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Abstract: In the pulping industry, thermo-mechanical pulping (TMP) as a subdivision of the
re�ner-based mechanical pulping is one of the most energy-intensive processes where the core of
the process is attributed to the re�ning process. In this study, to simulate the re�ning unit of the
TMP process under di�erent operational states, the idea of machine learning algorithms is employed.
Complicated processes and prediction problems could be simulated and solved by utilizing arti�cial
intelligence methods inspired by the pattern of brain learning. In this research, six evolutionary
optimization algorithms are employed to be joined with the adaptive neuro-fuzzy inference system
(ANFIS) to increase the re�ning simulation accuracy. The applied optimization algorithms are particle
swarm optimization algorithm (PSO), di�erential evolution (DE), biogeography-based optimization
algorithm (BBO), genetic algorithm (GA), ant colony (ACO), and teaching learning-based optimization
algorithm (TLBO). The simulation predictor variables are site ambient temperature, re�ning dilution
water, re�ning plate gap, and chip transfer screw speed, while the model outputs are re�ning
motor load and generated steam. Findings con�rm the superiority of the PSO algorithm concerning
model performance comparing to the other evolutionary algorithms for optimizing ANFIS method
parameters, which are utilized for simulating a re�ner unit in the TMP process.

Keywords: thermo-mechanical pulping; adaptive neuro-fuzzy inference system; evolutionary
optimization algorithm; arti�cial intelligence; data analysis

1. Introduction

Due to rising energy prices, environmental concerns, and carbon taxes, energy is becoming one of
the critical considerations for large energy consumers [1]. The pulp and paper industry is in the fourth
place of the most extensive industrial energy consumer worldwide. The pulp and paper industry
contributes to approximately 6% and 2% percent of �nal industrial energy consumption and carbon
dioxide emissions, respectively. In total, 6.87 EJ of total energy consumption was attributed to the
pulp and paper industry in 2007 [2�4]. Nowadays, thermo-mechanical pulping (TMP) is the most
predominant type of mechanical pulping process [5]. Thermo-mechanical pulping is of the extreme
energy-intensive processes with a low energy e�ciency close to 10 to 15% [6]. Mechanical pulping is an
electricity-intensive process in which re�ners are the essential units in the pulping process, consuming
electricity by the electric motors [2,7,8]. An increase in the electricity price and carbon emission taxes,
along with environmental concerns, have committed the pulp mills to increase the energy e�ciency
to keep their market share and pro�tability [9�11]. In addition, a higher quality of pulp is wanted
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for pulp mills to retain their position in the competitive market [12]. The re�ning is declared as the
most energy-consuming processes where 80% of the mill total energy consumption is attributed to this
process [13]. The re�ner is the core and backbone of the thermo-mechanical pulping process. In these
hydraulic machines, the rotor and stator crush and beat the pulp �bers in a repeated cycle. Re�ners
have the same principle for operation; however, they are di�erent in terms of con�gurations. Wood
chips are inserted between two rotating metal discs, and rotary energy is transferred to the pulp by
patterned fragments of the plates [14]. Since the re�ning process is highly a�ected by di�erent re�ning
variables which are not controllable in some cases such as disturbance variables, it is not an easy task
to develop an optimal re�ning control strategy [15]. In general, the pulp and paper process is highly
complicated and integrated. The process consists of several interconnected operations and recycles
loops. Moreover, there are many constraints such as fuel and power prices, environmental issues,
availability, the performance of equipment, production schedules, and process variability that extremely
harden the process of energy optimization in these units [16]. There are several factors such as rotational
speed, crossing angle, re�ning gap, bar dimensions, pulp consistency, etc. in�uencing the pulp and
paper properties. Implementing all these factors into theoretical or thermodynamic equations for
de�ning the re�ning process (system identi�cation) is approximately impossible. Arti�cial intelligence
(AI) is an alternative powerful data-based method for energy modeling of complicated system and
processes. An accurate simulation and prediction of the re�ning process is achievable by utilizing
AI methods.

