Moayer, Mohammad Mehdi; Salomaa, Jarno; Halonen, Kari

A 0.39–3.56-μW Wide-Dynamic-Range Universal Multi-Sensor Interface Circuit

Published in: IEEE Sensors Journal

DOI: 10.1109/JSEN.2020.2999332

Published: 15/10/2020

Document Version
Publisher's PDF, also known as Version of record

Published under the following license: CC BY

Please cite the original version:

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or part of any of the repository collections is not permitted, except that material may be duplicated by you for your research use or educational purposes in electronic or print form. You must obtain permission for any other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not an authorised user.
A 0.39–3.56-μW Wide-Dynamic-Range Universal Multi-Sensor Interface Circuit

Mohammad Mehdi Moayer, Graduate Student Member, IEEE, Jarno Salomaa, and Kari A. I. Halonen, Member, IEEE

Abstract—This paper presents an ultra-low-power, wide-dynamic-range interface circuit for capacitive and resistive sensors. The circuit is implemented as a switched-capacitor circuit using programmable capacitors to achieve high configurability. The circuit was fabricated using a CMOS 0.18-μm process. Different types of capacitive and resistive sensors were measured using the interface to demonstrate its support for multi-sensor systems with an ultra-low-power budget. Experimental results show that the circuit is able to interface various sensors within the overall capacitance range of 0.6–550 pF and resistance range of 3.7–510 kΩ, while consuming only 0.39–3.56 μW from a 1.2 V supply. A proximity, gesture, and touch-sensing system is also developed consisting of the designed interface circuit and a sensor element that is able to detect the displacement of an object up to 15 cm from the sensing electrodes consuming only 0.83 μW from a 1.2 V supply.

Index Terms—Ambient intelligence, C2V, capacitive sensor, charge-sensitive amplifier, CMOS, current source, environmental sensor, force sensor, humidity sensor, interface circuit, Internet-of-Things (IoT), light sensor, proximity sensor, resistive sensor, switched capacitor circuit, ultra-low-power.

I. INTRODUCTION

Sensors are one of the key elements for enabling emerging technologies such as internet of things (IoT) and ambient intelligence (AmI) [1]–[4]. In IoT and AmI environments we are surrounded by embedded intelligent objects that sense different quantities of our physical surroundings. As IoT and AmI develop rapidly, there is an increasing demand for microsystems that are equipped with various types of sensors. IoT devices are typically battery-powered or rely on harvesting energy from their environment, therefore limiting their power budget. They often require long lifetimes as well which further limits the power consumption and increases the need for ultra-low-power solutions [5].

The size, cost and power consumption of multi-sensor microsystems can be reduced by using an ultra-low-power, highly configurable, and wide-dynamic-range interface circuit that reads and processes different types of sensors. However, making such an interface circuit is technically difficult since each sensor has its own properties and may have different requirements for readout. General-purpose interface electronics have been researched extensively and several sensor interface circuits have been reported in the literature [6]–[21]. Although they present effective solutions, they suffer from some shortcomings such as supporting only one input type (capacitance or resistance) [6]–[15], having low accuracy [6], [9], [13], a low input dynamic range, [9], [14], or high power consumption [7]–[9], [15]–[20].

This paper presents a universal multi-sensor interface (UMSI) circuit that is highly configurable and achieves a wide capacitive and resistive dynamic range with ultra-low power consumption. The target is to interface various capacitive and resistive sensor elements, such as [22]–[25], over an overall range of three orders of magnitude. The interface is configurable so that only the required range is covered for a given sensor element. This allows for optimizing sensitivity, linearity and power consumption for
each sensor element. This paper is an extension of [26]. While in [26] we verified the measurement range and linearity of the UMSI with resistors and capacitors, in this paper we further investigate the capabilities of the designed interface in real application scenarios by characterizing the UMSI with four different sensors. In particular, we measured the output response of a capacitive humidity sensor [23], a capacitive proximity sensor, a photocative sensor [24], and a resistive force sensor [25]. The noise performance of the UMSI is also presented in this paper.

In addition, this paper presents an ultra-low-power proximity, gesture, and touch-sensing system. Proximity sensors have been researched for years [27]-[32] and are employed in various applications, including those in human interface devices, security systems, AML, gaming, and robot applications. Capacitive sensors [29]-[32] are advantageous over other types of proximity sensors, such as optical, radar, and ultrasonic, in terms of power consumption, size, and cost. The presented system in this paper is composed of the UMSI and a proximity sensor element consisting of two coplanar copper plates. The proposed proximity system offers a higher detectable distance range and >10× lower current consumption than the existing single-plate [31] and dual-plate [32] capacitive proximity sensing systems. In addition to proximity, the proposed system also offers gesture and touch-sensing capabilities.

