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Inter-Sample Modeling of the Converter
Output Admittance

Ville Pirsto, Jarno Kukkola, Marko Hinkkanen, Senior Member, IEEE, and Lennart Harnefors, Fellow, IEEE

Abstract—The stability of the converter–grid intercon-
nection can be studied by analyzing the product of the
converter output admittance and the grid impedance. For
reliable stability analysis, it has been of interest to obtain
accurate converter output admittance models for a wide
range of frequencies, ideally also around and above the
Nyquist frequency of the converter system. This paper
presents a modeling method for the output admittance of
power converters defined in the Laplace domain that takes
into account the discrete nature of the control system.
The modeling method is based on analyzing the inter-
sample behavior of sampled-data systems, a class of sys-
tems which includes the modern digitally-controlled power
converters. The proposed method is compared to conven-
tional admittance modeling methods, and its accuracy is
validated by means of simulations and experiments.

Index Terms—Admittance modeling, Nyquist frequency,
power converter, sampled-data system.

I. INTRODUCTION

THE penetration of power electronic converters in the
electric grid has increased enormously during the last

years. If the grid impedance seen by the converter is high,
stability issues caused by the converter–grid interconnection
might arise. The interconnection stability can be analyzed
through the product of the converter output admittance Yoa
and the grid impedance Zg (cf. Fig. 1) [1].

In practice, this stability analysis can be conducted by
measuring [2]–[5] or modeling [6]–[12] the grid impedance
and the converter output admittance. If the grid is unknown,
the grid impedance can be estimated, e.g., as in [2]. Similarly,
if the converter system is unknown, the converter output
admittance can be measured [3]–[5]. However, additional
hardware is typically required for the measurement [3]. Thus,
measuring the admittance of a converter in the grid can be
difficult or even impossible to carry out when the converter
is in full operation and transferring energy to the grid, e.g.,
from a renewable energy source. Furthermore, the converter
admittance typically depends on the operating point of the
converter, and a significant number of measurements under
different operating points are required in order to obtain a
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Fig. 1. Linearized model of a grid converter system. The converter is
modeled as a current source is in parallel with an output admittance
Yoa. The grid is modeled as an ideal voltage source eg in series with a
grid impedance Zg. The grid current is io and the voltage at the point of
common coupling is ug.

comprehensive overview of the converter admittance. On the
other hand, if the converter system is known, modeling can
be employed. This is desirable, as no special arrangements
are required and the converter admittance can be evaluated in
a wide range of operating points with little effort. Modeling
can also be used to design controllers that result in a stable
converter–grid interconnection [11].

Conventionally, the output admittance of a converter has
been modeled assuming the system to be purely continuous-
time [6]–[12]. However, the control system of the converter
is typically implemented on a digital processor that executes
difference equations in the discrete-time domain. Thus, the
converter system is actually a hybrid, where both continuous-
and discrete-time signals exist. Due to this discrepancy be-
tween the assumptions and the reality, the purely continuous-
time models may yield inaccurate results for some systems,
especially in the case of relatively low sampling frequency.
Furthermore, not every digital control algorithm can be mod-
eled accurately using continuous-time transfer functions. To
improve the accuracy and generality of the admittance models,
the discrete nature of the control system can be recognized,
e.g., as in [13], by modeling the control system as a discrete-
time system while maintaining the continuous characteristic
of the rest of the system. Furthermore, purely discrete-time
models have also been employed to examine the output
admittance as observed by the converter control system [14]–
[16]. However, these models do not describe the true output
admittance of the system, especially at higher frequencies and
above the Nyquist frequency.

In the majority of admittance modeling methods, including
those used in [6]–[13], the hold interface is modeled to a
varying degree of accuracy, but the sampler is neglected. The
characteristics of sampling have been considered only in a few
recent works [17], [18], where sampling is modeled as impulse
modulation that creates additional components, called images,
to the sampled signal [19].
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Fig. 2. Block diagram of a current-controlled converter system.

In [17], a multi-variable high-frequency modeling method
was proposed to model the admittance of a converter ac-
curately for frequencies above the control bandwidth of the
converter. The system was presented as an infinite-dimensional
matrix in the frequency domain, and the admittance of the con-
verter was obtained by approximating the infinite-dimensional
admittance matrix by a finite submatrix consisting of its most
significant components. However, several restrictive assump-
tions, such as limiting the model to frequencies above the
controller bandwidth, were made in the derivation of the
method in [17] that hinder its generality. Additionally, the
presented method was not compared to the existing admittance
modeling methods.

In [18], a multiple-frequency modeling method was pro-
posed that accounts for the images created in the sampling
process. The derivation of the multiple-frequency model is
based on the manipulation of a hybrid output admittance
model, i.e., a model where the controller is modeled as
a discrete-time system and the plant as a continuous-time
system, similarly as in [13]. The resulting model is accurate for
a wide range of frequencies, but contains an infinite sum. The
practical implementation of this infinite sum is challenging,
and it has been approximated by truncating the sum to some
finite number of terms. This corresponds to approximating
the infinite-dimensional admittance matrix in [17] by a finite
submatrix.

This paper presents a systematic modeling method for the
converter output admittance, which is obtained by applying
inter-sample modeling theory of sampled-data systems. Inter-
sample modeling can be used to analyze the response of a
digital control system in-between the sampling instants [20].
The contributions of this paper can be summarized as follows.