The majority of the previous studies in the pulp industry have been conducted on the use of
analytical methods for the TMP process analysis. Analytical methods like thermodynamic analysis
and numerical methods are complicated, time-consuming, and sometimes with low accuracy and
hard to employ in many practical applications for complex systems or processes. However, for the
initial design of a system where no data is accessible, numerical analysis and experimental models
are of high power and value. Khokhar [17] utilized numerical analysis (CFD simulation) to model a
simple groove re�ner. For the simulation, Khokhar considered pulp as a single-phase Newtonian �uid
having 100 times more viscosity comparing to water. Ping et al. [18] used ANSYS CFX to simulate a
high consistency re�ner for the purpose of reducing re�ning energy consumption. The �ndings show
an impressive ability of numerical analysis to investigate the torque and pressure of the re�ner discs
and also calculating re�ning motor load. Huhtanen and Karvinen [19] studied the performance of
non-Newtonian �uid dynamics in papermaking. The purpose of their research is to investigate the
application of the non-Newtonian �uid models for simulating the pulp suspension in a turbulent and
laminar �ow. By studying inter-�ber re�ning and the energy consumption distribution in the re�ner
plate gap, Illikainen [14] obtained new information about mechanisms of thermo-mechanical pulp
re�ning in the inner area of a re�ner disc utilizing experimental test. Elahimehr et al. [20] introduced
an experimental structure to analyze the e�ect of manipulated re�ning variables such as the re�ner
plate gap, dilution water, plate pattern, and speed on the LC re�ner performance. Mithrush [21]
experimentally investigated the transport phenomena inside a low consistency disc re�ner. The main
purpose of his research is to examine the e�ects of operating parameters of re�ner on the �ow �eld.
Results show a linear relationship between stator back�ow velocities and the pressure di�erential
across the re�ner.

On the other hand, with the development of artificial intelligence, analyzing complex systems with
high accuracy is facilitated [22]. Machine learning is a subdivision of artificial intelligence that is currently
undergoing growth and is a very active field in computer science [23]. The purpose of machine learning
is to build computer systems learning from experiences and are able to adapt to their surroundings just
by relying on data patterns instead [24,25]. In many cases, theoretical modeling of a mechanical system
is time-consuming and needs a vast knowledge about the detailed processes happening in the system.
On the other hand, the validation of theoretical analyzes is always controversial, and in many cases,
requires costly experimental tests. Simula and Alhoniemi [26] performed data-driven analysis for the
behavior of a continuous pulp digester. They used a neural network algorithm named Self-Organizing
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Map (SOM) for the analysis and visualization of high-dimensional data. They revealed the parameter
dependencies by implementing the visualizations. Ciesielski and Olejnik [27] applied the neural network
approach to predict the paper properties of refined chemical pulp. Their findings confirm a good
correlation between the experimental and simulated data. Huaijing [28] used identification technique
and time series analysis rather than mechanistic analysis for characterizing system disturbances and
to find a dynamic stochastic model to control the two-stage TMP plant. They considered Motor load,
Production rate, and refining consistency as manipulated variables to control refining specific energy
consumption and refining intensity. Lama et al. [29] performed controllability and resiliency analysis
to develop a model of a refining unit to analyze internal interactions that happen in the regulatory
operation of TMP refiners. Musavi and Qiao [30] suggested a radial basis function (RBF) neural network
for prediction of pulp quality. Their results show significant accuracy in predicting the pulp quality
factor (k#) in the digester. Molga and Cherbanski [31] conducted research on investigating the ability
of the multi-layer networks to simultaneously model the chemical reaction and mass transfer in the
liquid-liquid reacting system. They defined the hybrid first principle neural-network model to describe
batch and semi-batch stirred tank reactors that operate in different operating conditions. Their proposed
approach results in good accuracy and flexibility. Dufour et al. [32] trained a feedforward neural network
with a two-layer perceptron for pulp digester to appraise the impact of changes in feedstocks properties.

Understanding and controlling the TMP process is paramount in any pulp and paper industry.
In the context of the TMP process, to control the speci�c energy consumption and pulp quality,
it is essential to recognize the non-linear hidden relationships among the re�ning input and output
variables. Therefore it is necessary to have an accurate identi�cation model to adopt an e�cient control
strategy to handle the process in an optimal way. Accordingly, the main purpose of this research is to
develop an accurate re�ning simulation (identi�cation) model that can be further used for the purpose
of energy e�ciency analysis and development by implementing an energy-e�cient control strategy.

In many cases, industrial processes are complex and are a�ected by a large number of variables
that create a multivariate structure in the problem. However, many producers still practice
the traditional univariate statistical process control methods and face di�culties in recognizing
the hidden non-linear pattern between process variables. This is while AI methods are proved
to have a huge capability to simulate and model multivariate industrial processes such as the
thermo-mechanical pulping process. In this study, for the �rst time, AI methods are proposed
and developed to simulate the re�ning motor load and generated steam of the re�ner in the TMP
process. To achieve this target, the adaptive neuro-fuzzy inference system (ANFIS) is incorporated
with various evolutionary optimization algorithms to obtain the maximum prediction accuracy.
The employed evolutionary optimization algorithms are: biogeography-based optimization algorithm
(BBO), teaching learning-based optimization algorithm (TLBO), particle swarm optimization algorithm
(PSO), genetic algorithm (GA), ant colony (ACO), and di�erential evolution (DE). Notwithstanding the
many studies concerning AI methods, no study has yet been developed to compare the performance of
the aforementioned evolutionary algorithms incorporating with ANFIS method.