II. DESIGN AND IMPLEMENTATION OF THE UMSI

Fig. 1 illustrates the conceptual block diagram of the UMSI. It is based on a switched-capacitor (SC) front-end interface circuit that utilizes a shared SC operational transconductance amplifier (OTA), to realize a SC capacitance-to-voltage (C2V) converter for capacitive sensing and an SC voltage amplifier for resistance sensing. The system consists of a non-overlapping (NOL) clock phase generator to run the SC circuits; memory registers to configure the front-end operation mode and range for various sensors; a measurement buffer amplifier; a programmable bias current generator for the OTA; and a current reference (implemented off-chip for more flexible testing), required by the resistive sensor.

Fig. 2 (a) shows the schematic of the complete UMSI front-end. It is an SC circuit consisting of a low-power OTA, an 8-bit reference capacitor bank C_{ref}, a 5-bit amplifier feedback capacitor bank C_r, multiplexers (MUXs), and switches. Depending on the chosen bit configuration (B_{mod1}, B_{mod2}), the interface operates as a resistive or capacitive sensor interface. C_{ref} and C_r are controlled using bits B_{0}-B_{7} and B_{0}-B_{4}, respectively, to accommodate for a wide range of sensor elements and compensate for process variation. For further flexibility, the MUXs, controlled by B_{0}-B_{4}, determine which of the NOL clock signals clk_1 and clk_2 is fed to the corresponding switch, or whether the switch should be disabled. Bottom plate sampling is used to reduce the effects of switch charge injection [33]. It is implemented by disconnecting the virtual ground (node N) from V_{ref} at falling clk_1 - slightly before turning off the switches controlled by clk_1. Charge injection from the switches controlled by clk_2 does not cause output error.

Fig. 2 (a) also illustrates a simple electrical model of a capacitive sensor element C_{sen}, that incorporates the effects of a parasitic shunt conductance G_s and two parasitic capacitances C_{p1} and C_{p2} which include all parasitic capacitances seen at the nodes padtop and padeq, respectively [34]. Since the values of these parasitics are typically application dependent and not very stable, the effects of these parasitic elements should be significantly reduced. The correlated double sampling (CDS) technique [35] is used to compensate the amplifier I/f noise and input offset voltage, and reduce the effect of parasitic shunt conductance G_s and parasitic capacitance C_{p1} [6], [34]. The voltage swing at node “N” and input of the OTA is small, arising only from noise and finite gain, and so the effect of parasitic capacitance at these nodes is negligible. The circuit is also insensitive to the parasitic capacitance C_{p2} and the total parasitic capacitance seen at the resistive sensor input V_{res}. The supply voltage V_{DD} and reference voltage V_{ref} are 1.2 V and 0.6 V, respectively.

A. Capacitive Mode

Fig. 2 (b) presents the UMSI configured in the capacitive mode. The circuit is a SC charge sensitive amplifier based on [6] and it converts the capacitance C_{sen} into a proportional sampled voltage V_{out}. During clk_1, C_{ref} and C_r are reset and a charge of $Q_{sen} = -V_{ref} C_{sen}$ is sampled in C_{sen}. In phase clk_2, a charge $Q_{ref} = V_{ref} C_{ref}$ is sampled in C_{ref}, and the sampled charges are transferred in C_r, resulting in output voltage

$$V_{out} = V_{ref} \frac{C_{ref} - C_{sen}}{C_r} + V_{ref}$$

(1)

which can be used for determining the C_{sen} value:

$$C_{sen} = \frac{C_r}{V_{ref}} V_{out} + C_r + C_{ref}$$

(2)

By substituting the allowed output voltage range $V_{out} = [V_{min}, V_{max}]$ in Eq. (2) we can determine the allowed C_{sen} range for given values of C_r and C_{ref}. The OTA offset voltage and low frequency noise is sampled in C_{cdfs} in phase clk_1, and held during clk_2, to generate a CDS-compensated virtual ground (node N).

B. Resistive Mode

Fig. 2 (c) presents the UMSI configured in the resistive mode. I_{ref} is used for converting R_{sen} into the voltage V_{res},
which is fed to an SC voltage amplifier. During phase clk1, Cref and C1 are reset and Cres samples the voltage \(V_{\text{res}} = R_{\text{sen}} I_{\text{ref}} - V_{\text{ref}} \). During phase clk2, Cref samples \(V_{\text{ref}} \) and the resulting charge, as well as the charge sampled in \(C_{\text{res}} \), is transferred in \(C_f \). This results in output voltage

\[
V_{\text{out}} = (R_{\text{sen}} I_{\text{ref}} - V_{\text{ref}}) \frac{C_{\text{res}}}{C_f} + V_{\text{ref}} \frac{C_{\text{ref}}}{C_f} + V_{\text{ref}} \tag{3}
\]

which can be used for determining the \(R_{\text{sen}} \) value:

\[
R_{\text{sen}} = \frac{C_f}{C_{\text{res}} I_{\text{ref}}} V_{\text{out}} + \left(1 - \frac{C_f}{C_{\text{res}} I_{\text{ref}}} \right) \frac{C_{\text{ref}}}{C_f} I_{\text{ref}} \tag{4}
\]