1) The proposed inter-sample modeling method improves
the modeling accuracy as compared to the conventional
continuous-time [6]–[12], discrete-time [14]–[16], and
hybrid [13] modeling methods.

2) The presented method circumvents the inclusion of the
impractical infinite sums present in [17] and [18] by
using a single transfer function for a compact, yet exact
representation. This is accomplished by using a relation
between Laplace and Z-transforms.

3) The proposed method is compared to the state-of-the-art
methods, used, e.g., in [6]–[18], by means of analysis
and simulations. Additionally, the relations between the
apparently different modeling methods [13], [17], [18]
are clarified. System properties for which the presented

method yields notable increase in accuracy, as compared
to the conventional methods, are analyzed and presented.

4) The proposed method is validated by means of simula-
tions experiments, also above the Nyquist frequency.

Inter-sample modeling enables the use of discrete-time control
algorithms directly in the model, improving its generality over
the purely continuous-time modeling [6]–[12] while being
more suitable for output admittance modeling as compared
to the purely discrete-time modeling [14]–[16]. Thus, systems
employing control designs with no continuous-time counter-
part (e.g., deadbeat control) can be effortlessly and accurately
modeled.

II. INTERFACE MODELS

In this paper, a current-controlled converter system shown
in Fig. 2 is used as an example. The system shown in Fig.
2 consists of a reference prefilter F (z), feedback controller
C(z), hold interface Gh(s), sampler represented by a switch,
the open-loop admittances Yc(s) and Yd(s) of the controlled
plant, and measurement interface Gm(s). Typically, the mea-
surement interface includes an analog filter with low-pass filter
characteristics. Furthermore, io is the controlled current, i is
the measured current, and i∗o,ref and ug are the reference and
disturbance inputs, respectively. The system in Fig. 2 could
represent, e.g., the grid converter shown in Fig. 1. In that case,
the current source is is(s) = Gcl(s)i

∗
o,ref(s), where Gcl(s)

is the closed-loop reference tracking transfer function. The
positive direction of io is defined from the converter towards
the output terminals, as in Fig. 1. The asterisk in the symbols
denotes that the corresponding signal or transfer function is
sampled. In this paper, complex and real transfer functions are
not distinguished from one another, as the presented theory is
applicable in both cases.

To limit the content, only current-controlled converters are
considered. However, the proposed method is also directly
applicable to, e.g., analysis of output impedance of ac volt-
age controlled converters [21], [22]. Likewise, other control
schemes that can be represented by a reference prefilter F (z)
and a feedback controller C(z) in Fig. 2 can be analyzed in
an analogous manner as well. Additional signal paths from
the disturbance input can be accounted for in the admittance
model, as exemplified in Section V. Next, the models used for
sampling and hold are presented.

A. Sampling

The process of sampling is modeled using impulse modula-
tion [19]. In impulse modulation, the input signal is modulated
by an infinite series of Dirac delta functions, i.e., a Dirac comb.
As a result, the output of the sampler is a continuous function

i∗(t) = Ts

∞∑
k=0

i(t)δ(t− kTs) (1)

where Ts is the sampling period and δ is the Dirac delta
function. Scaling by Ts is done to match the unit of i∗ with that
of i. The signal i(t) is assumed to vanish for negative t and



thus the sum in (1) starts from zero. By applying the Laplace
transform L{·} on the sampled signal i∗(t), one obtains

i∗(s) = L{i∗(t)} = Ts

∞∑
k=0

i(kTs)e
−skTs (2)

where the sifting property [19] of the Dirac delta function
was used. The above transformation is defined as the starred
transform of the signal i(t), i.e., it gives the frequency char-
acteristics of the sampled version of the signal. In fact, one
can recognize the equation to be a scaled version of the one-
side Z-transform of the signal i with z = exp(sTs), i.e.,
i∗(s) = i(z)|z=exp(sTs) [23]. An alternative representation of
the starred transform can be found by applying the Poisson
summation rule [23], which yields the starred transform as

i∗(s) =

∞∑
k=−∞

i(s+ jkωs) (3)

where ωs = 2π/Ts is the sampling angular frequency. The
above equation reveals that the sampling operation transforms
the spectrum of the signal periodic with period ωs, i.e., i∗(s) =
i∗(s+ jkωs) ∀k ∈ Z.

In the derivation of the admittance model presented in Sec-
tion III, starred transforms of the products of transfer functions
and signals are required. In case either the signal or the transfer
function is already periodic with ωs, the starred transform is
simply equal to the product of the starred transforms, e.g.,[

Y (s)Gh(s)u∗c(s)
]∗

=
[
Y (s)Gh(s)

]∗
u∗c(s) (4)

where
Y (s) = Gm(s)Yc(s) (5)

and where both of the starred transforms are defined according
to (3). However, if neither the signal nor the transfer function
is periodic, the signal becomes time-variant and the starred
transform needs to be applied on the whole product, e.g.,
[Gm(s)Yd(s)ug(s)]∗ 6= [Gm(s)Yd(s)]∗u∗g(s) [19].