2. Thermo-Mechanical Pulping Process

Figure 1 shows the schematic of the studied system where a single disc re�ner is connected to the
heat recovery unit to supply the district heating network from the energy coming from the generated
steam during the re�ning process. The basic target of pulping is to make �bers free from the lignin
and then to suspend the �bers in water. Lignin is a natural polymer that fastens the �bers together in
wood. In mechanical pulping �bers are separated mainly through mechanical forces. Unlike chemical
pulping, mechanical pulping is based more on mechanical forces to develop and separate wood �bers.
Re�ners are mechanical devices correcting the morphology of �bers in wood. In the re�ning process,
the energy source to apply mechanical force to the pulp is electricity. The large part of electrical energy
consumption in re�ners electric motor generates heat by producing steam.
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The re�ning dilution water is vaporized by the heat generated in the re�ner during the re�ning
process and makes the suspension of chips and water to the �ber�steam suspension [33]. The process
becomes more complicated by changes in re�ning variables such as re�ners plate condition (plate
erosion) and seasonal variations in raw wood chips composition (such as moist content). Re�ner plates
are designed to gently soften the lignin in wood pieces and separate the �bers. The typical speed for a
re�ner rotating plate is about 1200 rpm to 1800 rpm. Re�ners plate are controlled precisely to be at the
distance of 0.05�2 mm depending on the desired pulp quality and system operating condition [34].
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3. Intelligent Method

Machine learning and intelligent techniques are potent approaches to model complex systems as
a black box. Among di�erent intelligent learning models, the ANFIS method has a high potential of
generating solutions for learning problems with superb accuracy. ANFIS model parameters can be
optimized, utilizing optimization algorithms to enhance the e�ciency of the prediction. In this study,
six di�erent heuristic optimization algorithms have been examined to promote the e�ciency of the
An�s method in terms of accuracy in prediction.

3.1. Adaptive Neuro-Fuzzy Inference System (ANFIS)

ANFIS method consists of neural networks and fuzzy systems, and de�nes patterns between
the input and output vector by bene�ting from the hybrid learning method to determine the optimal
distribution of the membership functions [35]. The ANFIS method is constructed by fuzzi�cation,
inference engine, and defuzzi�cation [36]. ANFIS method integrates both neural networks and fuzzy
logic principle and inherits the advantages of both in a single framework. This method is addressed as
a neuro-fuzzy system. Five layers are considered to create the ANFIS inference system. Each ANFIS
layer consists of multifold nodes and has been characterized by the node function. The inputs of each
layer are determined by the output of the prior layer.

The Sugeno-Takaki model is commonly used to reduce the computational cost as well as
pinpointing di�erences with other models. Two rules for the �rst order two-rule Sugeno fuzzy
inference system is provided in Equations (1) and (2). The neural network and fuzzy system are
combined by Radial basis function and Sugeno-Takaki fuzzy inference. Figure 2 illustrates a simpli�ed
version of an ANFIS formation, with only two inputs and one output. The adaptive nodes (which are
tunable nodes) and �xed nodes are marked as square and circle in Figure 2, respectively [37].

I f x is P1 and y is Q1 ! f1 = r1x + t1y + c1 (1)
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I f x is P2 and y is Q2 ! f2 = r2x + t2y + c2 (2)

where A and B are the fuzzy sets, x and y are the ANFIS inputs, fi(x.y) is a �rst-order
polynomial regression.
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The description of node function for ANFIS layers (presented in Figure 2) is provided in the
following. Equations (3) and (4) provide the calculation term for the node’s output in layer 1, which is
the fuzzi�cation layer [35].

LOi
1 = �A j (x) , f or j = 1, 2 (3)

LOi
1 = �B j�2(y) , f or j = 3, 4 (4)

where A and B are the semantic tags, x and y are the input nodes, �x and �y are membership functions.
The Gaussian membership functions are limited from 0 to 1 and presented in Equation (5) or in a
di�erent form in Equation (6).
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In which x is the model input and
n
a j, b j, c j

o
are premise parameters. Based on the values of the

premise parameters, the membership function’s shape di�ers. Nodes in layer 2, which is a rule layer,
are �xed and determine the �ring strength (w j) of a rule. Node output is the multiplication of the
node input signal (Equation (7)).