Again, by substituting the allowed output voltage range \(V_{\text{out}} = [V_{\text{min}}, V_{\text{max}}] \) in Eq. (4) we can determine the allowed \(R_{\text{sen}} \) range for given values of \(C_f \) and \(C_{\text{ref}} \). \(C_{\text{cds}} \) is used for CDS compensation the same way as described in Sec. II A.

C. Operational Amplifier

Since the interface circuit is designed to operate in various configurations with various capacitance sizes, the operational amplifier should also have flexible properties so that it provides the required gain-bandwidth product (GBW) for operating at different configurations and clock frequencies while maintaining a high enough DC gain for the targeted output swing and optimized power consumption. A folded cascade OTA, shown in Fig. 3, was designed to fulfill these requirements. Clamp transistors (inside the dashed box) were added to improve the slew rate [36].

In the designed OTA, the open-loop DC gain stays above 80 dB for the target output swing of 0.6 V. The GBW remains well above 10\(\times \) intended clock frequency \(f_{\text{clk}} \). It scales linearly over a 30\(\times \) range with a programmable bias current \(I_{\text{bias}} \). The differential input transistors of the designed OTA have large W/L ratios to keep them in the sub-threshold region over the used \(I_{\text{bias}} \) range. This serves two purposes: first, it optimizes the power efficiency of the OTA by maximizing the transconductance \(g_m \) of the input transistors for a given bias current. Second, the \(g_m \) scales linearly with the used \(I_{\text{bias}} = 1.8\text{mA--54}\text{mA} \) (30\(\times \) range). This is due to the fact that, in subthreshold operation, the \(g_m \) is directly proportional to the drain current [36], [37]. Since the GBW of the OTA is proportional to the \(g_m \) of the input stage, it also scales linearly over the used \(I_{\text{bias}} \). Fig. 4 shows the \(g_m \) of the differential input transistor of the OTA as a function of the used programmable \(I_{\text{bias}} \), and as a function of the total current consumption \(I_{\text{DD}} \) of the OTA including the current consumption of the biasing network.
The 1/f noise corner remains well below the intended f_{dc} and also scales with I_{bias}, ensuring the effectiveness of CDS for reducing the 1/f noise. The OTA power consumption varies between 0.12–3.58 μW over the used I_{bias} range.

D. Leakage-Compensated Programmable Bias Current Generator

A leakage-compensated wide-trimming-range current source was designed to enable a power-optimal wide trimming range for the operational amplifier speed. Trimming is done digitally by adjusting the number of effective unit devices in the current mirror that sinks the output current. To enable accurate current mirroring ratios and high output impedance, the dimensions of the mirroring transistor unit device need to be well above the minimum. In addition, as the required trimming range is high, the number of required unit devices is high as well.

Generally, current source output current can be digitally controlled by disabling parallel unit transistors through a) disconnecting their drain from the output or b) through switching their gate-to-source voltage to zero. The former method suffers from reduced switch control voltage headroom, especially in low voltage designs, resulting in currents that are too low at high output current settings and low temperatures. Trying to compensate this with larger switch devices will result in too high a leakage due to the high number of large unit devices. The latter method suffers from leakage through disabled unit transistors, resulting in too high currents at small output current settings and high temperatures which is also due to the high number of large unit devices. However, this can be compensated with replica leakage devices, by subtracting the replicated leakage from the output.

The proposed leakage-compensated current source is depicted in Fig. 5. The bias current generator core is a beta multiplier [37], which has a proportional to absolute temperature (PTAT) response. By using a polysilicon resistor R_{poly} and suitable sizing for M_{P1} and M_{P2} the temperature coefficient was slightly adjusted to the desired value. As the body of the PMOS transistor M_{P2} can be tied to source, having the resistor R_{poly} on the PMOS side allows for avoiding the body effect [36], without the need for an isolated/triple-well NMOS transistor. A small PMOS transistor M_{SU}, controlled by a digital start-up signal SU, can be used for starting up the core in case of a stable operating point occurring near $V_{\text{core}} = 0$. At startup, M_{SU} doesn’t pull the PMOS gates down to ground but one threshold voltage higher, limiting the startup current. Furthermore, under normal operation, the leakage of M_{SU} is very small due to positive gate-source voltage.