B. Hold

The voltage reference output by the controller is typically
maintained constant between sampling instants. Assuming that
the modulator can perfectly realize its input reference and
that the switching frequency harmonics are disregarded, the
effect of the modulator can be neglected. As a result, the
translation from the voltage reference to the realized voltage
can be modeled with the zero-order hold (ZOH) [24]

Gh(s) =
1− e−sTs

sTs
(6)

which is used in this paper to model the hold. However, the
aforementioned assumptions do not generally hold and thus
more accurate models have been developed, e.g., [25], [26].
These more advanced models of the hold interface may also
be employed in the modeling instead of the ZOH.

It is also of interest to examine the starred transform
[Y (s)Gh(s)]∗ of the product of the measurement interface Gm,
the open-loop admittance Yc, and the hold Gh, cf. (4) and (5).

The numerator of the ZOH is ωs periodic, so it can be factored
out of the transform, leading to[

Y (s)Gh(s)
]∗

= (1− e−sTs)

[
Y (s)

sTs

]∗
. (7)

Since [Y (s)/sTs]
∗ can be expressed as an infinite sum of

samples obtained from the unit step response of Y (s)/Ts
according to (2), this result is actually equivalent to the step-
invariant Z-transform of Y (s)[
Y (s)Gh(s)

]∗
= Y (z) = (1− z−1)Z

{
L−1

{
Y (s)

s

}
t=kTs

}
(8)

where L−1{·} is the inverse Laplace transform, Z{·} is the
Z-transform, and where the identity

z = exp(sTs) (9)

is applied. The relation (8) is employed in the following
section for deriving the proposed output admittance model.

III. OUTPUT ADMITTANCE MODELS

In this section, the proposed inter-sample admittance mod-
eling method is applied to obtain an output admittance model
for the example system shown in Fig. 2. In addition, the
other admittance models used for comparison are presented.
In the following, a linear system with constant parameters
is assumed. A non-linear model extension is discussed in
Section V. Operating point dependency of the parameters,
e.g., inductances, can be taken into account by employing the
models presented in this section at a specific operating point.

A. Inter-Sample Model
From Fig. 2, the following relations between different

signals can be written:

uc(s) = Gh(s)C(z)
[
F (z)i∗o,ref(s)− i∗(s)

]
(10)

i(s) = Gm(s)
[
Yc(s)uc(s)− Yd(s)ug(s)

]
(11)

io(s) =
i(s)

Gm(s)
(12)

where the relation (9) is used to map the controller pulse-
transfer functions into the Laplace domain. Placing (10) into
(11) and employing (5), one obtains

i(s) = L(s)
[
F (z)i∗o,ref(s)− i∗(s)

]
−Gm(s)Yd(s)ug(s)

(13)
where the current i appears both in continuous and sampled
form and where

L(s) = Y (s)Gh(s)C(z) (14)

is the loop gain of the system. The sampled form i∗ can be
solved by applying the starred transform on both sides of (13)
and solving for i∗ by applying identities (4) and (8). This
yields

i∗(s) =
Y (z)C(z)F (z)i∗o,ref(s)−

[
Gm(s)Yd(s)ug(s)

]∗
1 + Y (z)C(z)

(15)



which can be recognized as the system seen by the discrete-
time controller. By placing (15) into (13), one obtains

i(s) =
L(s)F (z)i∗o,ref(s)

1 + Y (z)C(z)
+
L(s)

[
Gm(s)Yd(s)ug(s)

]∗
1 + Y (z)C(z)

−Gm(s)Yd(s)ug(s). (16)

By applying the identity (3) to [Gm(s)Yd(s)ug(s)]∗ in (16) and
separating the k = 0 component from the sum, one obtains

i(s) =
L(s)F (z)

1 + Y (z)C(z)
i∗o,ref(s)

−
[
1− L(s)

1 + Y (z)C(z)

]
Yd(s)︸ ︷︷ ︸

Output admittance

Gm(s)ug(s)

+

L(s)
∑∞

k=−∞
k 6=0

Y (s+ jkωs)ug(s+ jkωs)

1 + Y (z)C(z)︸ ︷︷ ︸
Current component created by images

.

(17)

The infinite sum in (17) shows the effect of images formed
in the sampler. The model for the output admittance Yoa(s),
which describes the system dynamics from the input ug(s) to
the output io(s), can then be obtained from (17) by using (12)
as

Yoa(s) =
io(s)

ug(s)
= Yd(s)− L(s)Yd(s)

1 + Y (z)C(z)
(18)

which consists of the open-loop admittance Yd(s) of the
plant and the admittance shaping effect of the control system.
Furthermore, (17) can also be used to analyze the admittances
of images by examining individual terms of the infinite sum.

Remark: An equivalent form of (18) can be derived using the
multiple-frequency modeling method presented in [18] with
the difference that Y (z) is represented by an infinite sum, i.e.,
it is written as

Y (z) =

∞∑
k=−∞

Y (s+ jkωs)Gh(s+ jkωs). (19)

Thus, if the output admittance of the example system were
written using the modeling method of [18], one would obtain

Yoa(s) = Yd(s)

− L(s)Yd(s)

1 +
∑∞

k=−∞ Y (s+ jkωs)Gh(s+ jkωs)C(z)
.

(20)

The practical implementation of the infinite sum in the above
expression is not elaborated in [18]. A feasible approximation
is to truncate the sum to a finite number of terms, as explained
in [17]. On the other hand, the above-mentioned sum is
recognized as the step-invariant Z-transform of Y (s) [cf. (8)]
in the proposed inter-sample modeling approach. This results
in a compact and exact representation of the sum without the
need for approximation.