LOi
2 = w j = �A j (x) �B j (y) , f or j = 1, 2 (7)

Layer 3 nodes are �xed node that computes the �ring strength of the jth rule to all rules. Equation (8)
provides the output of the jth node in layer 3.

LO j
3 = w j =

w j

w1 + w2
, f or j = 1, 2 (8)
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The Defuzzi�cation layer is layer 4; Equation (9) shows the function of each node in layer 4,
consisting of adaptive nodes.

LO j
4 = w j f j = w j(r jx + t jy + c j) , f or j = 1, 2 (9)

In which wi is the layer 3 output,
�
pi.qi.ri

	
are the resultant parameters, and f1 and f2 are the fuzzy

if-then rules (Equations (1) and (2)).
The �nal output layer is layer 5, where the node sums the receiving signals from layer 4, which is

explained in Equation (10).

LO j
5 =

X
w j f j =

P
j w j f j

P
j w j

= overall output, f or j = 1, 2 (10)

Linear combination of the resulting parameters gives the �nal output of the ANFIS, which is
explained by Equation (11).

fout= w1 f1 + w2 f2 =
w1

w1 + w2
f1 +

w2
w1 + w2

f2

= (w1x)p1 + (w1y)q1 + (w1)r1 + (w2x)p2 + (w2y)q2 + (w2)r2

(11)

3.2. Biogeography-Based Optimization Algorithm (BBO)

An evolutionary optimization algorithm named Biogeography-based optimization algorithm is
inducted from the geographical distribution of biological organisms and is based on the geographical
distribution of biological organisms. This optimization algorithm has common features with other
biology-based optimization algorithms like particle swarm and genetic algorithm. Therefore, BBO can
be used as an alternative solution for the same problems where PSO and GA are employed. For choosing
the best solution, the e�ciency of these algorithms can be examined. Mathematical models of the
biogeography explain the procedure of migration of one species from one island to another, how new
species are generated, and how they extinct. The term �island� refers to any habitat that is geographically
isolated from other habitats.

The main parameters of BBO are as follow: habitat suitability index (HIS), the geographical areas
that are well-matched for biological species concerning the residence, have a high habitat suitability
index (HSI), suitability index variables (SIVs), the immigration rate (�), the emigration rate (�),
the maximum possible immigration rate to the habitat (I), the capacity of the habitat to support the
species (Smax), the maximum emigration rate (E), the balance number of species where immigration
and emigration rates are equal (S0). Figure 3 depicts a model of species abundance in a single habitat.
To simplify the species model in a single habitat, immigration and emigration curves are considered to
be a straight line, whereas they could be involved curves. Due to the graph, � and � are functions of
the number of species in the habitat. The main steps for implementing the BBO algorithm are presented
in Figure 4 (further details in [38,39]).
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3.3. Teaching Learning-Based Optimization Algorithm (TLBO)

TLBO algorithm was developed by Rao et al. and is a type of evolutionary optimization algorithms.
This population-based algorithm is inspired by the e�ect of a teacher on learners. This method utilizes
a population of solutions to obtain a global solution. The individual members of the TLBO algorithm
are represented as a group of learners. The algorithm of TLBO is divided into �Teacher Phase�
and �Student Phase� part. The process of the TLBO optimization algorithm is outlined in Figure 5.
The concept of Teacher Phase originates from the training from the teacher, and the Student Phase
is generated by means of learning from the interplay between learners. A desirable teacher is the
one who could be able to increase the knowledge of their learners at the same level as themselves.
Trainees enhance their knowledge within both the teacher and the learner’s interaction. In [40,41],
further details about TLBO can be found.
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Figure 5. A schematic diagram of the teaching learning-based optimization algorithm (TLBO)
algorithm [41].

3.4. Particle Swarm Optimization (PSO)

Particle swarm optimization (PSO) is a heuristic optimization technique which was basically put
forward by Kennedy and Eberhart in 1995. The inspiration of the PSO algorithm is relying on the
social behavior of birds, insects, and �sh and developed from swarm intelligence. To �nd the foremost
solution, several congested particles (candidate solutions) are generated and moved around the search
space. The algorithm is launched by producing primitive particles and assessing their preliminary
speeds. The movement arrangement of each particle is established on the particle’s experience and the
received experience from other particle displacements. The guidance reaches to the swarm when the
better sites are identi�ed [42,43]. PSO construction is stated in Figure 6.
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3.5. Genetic Algorithm (GA)