The trimmable leakage-compensated sink comprises 6 groups, each consisting of a main sink transistor M_{Si} and an equal leakage sink transistor M_{Li}. Groups 2 to 5 are binary weighted using unit transistors ($M_{Si} = M_{Li} = 2^{i-2} M_{unit}$, $i \in 2…5$) and are matched to the core NMOS transistors ($M_{S0} = M_{L0} = M_{S1} = M_{L1} = 0.5 M_{unit}$), enabling accurate linear trimming. Groups 0 and 1 are equal in size, both half the unit transistor size ($M_{S0} = M_{L0} = M_{S1} = M_{L1} = 0.5 M_{unit}$), resulting in less accurate linear trimming, due to worse matching with Groups 2 to 5. However, redundancy in the smallest group enhances the expected accuracy, compared to not having Group 0 at all. This is because it is probable that at least one group of Groups 0 and 1 is more accurate than their expected average accuracy. In addition, using half the unit transistor size as LSB a) reduces the number of total unit transistors from 25-1 to 24+1 (of which two are half the unit transistor size), and b) allows for a crucially larger unit transistor size, for a given area, to enhance matching.

Each group i is controlled only by bit B_{Si} (and its inverse B_{Si}). As transistor M_{S0} is disabled through its gate, the corresponding leakage transistor M_{L0} is enabled through its drain. After mirroring M_{Li} drain current through M_{P3}: $M_{P4} = 1$, the resulting output current becomes

$$I_{\text{bias}} = I_{\text{sink}} - I_{\text{leakcomp}} = I_{\text{ideal}} + \sum_{i \in D} [I_{Si,\text{leak}} - I_{Li,\text{leak}}]$$ (5)

where I_{ideal} is the ideal desired output current, D is the set of indices of disabled groups, and $I_{Si,\text{leak}}$ and $I_{Li,\text{leak}}$ are the currents of a disabled M_{Si} and M_{Li}, respectively. The currents $\sum_{i \in D} I_{Si,\text{leak}}$ and $\sum_{i \in D} I_{Li,\text{leak}}$ follow each other over PVT corners and trim word B_k values, resulting in leakage compensation: $I_{\text{bias}} \approx I_{\text{ideal}}$.

The simulation result for the proposed leakage-compensated bias current generator is presented in Fig. 6 (b), and the corresponding result without the leakage-compensation is shown in Fig. 6 (a). The curve groups consist of simulation results with the lowest trim word 1 (namally 1.8 nA) and the highest trim word 32 (54 nA), at 6 CMOS corners. The curves have been normalized to room temperature, to show that their temperature coefficient
spread is enhanced roughly 10× from 0.29–0.76 %/°C without the leakage compensation to 0.26–0.31 %/°C with leakage compensation, which, based on simulations, is within acceptable limits to match well enough with the desired value, 0.28 %/°C, which gives the least temperature dependency for the OTA performance. The simulated power consumption of the proposed circuit varies between 43–105 nW, over the trim word range, of which the leakage compensation circuit consumes only 68–281 pW.

E. Capacitors

Configurability for a wide range of capacitive sensors is ensured by using tunable capacitors in the SC circuit, namely capacitor banks \(\text{C}_{\text{ref}} \) and \(\text{C}_r \). As can be seen from Eq. (1), for a given \(\text{V}_{\text{out}} \) range, absolute values of \(\text{C}_{\text{ref}} \) and \(\text{C}_r \) define the midpoint and the magnitude of the allowed \(\text{C}_{\text{sen}} \) range, respectively. As can be seen from Eq. (3), in the resistive sensor mode, the allowed \(\text{R}_{\text{sen}} \) range is determined by capacitor ratios instead of absolute values and, in addition, by the tunable current reference \(\text{I}_{\text{ref}} \), denoting a well-controlled transfer function and an additional degree of freedom compared to the capacitive sensor mode. Therefore, the capacitor banks \(\text{C}_{\text{ref}} \) and \(\text{C}_r \) are designed based on the capacitive sensor mode requirements, as requirements posed by the resistive sensor mode are considerably more relaxed.

Increasing capacitor bank resolution increases flexibility in choosing the midpoint of the allowed \(\text{C}_{\text{sen}} \) range (through choosing \(\text{C}_{\text{ref}} \)), and in choosing the magnitude of the allowed \(\text{C}_{\text{sen}} \) range (through choosing \(\text{C}_r \)). Equivalently, for a given sensor element, increase the capacitor bank resolution enhances flexibility for maximizing sensitivity without saturating the interface circuit. In addition, it increases flexibility for compensating capacitor process variation and mismatch, and sensor element sample-to-sample variation. On the other hand, higher capacitor bank resolution denotes higher parasitic capacitance, switch leakage, routing complexity and area overhead. Process variation and mismatch of the on-chip capacitors and tolerances of the capacitive sensor elements need to be taken into account as parameters when optimizing the capacitor bank resolution, range and structure.

