 �C followed by cooling in the air [52].

From above one can conclude that the developed DANN

model provides a proper prediction of the HSP correlating

well with the experimental data. However, the developed

model is probably not applicable for steels subjected to

strain-induced phase transformation due to the corre-

sponding change of the hydrogen diffusion, trapping and

detrapping. Also, change of steel microstructure during

exploitation must be considered. Nevertheless, the sys-

tematic improvement of the ANN model may result in the

development of a new powerful tool for the characteriza-

tion of steels susceptibility to HE. Hydrogen effect on the

mechanical properties, namely the elongation to fracture,

yield point, reduction of area, tensile strength, and forma-

bility can be predicted using an appropriate learning pro-

cedure [29]. At the same time, the use of the hydrogen

thermal desorption spectra as the input data for the ANN

model is a promising way to characterize the steels of

similar chemical composition and different microstructural

properties. The developed method of hydrogen sensitivity

characterization can effectively complement the steels

manufacturing process reducing the companies spend on

defective products.

4 Conclusions

The relationship between hydrogen thermal desorption

spectroscopy data and hydrogen effect on reduction of

elongation to fracture of austenitic and ferritic stainless

steels and high-strength steel grades was studied. The

results evidence a good correlation (R = 0.98) between the

experimentally measured HSP values of the studied steels

and HSP values predicted using the developed DANN

model. The DANN performs better compared to the CANN

model on the available datasets. The DANN model was

successfully validated using never-seen-before TDS data of

the steels used for the training of the DANN model as well

as steels that were not exposed to the model during the

training process. The developed DANN model is able to

predict the HSP of steels of different microstructural

properties which TDS data lies under the probabilistic

distribution of the trained data.

The ability to predict the HSP by the TDS data is evi-

dence of a strong effect of hydrogen diffusion and material

microstructure on hydrogen-induced damage into the steels

and alloys. Despite the DANN model shows good results of

prediction of the HSP, in the present, the human supervi-

sion of the DANN work is needed to prevent the misuse of

the approach caused by factors, such as nonequilibrium

hydrogen distribution and microstructural differences

between different samples of same material under

exploitation affecting the hydrogen diffusion and trapping.
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