Genetic Algorithm (GA) is a heuristic algorithm commonly used for search and optimization
problems, relying on the biological evolution process. In 1960, Holland introduced genetic algorithms
based on the evolutionary theory of Darwin. �Natural Selection� and �Genetic Inheritance� are
the basic concept for the development of the genetic algorithm. The process begins with a random
initial generation of the population and chromosomes as abstract presentations of solution candidates.
Population members compete for the right to reproduction. Those who better act in terms of the
reduction of the �tness function will be chosen for the next generation. The selection process is
organized in a way that only �tter individuals could survive and are selected for the next generation.
At the end of each iteration, selected individuals are permitted to generate progeny population
for the next iteration of the GA. This iterative behavior is summarized in Figure 7. The optimum
solution is obtained after some iterations, where the stopping criteria are satis�ed, and the program
converges [44,45].

3.6. Ant Colony Optimization Algorithm (ACO)

There have been many studies for solving intricate optimization problems by inspiring from
complex models of the social habits of animals. Ant colony theory was �rst introduced by Dorigo in
1992. By the inspiration of the behavior of ant colonies, he proposed an optimization algorithm [46].
The foundation of the ACO algorithm is to detect the most diminutive pathway between the ant den
and food. In the food discovering process, some amount of pheromone trail is left by every aunt to
facilitate the root identi�cation by others. The probability of a trail to be followed by ants is conditioned
on the amount of leaving pheromone. Therefore, the likelihood of choosing pathways with more
pheromone is higher. During this process, ants determine the shortest route from the colony to the
food sources. The structure of the ACO optimization algorithm is provided in Figure 8.
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3.7. Di�erential Evolution (DE)

Di�erential evolution (DE) is a sort of metaheuristics method practice to solve the optimization
problems (trying to improve the �t solutions), iteratively. This population-based algorithm (presented
by Strorn in 1995) has three foremost advantages: independent of the initial parameter values, operating
with few control parameters, and fast convergence [47]. DE is a stochastic optimization method and
is greatly e�ective for the optimization problems with non-linear constraints. The main feature
that distinguishes DE with other evolutionary algorithms like the genetic algorithm is the mutation
arrangement and selection process that form self-adaptive DE [48,49]. Because of the robustness,
stability, and ability for global search, DE propelled into one of the powerful optimization algorithms.
The iteration of the algorithm starts with four-part: initialization, mutation, crossover, and selection.
Di�erent termination criteria like the maximum iterations number, the maximum number of function
appraisal, or maximum ful�lling time could be set to stop the process for the optimal solution. Figure 9
provides a �owchart of the DE algorithm [50].
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3.8. The Proposed Hybrid Methods for the Re�ner Simulation

For the least variation in pulp quality, three input variables could be regulated to control the
motor load, pulp consistency, and chip transfer screw speed [51]. The production rate could be simply
calculated by multiplying the transfer screw speed (R) by a proportionality coe�cient. Variation in
chip’s density and chip dry solid contents are of the external disturbances a�ecting the TMP re�ning
process [52].

In this study, to identify the model for predicting motor load and steam generation with the
available data sets, four main e�ective re�ning variables are taken into account as input parameters of
the model. The model input and target variables are provided in Table 1. The AI methods based on
the integration of the ANFIS and six di�erent heuristic algorithms are examined to obtain the most
accurate system identi�cation. At the �rst stage of the proposed method, the whole data set is reduced
to two-part by creating Train and Test data sets to train the AI network and evaluate the network
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accuracy, respectively. Training and testing datasets are created to train the data with 70% of the dataset
(2952 samples) and test the e�ciency of the arti�cial neural network (ANN) by the remaining 30% of
the dataset (1265 samples). From stage 2 to stage 4, the ANFIS model is created, trained, and optimized
for the higher accuracy by optimizing the model parameters utilizing six di�erent dominant heuristic
optimization algorithms. The �nal results are evaluated in step 5 to achieve the optimal simulation
model. The optimal combination of the ANFIS model and optimization algorithm that has higher
accuracy and e�ciency is selected as the �nal model and output of the proposed method. Figure 10
illustrates the proposed data-driven based intelligent simulation approach of the re�ning process in the
thermo-mechanical pulping industry. Descriptions of the performance of each optimization method
are provided in previous chapters.

As mentioned in Table 1, The network is constructed based on the ambient temperature (°C),
dilution water (kg/s), plate gap (mm), and chip transfer screw speed (rpm) as input variables
(predictive variables), where, except the ambient temperature, other input variables could be considered
manipulated variables. The mentioned variables are used to determine re�ning motor load (MW) and
re�ning produced steam (kg/s). A comprehensive dataset with a wide range of variation is provided
for this investigation.