Furthermore, it can be shown that the diagonal elements of
the more general sampled-data frequency response operator
presented in [27] also yield a model equivalent to (18). The
modeling method presented in [17] follows the frequency
response operator approach, but it does not result in an equiva-
lent model. In addition, due to the relatively strict assumptions

made in the modeling in [17], the applicability of the resulting
admittance model is limited, as accuracy cannot be guaranteed
in general. On the other hand, no corresponding assumptions
are made in the proposed inter-sample model, which makes
it more general. Out of the equivalent models, (18) is the
simplest to present and apply in practice.

B. Single-Frequency Model
The single-frequency admittance model has been used, e.g.,

in [13], [18]. It can be obtained as a simplification of the inter-
sample model (18) by assuming the sampling process linear.
This can be seen by neglecting the images created by sampling
in (3). As a result, the sum in (19) reduces to Y (s)Gh(s), and
thus (18) reduces to

Y sf
oa(s) =

Yd(s)

1 + Y (s)Gh(s)C(z)
(21)

which is defined as the single-frequency admittance in [18].

C. Continuous-Time Model
The continuous-time model has been used, e.g., in [7]–[9].

It is a more conventional model, where the control system
of the converter is assumed to be continuous-time. The hold
interface is modeled as a ZOH and the sampler is disregarded
[7]–[9]. With the assumption of a continuous-time controller,
the output admittance is obtained from Fig. 2 as

Y c
oa(s) =

Yd(s)

1 + Y (s)Gh(s)Cc(s)
(22)

where Cc(s) is a continuous-time counterpart of C(z). It
is worth noting that the continuous-time counterpart of the
controller is not unique, as several different transformation
methods are available [19]. A shortcoming of the continuous-
time model is that it is not possible to obtain a continuous-
time counterpart for every discrete-time controller C(z), e.g.,
deadbeat controllers.

D. Discrete-Time Model
The discrete-time model has been used, e.g., in [14]–[16].

The output admittance can be written in the discrete-time
domain as

Y d
oa(z) =

Yd(z)

1 + Y (z)C(z)
(23)

where Y (z) and Yd(z) are obtained by applying the step-
invariant Z-transform (8) on Y (s) and Yd(s), respectively. The
purely discrete-time models describe the behavior of the plant
as observed by the converter control system. However, the
dynamics observed at the sampling frequency of the converter
control system do not coincide with the true dynamics ob-
served at the output terminals, especially at higher frequencies.
Furthermore, one severe shortcoming of the purely discrete-
time model is that it is periodic with ωs/2, i.e., the model
does not contain any information about the output admittance
above the Nyquist frequency. Nevertheless, it has been used
to analyze the output admittance for frequencies below the
Nyquist frequency [14]–[16].
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IV. COMPARATIVE ANALYSIS

A. Comparison of the Analytical Models
To compare the proposed model (18) to the models (21)–

(23), a single-phase converter system is considered as an
example. The plant is assumed to be an ideal LCL filter,
i.e., one with no resistive components, shown in Fig. 3(a).
The converter-side and grid-side inductances are Lfc = 3.3
mH and Lfg = 3 mH, respectively, and the filter capacitance
is Cf = 8.8 µF. The measurements are assumed ideal, i.e,
Gm(s) = 1. This simplifies the analysis greatly, as Y (s) =
Yc(s) and io = i. Two different cases are examined to compare
the presented output admittance models.

1) Case 1, Grid Current Measurement: The grid current
ig is selected as the controlled variable, i.e., io = ig. The
converter is controlled using a proportional–resonant (PR)
controller

CPR(z) = kp +
ki sin(ωiTs)

2ωi

z2 − 1

z2 − 2 cos(ωiTs)z + 1
(24)

where kp is the proportional gain, ki is the resonant gain,
and ωi = 2π · 50 rad/s is the resonant angular frequency. A
continuous-time counterpart of CPR(z) can be obtained as

Cc
PR(s) = kp +

kis

s2 + ω2
i

(25)

if Tustin transformation with prewarping at the resonant an-
gular frequency ωi is used [28]. The controller gains are
selected as kp = 10 Ω and ki = 200 Ω/s. Furthermore, a
computational delay of one sampling period is incurred in
the control system, resulting in the controller pulse-transfer
function C(z) = z−1CPR(z) and transfer function Cc(s) =
exp(−sTs)Cc

PR(s). The relevant open-loop dynamics of the
LCL filter can be written as

Yc(s) =
ig(s)

uc(s)
=

1

CfLfcLfgs(s2 + ω2
r )

(26)

Yd(s) =
ig(s)

ug(s)
=

s2 + ω2
ar

Lfgs(s2 + ω2
r )

(27)

where ωr =
√

(Lfc + Lfg)/(CfLfcLfg) is the resonance an-
gular frequency and ωar =

√
1/(LfcCf) is the anti-resonance

angular frequency. The sampling frequency is fs = 4 kHz.
A simulation model corresponding to the example system

shown in Fig. 2 was built and the output admittance of the
system was identified from the model. The comparison of
the analytical models (18) and (21)–(23) with the simulation
results for Case 1 is shown in Fig. 4. It can be observed
that all three models apart from the discrete-time model agree

Fig. 4. Comparison of the analytically computed output admittances for
Case 1. The black vertical line marks the Nyquist frequency of 2 kHz.