In this design, \(\text{C}_{\text{ref}} \) and \(\text{C}_r \) are implemented as 8-bit and 5-bit capacitor banks with the capacitance ranges of 1.96–500 pF and 1.96–60.8 pF, respectively. To reduce the above-mentioned drawbacks, both the capacitor banks have been divided into LSB and MSB binary capacitor matrices, consisting of 1.96-pF and 15.7-pF unit capacitors, respectively. The LSB matrix includes also two unit capacitors for implementing the fixed \(\text{C}_{\text{ref}} \) (3.92 pF). Fig. 7 shows the layout floor plan of the capacitor bank matrices. The unit capacitors are placed in a manner to minimize the effects of mismatch, by using the common centroid layout technique, and to simplify the layout routing. Dummy capacitors are placed around the MSB and LSB matrices to keep each unit capacitor identical. The requirement for implementing the \(\text{C}_{\text{cds}} \) is more flexible, since the matching does not need to be considered. Therefore, it is easily implemented as a 100-pF single capacitor cell.

F. Non-Overlapping Clock Phase Generator

To ensure accurate charge transfer, the SC front-end switches are controlled using non-overlapping clock phases \(\text{clk}_1 \) and \(\text{clk}_2 \), which are generated from the clock signal \(\text{clk} \). In addition, clock phase \(\text{clk}_{1a} \) whose falling edge is advanced in time, compared to the falling edge of \(\text{clk}_1 \), is required.

The non-overlapping clock phase generator and the resulting timing diagram is shown in Fig. 8. The dark grey delaying buffers \(\text{D}_{\text{del}} \) determine the non-overlapping time between \(\text{clk}_1 \) and \(\text{clk}_2 \). Similar delaying inverters \(\text{D}_i \) determine the delay of the falling edges of \(\text{clk}_1 \) and \(\text{clk}_2 \), compared to their advanced edge counterpart \(\text{clk}_{1a} \) and \(\text{clk}_{2a} \), respectively. The timing diagram shows the resulting front-end output signal \(\text{V}_{\text{out}} \) timing. The output has settled properly and is valid.
The die microphotograph of the interface chip is shown in Fig. 9. Common centroid layout techniques were utilized in order to reduce the effects of mismatch. A separate on-chip supply domain was used for digital circuits (NOL clock phase generator, MUXs) to reduce the supply noise coupled to the analog blocks. The supply domains were connected together off-chip. Sensitive signal paths such as the capacitive sensor element nodes were protected by surrounding them with ground paths. Data to the memory registers was written through an SPI interface.

There was an unexpectedly high bonding pad leakage arising from the ESD protection diodes, resulting in incorrect operation with a combination of small \(C_{\text{sen}} \) and low \(f_{\text{cl}k} \) values. Hence, the applied \(f_{\text{cl}k} \) was chosen based on the utilized sense capacitance range. \(I_{\text{bias}} \) was adjusted according to \(f_{\text{cl}k} \) and \(C_{\text{sen}} \) range to ensure a long enough linear settling period and the lowest possible power consumption. The output voltage of the interface was measured with a high resolution 10 MS/s digital oscilloscope. The signal was captured in continuous time while the interface was operating in discrete time at \(f_{\text{cl}k} \). The resulting signal was sampled in digital post-processing at the chosen \(f_{\text{cl}k} \) (one sample per clock cycle), at the rising edge of \(\text{clk} \) as denoted by arrows in Fig. 8 (b), to find the actual signal extracted by the UMSI circuit. In order to find the DC transfer curve, multiple signal samples were averaged. It is notable that no averaging was applied in noise performance evaluation. \(V_{\text{DD}} \) and \(V_{\text{ref}} \) were generated using a high-precision external power supply.

A. Characterization With Test Capacitors and Resistors

To characterize the UMSI, we used test capacitors and resistors as the sensing elements, because this characterization would be complicated using the actual sensor elements. First, those test capacitors and resistors were measured with a Smart Tweezers ST-5S LCR meter and a HP 34401A multimeter, respectively, for reference, and then, they were connected to the UMSI to obtain a capacitance-to-voltage and resistance-to-voltage mapping.

The UMSI was characterized in capacitive mode by measuring its operation in three separate ranges, given in Table I, within the overall capacitance range of 0.6–550 pF. These specific ranges were chosen to match the capacitance ranges of the target sensor elements [22], [23], as well as to verify operation at the minimum and maximum of the overall range.
The measured linearity of the UMSI is well matched with the simulation results. The difference between the simulated and the measured ranges and sensitivity G_Y is mainly because of the difference between the simulated and realized C_{ref} and C_t due to process variation and mismatch (e.g., max $C_{ref,sim.} = 500$ pF, while max $C_{ref,real.} = 517$ pF).