Table 1. Arti�cial neural network (ANN) model input and target variables.

Re�ning
Plate Gap

Re�ning
Dilution

Water

Site Ambient
Temperature

Feeder
Screw
Speed

Re�ning
Motor Load

Re�ning
Generated

Steam

predictor
variables 3 3 3 3

Target
variable 3 3
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�CreateInitialFIS� function is employed to build an initial fuzzy inference system (FIS) for the
model. The fuzzy inference system is constructed based on gen�s3 in MATLAB software library
(Figure 11a). The concept of fuzzy c-means (FCM) clustering is practiced to model the data behavior
where a set of rules are cited. Khosravi et al. [53] compared three types of ANFIS, including ANFIS-FCM
(fuzzy c-means), ANFIS-SC (subtracting clustering), and ANFIS-GP (grid partitioning). They reported
that ANFIS-FCM performs better than the ANFIS based on SC and GP. For this reason, in this study,
the ANFIS model was created based on gen�s3 (FCM) in Matlab Software with the number of clusters
of 10.

The number of clusters and input data is the input argument of the created function. The AI
model is trained by employing di�erent evolutionary algorithms (step 4 in Figure 10). For instance,
Figure 11b presents the function of Train Using PSO. The objective of the process is to de�ne the
optimum FIS parameters. p0

1, p0
2 , : : : , p0

n are the primary values of FIS parameters, while p�1, p�2 , : : : , p�n
introduce the optimal parameters. Equation (12) describes the optimization problem. The �nest x
value is speci�ed utilizing an evolutionary optimization algorithm (Figure 11c).

p�i = xip0
i (12)
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4. Results and Discussion

Empirical models derived from previous studies have been used to validate the measured data.
This procedure is described in the data validation section, and in the next section, the arti�cial
intelligence modeling results are presented and discussed.

4.1. Data Validation

In previous researches, plate gap, dilution water, and re�ning production rate are considered to
be key variables to model and simulate the re�ning energy consumption. The following empirical
equation introduces motor load as a function of the re�ning dilution water �ow rate, re�ning plate
gap, and re�ning production rate [54,55].

ML(pr, PG, DW) =
km � Pr

DW
(1� exp(�10� PG))(a� b� PG) (13)
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In which M(MW) is the re�ning motor load, G(mm) is the plate gap, D(L/min) is the re�ning
dilution water �ow rate, and km, a and b are parameters of the re�ner and belong to the working
conditions and the technical characteristics of the re�ner.

To validate the measured data, Equation (13) is considered as a reference non-linear regression
model [55], which relates the three-input variables to the re�ning motor power. Since regression
coe�cients in Equation (13) are speci�c for each re�ner, each of the three regression coe�cients
is optimized using the genetic optimization algorithm for the least mean absolute percentage
error (MAPE).

The correlation coe�cient (R), mean absolute percentage error (MAPE), and root mean square
error (RMSE) are used as three criteria for the regression model analysis (Equations (14)�(16)).
Table 1 represents the non-linear model speci�cations for the best �t. Results show that the experimental
data are reliable and validated with the empirical model. Table 2 tabulates the evaluation criteria
for analyzing the e�ciency of the non-linear regression model in predicting re�ning motor load as
well as obtained optimal regression model coe�cients from �tting data to the Equation (13). This fact
indicates the validity of the measured data for further analysis. In this regard, Figure 12 reports the
percentage error histogram of the validated non-linear regression model.

R =

nP

i=1
(ri � r)(pi � p)

nP

i=1
(ri � r)

nP

i=1
(pi � p)

(14)

MAPE =
1
n

nX

i=1

���ri � pi
���

jrij
(15)

RMSE =

vt
1
n

nX

i=1

(ri�pi)2 (16)

where ri, pi, r, p, and n are real (target) data, predicted data, an average of target data, average of
estimated data, and the quantity of data, respectively.

Table 2. Data validation analysis for the re�ner.

Parameter Measure

MAPE 0.0460
R2 0.72
R 0.84
RMSE (MW) 0.35
a �8.655
b 1.719
km �1.240
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4.2. Models Comparison

Given that di�erent heuristic optimization algorithms have been investigated to heighten the
performance of the ANFIS model, good insight into the e�ciency of di�erent optimization methods
is essential. For this purpose, the performance indicators of di�erent methods are evaluated in the
following. Three performance indicators, namely correlation coe�cient (R), mean-squared error
(MSE), and root-mean-square error (RMSE) are considered as criteria for appraising the precision of
the di�erent optimization methods for the best prediction.