Fig. 5. Comparison of the analytically computed output admittances for
Case 2. The black vertical line marks the Nyquist frequency of 1.1 kHz.

well with the simulations. The discrete-time model matches
with the simulations up to frequencies about one tenth of
the Nyquist frequency, after which the accuracy of the model
deteriorates. The discrete-time model, describing the system
characteristics as observed by the converter control system,
does not reflect the system response observed at the output
terminals, and therefore it is disregarded in further analysis.
Despite the similarity of the three models (18), (21), and (22),
the result does not generalize, as will be shown in the second
example case.

2) Case 2, Converter Current Measurement: The converter
current ic is selected as the controlled variable, i.e., io = ic,
and it is controlled using the same PR controller as in Case 1
with the same gains. The relevant open-loop dynamics of the
LCL filter can be written as

Yc(s) =
ic(s)

uc(s)
=

s2 + ω2
ar2

Lfcs(s2 + ω2
r )

(28)

Yd(s) =
ic(s)

ug(s)
=

1

CfLfcLfgs(s2 + ω2
r )

(29)



where ωar2 =
√

1/(LfgCf) is the anti-resonance angular
frequency.

Since the controlled variable is the converter current, i.e.,
io = ic, the expressions (18), (21), and (22) yield the converter
transadmittances Yta(s), Y sf

ta (s) and Y c
ta(s) from ug to ic,

respectively. These transadmittances can be extended to the
output admittances by considering the block diagram in Fig.
3(b) that depicts the system dynamics from ug to ig for Case
2. Each model for the output admittance can thus be obtained
similarly, e.g., for the inter-sample model, the expression is

Yoa(s) =
ig(s)

ug(s)
= Yta(s)Hc(s) + Yd(s)He(s) (30)

where

Hc(s) =
ig(s)

ic(s)
=

1

CfLfg(s2 + ω2
ar2)

(31)

He(s) =
s2(s2 + ω2

ar + ω2
ar2)

ω2
ar(s

2 + ω2
ar2)

. (32)

This case is selected to correspond to a system design proposed
in [29], and thus the sampling frequency is fs = 2.2 kHz.

In the simulation model, the converter-side current ic is fed
back to the PR controller and the converter output admittance
from ug to ig was identified. A comparison of the obtained
analytical models with the simulation results for Case 2 is
shown in Fig. 5. In this case, the inter-sample model can be
seen to agree well with the simulation results whereas the
single-frequency and the continuous-time models deviate from
the simulation results in the frequency range 200–500 Hz, as
can be seen in Fig. 5. As the single-frequency and continuous-
time models are practically equivalent, the continuous-time
model is disregarded in further analysis. The origins of the
differences between the inter-sample and single-frequency
models are analyzed below.

B. Analysis of Disparities Between the Inter-Sample and
Single-Frequency Models

As both the inter-sample and single-frequency output ad-
mittances are extended similarly in Case 2 according to
expression (30), it suffices to analyze the differences between
the transadmittances Yta(s) and Y sf

ta (s) obtained from (18) and
(21). The equation of the inter-sample transadmittance can be
written using the single-frequency transadmittance as

Yta(s) = Y sf
ta (s)

{
1 +

[
Yc(z)− Yc(s)Gh(s)︸ ︷︷ ︸

P1(s)

]
C(z)︸ ︷︷ ︸
P2(s)

· C(z)Gh(s)Yc(s)

1 + Yc(z)C(z)︸ ︷︷ ︸
P3(s)

}
.

(33)

It is evident that the inter-sample admittance depends heavily
on the single-frequency admittance. The second term within
the curly brackets of (33) dictates the difference between the
two admittance models. This term can be divided into three
parts that are discussed below.

Fig. 6. Frequency responses of the subsystems (a) P1(s) and (b) P3(s).
The black vertical line marks the Nyquist frequency of 1.1 kHz.

1) Part 1: P1(s) = Yc(z)−Yc(s)Gh(s): This part describes
the difference how the controller sees the plant, Yc(z), and
how the plant actually behaves, Yc(s)Gh(s). This difference
is created by the images formed by sampling, i.e.,

Yc(z)−Yc(s)Gh(s) =

∞∑
k=−∞
k 6=0

Yc(s+jkωs)Gh(s+jkωs) (34)

according to (8). This transfer function, shown in Fig. 6(a),
is the most significant source of disparity between the inter-
sample and single-frequency models. This error can be sub-
stantial when the open-loop transfer functions of the plant,
Yc and Yd, do not damp the frequencies above the Nyquist
frequency sufficiently, leading to aliasing. Case 2 is an ex-
cellent example of such system, as the resonance frequency
fr = 1.35 kHz is above the Nyquist frequency fN = 1.1 kHz,
which creates significant aliasing around 850 Hz, as seen in
Fig. 6(a).

2) Part 2: P2(s) = C(z): This part itself is not a source of
disparity, but it amplifies the effect of the other parts. With a
PR-controller, C(z) has approximately constant magnitude kp
at frequencies greatly differing from the resonant frequency
ωi.