In order to characterize the circuit in resistive mode, its operation was again measured in three separate ranges, given in Table I, within the overall resistance range of 3.7–5100 kΩ. These specific ranges were chosen so as to match the resistance ranges of the target sensor elements [24], [25]. As discussed earlier, an external current reference I_{ref} was used to have more flexibility in the measurement. However, current reference can also be easily implemented on-chip [38]. The parameter values and a summary of the measurements can be found in Table I.

Fig. 11 illustrates the measured output voltage of the UMSI, sensitivity G_Y, and linearity error in resistive mode for three chosen ranges from the overall range of $R_{sen} = 3.7$–5100 kΩ with (a) $R_{sen} = 3.7$–200 kΩ (b) $R_{sen} = 98$–1000 kΩ (c) $R_{sen} = 1000$–5100 kΩ. The simulation results are shown to demonstrate the agreement between the measured and simulated values. Linearity evaluation was limited by the accuracy of the measurement setup.

![Figure 11. Measured output voltage of the UMSI, sensitivity G_Y, and linearity error in resistive mode for three chosen ranges from the overall range of $R_{sen} = 3.7$–5100 kΩ with (a) $R_{sen} = 3.7$–200 kΩ (b) $R_{sen} = 98$–1000 kΩ (c) $R_{sen} = 1000$–5100 kΩ. The simulation results are shown to demonstrate the agreement between the measured and simulated values. Linearity evaluation was limited by the accuracy of the measurement setup.](image-url)

Table I

<table>
<thead>
<tr>
<th>C_{sen} (pF)</th>
<th>meas. C_t, f_{ck} (kHz)</th>
<th>I_{ref} (µA)</th>
<th>P (µW)</th>
<th>linearity</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_{sen} (pF)</td>
<td>C_t, f_{ck} (kHz)</td>
<td>I_{ref} (µA)</td>
<td>P (µW)</td>
<td>linearity</td>
</tr>
<tr>
<td>0.6–15</td>
<td>7.9 ; 16.3</td>
<td>15</td>
<td>-</td>
<td>1.70</td>
</tr>
<tr>
<td>91–137</td>
<td>113 ; 48.9</td>
<td>3</td>
<td>-</td>
<td>2.40</td>
</tr>
<tr>
<td>489–550</td>
<td>517 ; 62.2</td>
<td>1</td>
<td>-</td>
<td>2.90</td>
</tr>
</tbody>
</table>

*aChosen C_{ref} and C_t configuration, values estimated through measurements.

*bPower consumption including the used external current reference I_{ref}.

The linearity evaluation of the interface was limited by the accuracy of the test capacitance measurement instrument and the measurement setup. The sensitivity and linearity evaluation of the UMSI based on the simulation results are also shown in Fig. 10. The measured linearity of the UMSI is well matched with the simulation results. The difference between the simulated and the measured results is

\[
\Delta V \approx \log_2 \left(\frac{V_{max}(lin, sim.)}{V_{max}(lin, mea.)} \right)
\]

The linearity evaluation of the interface was limited by the accuracy of the test capacitance measurement instrument and the measurement setup. The sensitivity and linearity evaluation of the UMSI based on the simulation results are also shown in Fig. 10. The measured linearity of the UMSI is well matched with the simulation results. The difference between the simulated and the measured results is

\[
\Delta V \approx \log_2 \left(\frac{V_{max}(lin, sim.)}{V_{max}(lin, mea.)} \right)
\]
and the tolerance range (±15%) extracted from [23].

using data from (a), typical capacitance values of the tested sensor element were set to 14.3 pF and 46.5 pF, respectively. The capacitance of the sensor increases.

The testing was performed using a fan of 1 kHz. The values of \(C_{\text{ref}} \) and \(C_{r} \) were set to 143 pF and 46.5 pF, respectively. The sensor was tested in a LabEvent L.C34405 climate chamber capable of humidity and temperature control. The chamber was also used for monitoring the relative humidity (RH) using its internal sensor. The RH of the chamber was varied from 10 to 90%. The temperature of the chamber was maintained at 25°C. Fig. 14(a) shows the measured output voltage of the UMSI as a function of RH. The capacitance of the sensor was determined by substituting the measured output voltage of the UMSI and the given \(C_{\text{ref}} \) and \(C_{r} \) in Eq. (2). The calculated capacitance value of the tested sensor as a function of RH is shown in Fig. 14(b). The capacitance values as a function of RH of the sensor element extracted from [23] are superimposed on Fig. 14(b). Note that [23] only provides a typical capacitance as a function of RH graph, and as is mentioned in the datasheet, the capacitance values may have ±15% tolerances. The power consumption of the interface was 2.4 µW from a 1.2 V supply.