Figure 13 shows the test samples of the BBO algorithm combined with ANFIS to predict the
re�ning motor load electricity consumption (a) and re�ning generated steam in the re�ning process
(b). Every test data marked as the x-axis in the graph is estimated by a combination of four di�erent
variables named ambient temperature, rotor gap, production rate, and dilution water �ow rate.
The predicted and measured data for motor load and generated steam are given on Y-axis. The lower
discrepancy between the measured and estimated data indicates a higher performance and accuracy of
the model. The BBO algorithm was implemented based on the following technical parameters: Keep
rate = 0.2; Number of kept habitats = round (keep rate� number o f the population); Number of new
habitats = number o f population� number o f kept rate. For all models, the number of the population
and the number of iterations are considered as 500. The statistical criteria for the prediction assessment
of the BBO model were obtained as: for predicting the motor load, train samples, RMSE = 0.3235 MW,
R = 0.8590, and MSE = 0.1046 MW2; test samples, RMSE = 0.3235 MW, R = 0.8590,
and MSE = 0.1046 MW2. To estimate the steam generation, train samples, RMSE = 0.1319 kg/s,
R = 0.8689 and MSE = 0.0174 kg2/s2; test samples, RMSE = 0.1325 kg/s, R = 0.8682 and
MSE = 0.0175 kg2/s2.

Regarding the accuracy of the model-based-TLBO algorithm, Figure 14 provides a general view
of the test data. The TLBO algorithm is a robust and e�ective optimization method, developed based
on the teaching process. In contrast to other evolutionary algorithms, TLBO does not require to adjust
any controlling parameters. Two primary stages considered to implement the TLBO algorithm are
�teacher phase� and �learner phase.� As stated earlier, three statistical indicators are taken into account
to evaluate the accuracy of di�erent models. Prediction performance of the model for estimating the
motor load is RMSE = 0.3488 MW, R = 0.8472, and MSE = 0.1216 MW2; and for predicting the
steam generation was RMSE = 0.1487 kg/s, R = 0.8607 and MSE = 0.0211 kg2/s2 for the test data.
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re�ning process (b).

Figure 15 delineates the measured data and predicted data for the model PSO-based model testing
phase. The model results in a low root mean squared and squared error. The controlling parameters for
the PSO algorithm are: inertia weight = 1, personal learning coe�cient = 1, global learning coe�cient
= 2. This model predicted the targets (for the test samples and respectively for motor load and steam
generation with RMSE o f 0.2712 MW and 0.1131 kg/s; MSE o f 0.0735 MW2 and 0.0128 kg2/s2; and R
of 0.9052 and 0.9032.
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Figure 15. Test samples of PSO to estimate refining motor load (a), and refining steam generation (b). 
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Based on testing datasets, Figure 17 illustrates the measured and predicted data, employing an 
ACO-based model. The ACO algorithm was built by an intensification factor of 0.5 and zeta 
(deviation-distance ratio) of 1. With this structure,  predicted data follow the observed data with the 
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0.01856 �•�‰�6���•�6, for motor load and generated steam, respectively. 

Figure 15. Test samples of PSO to estimate re�ning motor load (a), and re�ning steam generation (b).

Figure 16 depicts the prediction performance of the GA algorithm for predicting the motor load
(a) and produced steam (b) using di�erent input variables. The GA was implemented based on
the following structure: crossover percentage = 70%, mutation percentage = 50%, mutation rate
= 10%, and selection pressure = 8. The model predicted the motor load with 0.3081 MW RMSE,
0.8677 R and 0.094 MW2 MSE and estimated the produced steam with 0.1269 kg/s RMSE, 0.8804 R,
and 0.0161 kg2/s2 MSE (for test data).

Based on testing datasets, Figure 17 illustrates the measured and predicted data, employing
an ACO-based model. The ACO algorithm was built by an intensi�cation factor of 0.5 and zeta
(deviation-distance ratio) of 1. With this structure, predicted data follow the observed data with the
RMSE of 0.3416 MW and 0.1362 kg/s; R of 0.8430 and 0.8624; and MSE of 0.1167 MW2 and 0.01856
kg2/s2, for motor load and generated steam, respectively.
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steam generation (b). 