3) Part 3: P3(s) = C(z)Gh(s)Yc(s)/[1+Yc(z)C(z)]: The
structure of this part corresponds to a sampled-data transfer
function defined as the reference gain in [20]. The reference
gain is related to the complementary sensitivity function in
the discrete-time domain. Thus, the frequency response of
this part is typically a unity gain up to a crossover frequency,
after which peaks due to underdamped dynamics might occur,
followed by a low-pass filter behavior. In Case 2, P3(s) has
an underdamped mode around 300 Hz, as seen in Fig. 6(b).

4) Combination of the Parts: 1 + P1(s)P2(s)P3(s): By
examining Fig. 5, the largest discrepancy between the models
occurs around 300 Hz, caused by the underdamped dynamics
in P3(s) and enabled by the nonzero gain of P1(s). Further-
more, a slight discrepancy can be observed around 800–900
Hz due to P1(s). It is only slight due to the high damping by
the open-loop plant dynamics at higher frequencies.
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Fig. 7. Block diagram of the three-phase grid converter system. Super-
script s indicates that the signal is in stationary coordinates.

Thus, the use of inter-sample model (18) is encouraged
in certain cases due to the improved accuracy it provides
as compared to the conventional models, i.e., the single-
frequency and continuous-time models. In these cases, the
damping of the plant is low above the Nyquist frequency, e.g.,
due to high-frequency grid resonances or special filter design
such as that in [29], and underdamped dynamics are present in
the complementary sensitivity function, e.g., due to parameter
uncertainties. Otherwise, similar accuracy can be expected
as with the single-frequency model and the continuous-time
model.

V. THREE-PHASE OUTPUT ADMITTANCE

A. Model Extension
If additional components, such as the phase-locked loop

(PLL) or the direct-voltage controller, are introduced into the
control system, the proposed model has to be extended. In this
paper, a three-phase system equipped with a PLL is used in
the experiments to demonstrate the model extension, cf. Fig.
7.

Due to the PLL, the converter output admittance becomes
dq unsymmetric [30] and thus it is modeled in synchronous
coordinates. The relevant transfer functions can be translated
into synchronous coordinates rotating at the grid angular
frequency ωg by replacing the s-domain variable with s+jωg,
e.g., the ZOH Gh(s) in synchronous coordinates can be
obtained as Gh(s + jωg). For dq unsymmetric systems, it
is more convenient to represent space vectors as column
vectors, e.g., the grid current in synchronous coordinates is
given by ig = [igd, igq]T. Analogously, transfer functions are
represented using 2×2 transfer function matrices denoted by
upright boldface letters, e.g., the transfer function matrix of
the ZOH in synchronous coordinates is denoted by Gh(s).
Transformation of transfer functions into transfer function
matrices is presented alongside the transfer function matrices
of the PLL dynamics in Appendix A.

The block diagram of the linearized model of the grid
converter system, including dynamics of the PLL, is shown
in Fig. 8. Similarly as in Fig. 2, Y(s) and Yd(s) are the open-
loop plant dynamics, C(z) is the feedback controller, F(z) is
the reference prefilter, and Gm(s) models the dynamics of the
current measurement interface. On top of that, the PLL adds
two signal paths from the grid voltage ug to the system through

F(z)

Ts

i∗g,ref igu∗
c,ref uc

i

GPLL(z)

ug

Ts

i∗

Discrete Continuous

−

z−1C(z)
ZOH

Gh(s)
Yc(s)

−
Σ Σ

YPLL(z)

Σ

Σ

Yd(s)

Gm(s)

−

Fig. 8. Block diagram of the linearized model of the grid converter
system including the dynamics of the PLL (GPLL and YPLL) and the
current measurement interface (Gm).

transfer function matrices YPLL(z) and GPLL(z). Carrying
out the block diagram algebra similarly to what was done in
Section III, one obtains the inter-sample output admittance of
the system, including the PLL, as

Yoa(s) =
[
−G−1m (s)L(s)YPLL(z)− Yc(s)G′h(s)GPLL(z)

+ Yd(s)
]
−
[
I + L∗(s)

]−1 L(s)G−1m (s)
{

Gm(s)Yd(s)

−
[
Y(s)G′h(s)

]∗GPLL(z)− L∗(s)YPLL(z)
}

(35)

where G′h(s) = z−1Gh(s), L(s) = Y(s)G′h(s)C(z), L∗(s) =
Y(z)C(z), and where YPLL(z) and GPLL(z) are defined in
Appendix A.

It is worth noting that the effect of the PLL on the proposed
model is the same as for the conventional models, i.e., it shapes
the Ydq and Yqq elements in the lower frequency range, starting
from 0 Hz [12]. The range of the frequencies affected by the
PLL in the aforementioned admittance elements is determined
by the bandwidth of the PLL. For further analysis on the effect
of the PLL on the converter admittance, the interested reader
is referred to [12] and the papers cited therein.