B. Capacitive Humidity Sensor

The sensor described in this section is a capacitive atmospheric humidity sensor [23]. It consists of a dielectric foil placed between a pair of conductive plates. Absorption of humidity by the sensor results in an increase in the relative permittivity (\(\varepsilon_r \)) of the foil, and since capacitance is directly proportional to the \(\varepsilon_r \), therefore, the capacitance of the sensor increases.

The calculated capacitance values of the tested sensor element using data from (a), typical capacitance values of the sensor element and the tolerances range (±15%) extracted from [23].

The maximum rms noise is 470 µV in capacitive mode and 404 µV in resistive mode. This corresponds to an accuracy of at least 10 bits (Accuracy = log2 (full scale range of the UMSI)).

C. Capacitive Proximity, Gesture and Touch Sensor

The proposed sensing system, consisting of the UMSI and a capacitive sensor element, converts displacement of the object above the device as well as contact with it to a voltage signal, so that the system offers proximity, gesture and touch-sensing capabilities. These capabilities are achieved using a simple sensor element composed of two coplanar copper electrodes, etched on a prototype single-sided PCB. The sensor element is shown in Fig. 15 (a). These electrodes were connected using wires to the UMSI that was mounted on the test PCB. In order to reduce the parasitic capacitance, the length of the wires was kept short, since the wires are also sensitive to the displacement of the object as well as ambient interference.

Fig. 15 (b) illustrates the conceptual proximity-sensing mechanism for this experiment, which is based on the measurement of an electric field between the two electrodes of the sensor. Without the presence of an object, the electric
field is contained between the electrodes of the sensor. When an object with impedance Z_h to ground (e.g., a user’s hand) approaches the sensing electrodes, it affects the near electric field, and consequently changes the equivalent mutual capacitance (C_m) between the electrodes of the sensor, and therefore, the displacement of an object can be detected.

In order to investigate the capabilities of the sensing system and to observe its response characteristics in real application scenarios, different prototype experiments were conducted. All the experiments were performed using the same f_{clk} of 15 kHz, and the values of C_{ref} and C_f were tuned to 2 pF and 4 pF, respectively. The objects being detected were a 4 cm \times 7 cm copper plate, and the experimenter’s hand. In the first and second experiments, the copper plate was used as the approaching object. First, it was connected to the ground node of the power supply, and, second, it was connected to the hand using a wire. The vertical distance of the object to the sensor element was changed from 0.2 cm to 20 cm in successive steps. The output voltage of the UMISI was measured after each step. In the third experiment, the object to be detected was the hand of the experimenter, which was moved above the sensing electrodes at distances of between 0.8 cm and 20 cm. The resulting output voltages of the UMISI as a function of the vertical distance of the object to the sensor element for these three experiments are shown in Fig. 16(a). The capacitance of the tested sensor was determined by substituting the measured output voltage of the UMISI and the given C_{ref} and C_f in Eq. (2). Fig. 16(b) shows the calculated capacitance value of the sensor as a function of the vertical distance of the object to the sensor element. The power consumption of the system was 0.83 μW from a 1.2 V supply.

In order to further investigate the capabilities of the system, the output voltage of the interface was measured when a hand performed different gestures on the sensor element, including: approaching the sensor, sweeping horizontally over the sensor, tapping the sensor, and touching the sensor. The measured output voltage of the UMISI as a function of time is shown in Fig. 17(a). The sensor element was very sensitive to the ambient interference, and consequently, the measured signal was noisy. Therefore, the measured signal was filtered using a 10-point moving average filter. Fig. 17(b) shows the filtered signal as a function of time. As mentioned earlier, the sensor system offers both proximity and touch-sensing capabilities. When the experimenter’s hand tapped or touched the electrode of the sensor connected to the pad$_{bot}$, the output voltage of the UMISI decreased. This reduction can be interpreted as an increase in the sensed capacitance according to Eq. (2). Here, the human body affects the equivalent mutual capacitance (C_m) between the two electrodes of the sensor, resulting in an increase in the total effective sensing capacitance.

D. Photoconductive Sensor

The sensor discussed in this section is a photoconductive cell [24]. It consists of a thin film of photoconductive material deposited on a ceramic substrate. Increasing illumination
allows more current to flow, and consequently, the resistance of the sensor decreases. Therefore, the presence and absence of light can be detected by measuring the resistance of the sensor.