The test phase of the DE method for estimating the targets is shown in Figure 18. The DE 
parameters have crossover probability  L � � � r� ä� s, lower bound of scaling factor  L � � � r� ä� t, and upper 
bound of scaling factor  L � � � r� ä� z. With regard to tracking the measured data, the intelligent model 
follows the measured data accurately, and the statistical parameters were obtained as �4�/�5�'�� L
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�•, �4�� L �� �r�ä�z�y�s�r and �/�5�'�� L �� �r�ä�r�s�x�{�� �•�‰�6���•�6 (for generated steam). 

Figure 16. Test samples of genetic algorithm (GA) to estimate re�ning motor load (a), and re�ning
steam generation (b).

The test phase of the DE method for estimating the targets is shown in Figure 18. The DE
parameters have crossover probability = 0.1, lower bound of scaling factor = 0.2, and upper bound
of scaling factor = 0.8. With regard to tracking the measured data, the intelligent model follows
the measured data accurately, and the statistical parameters were obtained as RMSE = 0.3398 MW,
R = 0.84 and MSE = 0.1155 MW2 (for motor load) and RMSE = 0.1303 kg/s, R = 0.8710 and
MSE = 0.0169 kg2/s2 (for generated steam).
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Figure 17. Test samples of ACO to estimate refining motor load (a), and refining steam generation (b). 

Figure 19 reports the statistic indicators of the six studied models attributing to implement 
different heuristic optimization algorithms to the ANFIS method for motor load and Figure 20 for 
generated steam prediction. In order to tabulate the data regarding the refining motor load and 
generated steam models evaluation criteria in Figures 19 and 20, Tables 3 and 4 are provided to 
address the real values of the mentioned variables. For both motor load and generated steam, the 
PSO algorithm works best in terms of the correlation coefficient ratio, which is �r�ä�{�r�w�t for motor load 
and �r�ä�{�r�u�t for generated steam, respectively. The TLBO algorithm shows the weakest performance 
in R-value. �r�ä�z�v�y�t for motor load and �r�ä�z�x�r�y for generated steam prediction are the value of the 
correlation coefficient (R) resulted from the TLBO optimization algorithm integrated to ANFIS. On 
the other hand, the results for both root mean squared error and mean squared error show similar 
behavior as the R criterion. So that the PSO algorithm results in the best and the TLBO algorithm in 
the worst performance for the error criteria. For instance, the RMSE value in motor load prediction is 

Figure 17. Test samples of ACO to estimate re�ning motor load (a), and re�ning steam generation (b).

Figure 19 reports the statistic indicators of the six studied models attributing to implement di�erent
heuristic optimization algorithms to the ANFIS method for motor load and Figure 20 for generated
steam prediction. In order to tabulate the data regarding the re�ning motor load and generated steam
models evaluation criteria in Figures 19 and 20, Tables 3 and 4 are provided to address the real values
of the mentioned variables. For both motor load and generated steam, the PSO algorithm works best
in terms of the correlation coe�cient ratio, which is 0.9052 for motor load and 0.9032 for generated
steam, respectively. The TLBO algorithm shows the weakest performance in R-value. 0.8472 for motor
load and 0.8607 for generated steam prediction are the value of the correlation coe�cient (R) resulted
from the TLBO optimization algorithm integrated to ANFIS. On the other hand, the results for both
root mean squared error and mean squared error show similar behavior as the R criterion. So that
the PSO algorithm results in the best and the TLBO algorithm in the worst performance for the error
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criteria. For instance, the RMSE value in motor load prediction is 0.2712 MW for the PSO algorithm
and 0.3488 MW for the TLBO algorithm, which respectively shows the best and worst performances in
RMSE value. This behavior is also true for the MSE index, as same as RMSE. Such a way that, MSE
value for generated steam prediction is 0.0128 kg2/s2 for the PSO algorithm and 0.0211 kg2/s2 for the
TLBO algorithm, which is approximately two times greater than the PSO one. Thus, the combination
of the ANFIS method and the PSO optimization algorithm determines the best model for predicting
motor power consumption and produced steam in the re�ning process. This model results in better
model accuracy evaluation criteria, which imply to be the most suitable model for the purpose of
energy e�ciency analysis and implementing optimal re�ning control strategy.
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Figure 18. Test samples of differential evolution (DE) to estimate refining motor load ( a), and 

refining steam generation (b). 
Figure 18. Test samples of di�erential evolution (DE) to estimate re�ning motor load (a), and re�ning
steam generation (b).
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Figure 19. Comparison of the statistical indicators for six evolutionary algorithms to predict the motor
load, (a) RMSE, (b) MSE, and (c) R.

Figure 20. Comparison of the statistical indicators for six evolutionary algorithms to predict the steam
generation, (a) RMSE, (b) MSE, and (c) R.
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