B. Measurement Method
The admittance is identified from the system based on

measurements of the grid voltages and the grid currents. In
the admittance matrix (35), there are four unknown elements.
Therefore, at least two separate measurements with linearly
independent injections are required [3]. In the case of dq
unsymmetric system, a natural choice is to apply the injection
to d- and q-axes. The relation between the measured currents
and voltages for the separate measurements can be expressed
as [

idn(s)
iqn(s)

]
=

[
Ydd(s) Ydq(s)
Yqd(s) Yqq(s)

] [
udn(s)
uqn(s)

]
(36)

where n is the measurement number. Assuming the system
to be time-invariant, the elements of the admittance matrix
do not change between the injections. Under this assumption,
the admittance matrix can be computed based on two sets of
measurements as[

Ydd(s) Ydq(s)
Yqd(s) Yqq(s)

]
=

[
id1(s) id2(s)
iq1(s) iq2(s)

] [
ud1(s) ud2(s)
uq1(s) uq2(s)

]−1
.

(37)
In order to obtain accurate measurement data for a wide
range of frequencies, the injected signal needs to be carefully



Fig. 9. Experimentally measured open-loop frequency response
Yd(jω) = ig(ω)/ug(ω) of the the LCL filter and the frequency responses
of the fitted transfer function and its corresponding ideal version (27).

selected. Due to the nonlinear behavior of sampling and other
system nonlinearities [31], choice of excitation signal has a
major effect on the measurement result. To minimize the effect
of these nonlinearities, wideband excitation signals should be
avoided. Therefore, a single-sine excitation method is used. In
this method, a single sinusoid is superimposed on the PCC
voltage at a time and the output admittance of the system is
computed for that frequency. The single-sine excitation yields
highest possible signal-to-noise ratio and thus the most reliable
and accurate measurement results [32].

VI. EXPERIMENTAL VALIDATION

The proposed inter-sample modeling method is validated
experimentally by measuring the output admittance of a 50-
Hz 12.5-kVA three-phase converter equipped with an LCL
filter shown in Fig. 7. The nominal system parameters of the
available experimental setup are given in Table I. The grid
converter was controlled using a state-feedback current con-
troller with a full-order current-type observer, which is similar
to the current controller in [14]. The current controller and
the derivation of the controller pulse-transfer function matrix
C(z) are presented in Appendix B. The gains of the SRF-PLL
were calculated as kpp = 2ζPLLωPLL/ug and kip = ω2

PLL/ug,
where ωPLL = 2π · 20 rad/s and ζPLL = 1/

√
2. The current

measurement interface of the experimental setup was modeled
as a simple first-order low-pass filter, i.e., Gm(s) = 1/(τs+1)
with τ = 22 µs. This transfer function was translated to
synchronous coordinates and then transformed into a transfer
function matrix Gm(s) (cf. Appendix A).

For the analytical model (35), the open-loop frequency
responses Yc(jω) and Yd(jω) of the LCL filter were measured,
and transfer functions were fitted on the measurements. These
fitted transfer functions were transformed into synchronous
coordinates and finally into the transfer function matrices Y(s)
and Yd(s) to be employed in (35). The measured frequency
response and the frequency responses of the fitted and the ideal
transfer functions of Yd(s) are shown in Fig. 9.

A block diagram of the experimental setup is presented in
Fig. 10. The control algorithm is implemented on a dSPACE
DS1006 processor board. The test converter only controls the
grid current while another back-to-back connected converter

LCL
filter

dSPACE DS1006

12.5-kVA converter under test

udc
ug,ab

Zg

Isolation transformer
and 50-kVA grid emulator

Dewetron SIRIUS
and PC

ug,ab, ug,bc

ig,abc

eg,abcig,abc ug,bc

Fig. 10. Block diagram of the experimental setup.

TABLE I
NOMINAL PARAMETERS OF THE GRID CONVERTER SYSTEM

Parameter Value Parameter Value

ug
√

2/3 · 400 V (1 p.u.) Lfc 3.3 mH (0.081 p.u.)

ωg 2π · 50 rad
s

(1 p.u.) Cf 8.8 µF (0.035 p.u.)

in
√
2 · 18 A (1 p.u.) Lfg 3 mH (0.073 p.u.)

udc 650 V (2 p.u.) fs = fsw 4 kHz (80 p.u.)

igd,ref 10.4 A (0.4 p.u.) igq,ref 0 A (0 p.u.)

provides dc-link voltage regulation. A 50-kVA three-phase
four-quadrant power supply (Regatron TopCon TC.ACS) is
used for generating the excitation signals superimposed with
the fundamental grid voltage. The grid current and voltage
measurements are obtained using a data acquisition device
(Dewetron SIRIUS) with sampling frequency of 1 MHz. The
fundamental-frequency grid voltage angle is required for mea-
suring the output admittance in synchronous coordinates. It is
estimated with a PLL from the line voltage measurements. The
bandwidth of this PLL is set very low, 1 Hz, to minimize its
effect on the admittance measurement results. The single-sine
excitation is applied from 2 Hz to fs in variable increments to
accommodate the logarithmic scale of frequency. Furthermore,
as the measurement sensors are subject to noise, logarithmic
averaging [2] of the measurements is used to improve the
accuracy of the measured output admittance.

Comparison of the proposed model (35) and the admittance
measured from the system is presented in Fig. 11. At low
frequencies, i.e., below 50 Hz, the small discrepancies in
the phases of the cross-coupling admittances Ydq and Yqd
originate from two sources. Firstly, the signal-to-noise ratio of
the measurements is relatively low at these frequencies due to
the very low admittance. Secondly, the effect of the PLL used
to transform the measurements into synchronous coordinates is
not modeled, which causes additional error [33]. Nevertheless,
the proposed model agrees very well with the measurement
results for the whole frequency range, also above the Nyquist
frequency.