The testing was performed using a f_{clk} of 1 kHz. The values of C_{ref} and C_r were set to 2 pF and 5.9 pF, respectively. An Amprobe LM-120 light meter was used to measure the light intensity. In order to increase the sensitivity of the measurement, the experiment was performed in two steps. First, the I_{ref} was set to 2.75 μA, and the illuminance was varied from 0.83 lux to 39.2 lux. Second, the I_{ref} was set to 0.11 μA, and the illuminance was varied from 0.05 lux to 0.71 lux. The measured output voltage of the UMISI as a function of illuminance for the first and second experiments are shown in Fig. 18(a) and 19(a), respectively. The resistance of the sensor was determined by substituting the measured output voltage of the UMISI and the given C_{ref} and C_r in Eq. (4). The calculated resistance value of the tested sensor as a function of illuminance for the first and second experiments are shown in Fig. 18(b) and 19(b), respectively.

To demonstrate the entire measured illumination range and improve readability, the resistance of the sensor as a function of illuminance from both experiments shown in Fig. 18 and 19 are combined, and shown in logarithmic scale in Fig. 20. The wide dynamic range of the interface allowed the resistance of the sensor to be measured by around three orders of magnitude as the illuminance varied from 0.05 lux to 39.2 lux. The power consumption of the UMISI, including I_{ref}, was 3.56 μW for the first experiment, and 0.39 μW for the second experiment, both from a 1.2 V supply.

E. Resistive Force Sensor

The sensor described in this section is a single-zone force-sensing resistor. It is a robust polymer thick film (PTF) device that shows a decrease in resistance with increasing force applied to the surface of the sensor [25].

The testing was performed using a f_{clk} of 1 kHz and the I_{ref} was set to 2.75 μA. The values of C_{ref} and C_r were set to 2 pF and 5.9 pF, respectively. An ESM303 test stand was used to apply force to the sensor, and a MARK-10 force gauge M7-5 was used to measure the applied force. The applied force was varied from 0.32 Newton (N) to 17.79 N. The measured output voltage of the UMISI as a function of force is shown in Fig. 21(a). The resistance of the sensor was determined by substituting the output voltage of the UMISI and the given C_{ref} and C_r in Eq. (4). The calculated resistance value of the tested sensor as a function of force is shown in Fig. 21(b). The power consumption of the UMISI, including I_{ref}, was 3.56 μW from a 1.2 V supply.

F. Comparison

Table II summarizes the performance of the proposed sensor interface and compares it with the previously published capacitive, resistive, and capacitive-resistive sensor interfaces. The UMISI has the second highest linearity and the second widest overall capacitance and resistance range, while having an ultra-low-power consumption. Such performance is achieved by employing the wide range tunable capacitor bank, the low-power amplifier with flexible properties, the leakage-compensated wide-trimming-range bias current generator, and the system level optimization of the circuit. Most of the systems presented in Table II are complete systems with digital or analog output. Therefore, for a fair and reasonable comparison, the UMISI should be compared with their analog front-end when it is applicable.
The proposed proximity, gesture and touch-sensing system can detect the vertical movement of an object up to 15 cm away from the sensor element, while consuming only 0.69 µA. The previously reported single-plate [31] and dual-plate [32] capacitive proximity sensing systems provide a lower detectable range, while consuming 85 µA and 370 µA, respectively, which is >10× higher than the current consumption of the system presented in this paper. As stated before, the proposed system also offers gesture and touch-sensing capabilities.

IV. Conclusion

This paper presents an ultra-low-power interface circuit implemented in a 0.18 µm CMOS process technology. Unlike single-sensor interface circuits that are tailored towards dedicated sensors for specific applications, the proposed universal interface circuit is flexible and highly configurable, and therefore, can be integrated into emerging multi-sensor technologies such as IoT and AmI.

The results show that the UMSI is able to interface various sensors within an overall capacitance range of 0.6–550 pF and a resistance range of 3.7 kΩ–5.1 MΩ, while consuming only 0.39–3.56 µW, with a linearity of more than 13.5 bits. The UMSI is also characterized by different sensors, including humidity, photoconductive, and force. The experimental results demonstrate the capabilities and performance of the interface in real application scenarios under different environmental conditions.

A capacitive proximity, gesture and touch-sensing system is also presented in this paper. The developed system, consisting of the UMSI and a simple sensor element, can sense multiple gestures, displacement of an object up to 15 cm from the sensing element, and touching the sensing element. The proposed system consumes only 0.83 µW from a 1.2 V supply.

The competitive performance makes the UMSI a suitable candidate for energy-constrained and high accuracy capacitance and resistance sensing applications.

ACKNOWLEDGMENT

The authors would like to thank E. Westerberg and M. Pulkkinen for their help with the measurements. They would also like to thank T. Haapala for his valuable comments.

REFERENCES