VII. CONCLUSIONS

This paper presented a systematic inter-sample modeling
method for the converter output admittance. The method is
based on modeling the converter system as a sampled-data
system, where both continuous- and discrete-time signals exist.
The interfaces between these two time domains are modeled



Fig. 11. Experimental comparison of the proposed model and the measured admittance of the system. The black vertical line marks the Nyquist
frequency of 2 kHz.

carefully, especially the sampling process. The proposed mod-
eling method is compared to the state-of-the-art admittance
modeling methods. It is found to be more accurate than
the conventional methods. Out of the methods resulting in
equivalent models, the proposed method is found out to be
the simplest to present and apply in practice. Furthermore,
system properties for which inter-sample modeling yields a
notable increase in accuracy, in comparison to the conventional
methods, are analyzed and presented. Experimental validation
of the proposed method is provided.

APPENDIX A
DYNAMICS OF THE PHASE-LOCKED LOOP

By including a synchronous reference frame PLL (SRF-
PLL), the system becomes dq unsymmetric [9]. Due to the
unsymmetry, complex space vectors are represented using
column vectors [30]

ig = igd + jigq ←→ ig =

[
igd
igq

]
. (38)

In addition, the complex transfer functions Y (s) = Ydd(s) +
jYqd(s) are transformed into symmetric transfer function ma-
trices

Y(s) =

[
Ydd(s) Ydq(s)
Yqd(s) Yqq(s)

]
(39)

as [30]

Ydd(s) = Yqq(s) = Re{Y (s)} =
Y (s) + Y †(s)

2

−Ydq(s) = Yqd(s) = Im{Y (s)} =
Y (s)− Y †(s)

2

(40)

where the superscript † denotes the complex conjugate oper-
ator. By including the dynamics of the PLL in the admittance
model, it becomes dependent on the operating point, i.e., it

has to be linearized [9]. The dynamic effects of the PLL on
the variables transformed in the controller, i.e., ig and uc,ref ,
are given by [9]

iPLL(z) =

[
0 −HPLL(z)igq,0
0 HPLL(z)igd,0

]
︸ ︷︷ ︸

YPLL(z)

[
ugd(z)
ugq(z)

]
(41)

uPLL(z) =

[
0 −HPLL(z)ucq,0
0 HPLL(z)ucd,0

]
︸ ︷︷ ︸

GPLL(z)

[
ugd(z)
ugq(z)

]
(42)

where igq,0, igd,0, ucq,0, and ucd,0 are the component values
of ig and uc at the operating point of the system. The pulse-
transfer function of the linearized SRF-PLL is given by [9]

HPLL(z) =
Ts(kppz + Tskip − kpp)

z2 + (Tsug,0kpp − 2)z + Tsug,0(Tskip − kpp) + 1
(43)

where ug,0 is the magnitude of the grid voltage vector at
the operating point, and kpp and kip are the proportional and
integral gains of the PLL, respectively.

APPENDIX B
CURRENT CONTROLLER PULSE-TRANSFER FUNCTION

C(z)

The state-space model of the LCL filter in synchronous
coordinates can be written as

x(k + 1) = Φx(k) + Γcuc(k) + Γgug(k)

ig(k) = Cgx(k)
(44)

where x = [ic, uf , ig]T and where uf is the voltage over the
filter capacitor. The state matrix Φ and the vectors Γc, Γg, and
Cg are given in [14]. The controller used in the experiments
is very similar to the one presented in [14]. The dynamics of



the measurement interface are omitted in the controller design,
i.e., Gm(s) = 1. The control law of the current controller is

uc,ref(k) = −Kaxc(k) + ktig,ref(k)

xi(k + 1) = xi(k) + ig,ref(k)− ig(k)
(45)

where xc = [̂ic, ûf , îg, uc, xi]
T, Ka is the state feedback gain,

and kt is the reference feedforward gain. State variables with
hat are estimated using a full-order current-type observer [19]

x̂(k + 1) = ΛΦx̂(k) + ΛΓcuc(k) + Koig(k + 1) (46)

where Ko is the observer gain and Λ = I−KoCg. The gains
Ka,Ko, and kt are computed numerically1, similarly as in
[14]. The controller state-space model can be formed based
on (44), (45), and (46) as

xc(k + 1) = Φcxc(k) + Γ1ig(k + 1) + Γ2ig(k) + Γ3ig,ref(k)
(47)

where

Φc =

ΛΦ ΛΓc 0
−Ka

0 0 1

 Γ1 =

Ko

0
0

 Γ2 =

 0
0
−1

 Γ3 =

0
kt
1

 .
(48)

The control law (45) and the controller (47) can be written in
the z-domain as

zxc(z) = Φcxc(z) + (zΓ1 + Γ2)ig(z) + Γ3ig,ref(z)

uc,ref(z) = −Kaxc(z) + ktig,ref(z).
(49)

The controller can be expressed as (cf. Fig. 2)

uc,ref(z) = C(z)[F (z)ig,ref(k)− ig(k)] (50)

from which the feedback controller C(z) is obtained directly
by employing (49) as

C(z) = Ka(zI−Φc)
−1(zΓ1 + Γ2). (51)

The obtained transfer function can then be transformed into a
transfer function matrix C(z) with (40).
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