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Abstract
This paper presents a new alphabet-dependent bound for codes with hierarchical locality.
Then, the complete list of possible localities is derived for a class of codes obtained by
deleting specific columns from a Simplex code. This list is used to show that these codes are
optimal codes with hierarchical locality.

Keywords Hierarchical locality · Alphabet-dependent bound · Simplex code · Matroid
theory
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1 Introduction

In modern distributed storage systems (DSSs) failures happen frequently, whence decreasing
the number of connections required for node repair is crucial. Locally repairable codes (LRCs)
are a subclass of erasure-correcting codes, which allow a small number of failed nodes to be
repaired by accessing only a few other nodes. LRCs were introduced in [6], [11] where the
codes can locally repair one failure. They were later extended in [12], [8] to be able to repair
more failures locally.

An [n, k, d] linear code C of length n, dimension k, and minimum Hamming distance
d , has all-symbol locality (r , δ) if for all code symbols i ∈ [n] = {1, . . . , n}, there exists
a set Ri ⊆ [n] containing i such that |Ri | ≤ r + δ − 1 and the minimum distance of the
restriction of C to Ri is at least δ. We refer to C as an (n, k, d, r , δ)-LRC and to the sets Ri as
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repair sets or local sets. Related Singleton-type bounds have been derived for various cases
in [6,11,12] and the first bound with a fixed code alphabet was obtained in [3] for δ = 2.
Constructions achieving the Singleton-type bounds and the bound in [3] for δ = 2 were
provided in [8,9,11–14,16–18,20].

The authors of [1] proposed the first alphabet-dependent bound on LRCs over an alphabet
Q with |Q| = q using an upper bound B(n, d) on the cardinality of a code of length n and
minimum distance d . The global bound is as follows:

k ≤
(⌈

n − d + 1

r + δ − 1

⌉
+ 1

)
logq B(r + δ − 1, δ). (1)

Recently, [7] provided a different alphabet-dependent bound for LRCs of the same type
as the bound in [3] using the Griesmer bound Gq(k, d) := ∑k−1

i=0 �d/qi�. The bound has the
following form : Any linear (n, k, d, r , δ)-LRC C with κ the upper bound on the dimension
of the restriction of C to a repair set satisfies

k ≤ min
λ∈Z+

{
λ + k(q)

opt (n − μ, d)
}

(2)

where a, b ∈ Z such that λ = aκ + b, 0 ≤ b < κ and μ = (a + 1)Gq(κ, δ) − Gq(κ − b, δ).
In [15], the authors introduced the notion of codes with hierarchical locality (H-LRCs),

which optimizes futher the number of nodes contacted for repair according to the number of
failures. A 2-level H-LRC is a code where the restrictions to the repair sets are themselves
LRCs, thus providing an extra layer of locality. If an H-LRC has locality [(r1, δ1), (r2, δ2)],
then the number of nodes contacted to repair up to δ2−1 failures is at most r2 and the number
of nodes contacted for repair is at most r1 if the number of failures is ≥ δ2 and ≤ δ1 − 1.
This concept can be easily generalized to an arbitrary level of hierarchy. A Singleton-type
bound for codes with hierarchical locality was derived in [15] and constructions attaining the
bound were provided in [2,15].

In Sect. 3, we show how we can adapt the construction algorithms provided in [15] to
obtain an alphabet-dependent bound for H-LRCs of the same type as in [3]. By construction,
this bound is at least as good as the Singleton-type bound derived in [15].

In Sect. 4, we study the locality of one particular construction of LRCs presented in [16].
The general idea of this construction is to remove a Simplex code from another Simplex code
of higher dimension. It was shown in [16] that these codes achieve the Griesmer bound and
are LRCs with δ = 2. The goal in this section is to prove the locality for every dimension
and higher δ and show that this construction leads to optimal LRCs for every locality by the
bound (2) and to optimal H-LRCs by the new bound derived in Sect. 3.

As a first step, we describe the restrictions of dimension k − 1 and prove the locality for
this dimension using combinatorial techniques. These results allow us to derive the weight
enumerator of the constructed codes. As a second step, we use a recursive argument to get
all the restrictions of these codes to closed sets. Our main contribution is the complete list
of possible localities for these codes. In particular, this shows that the constructed codes
are alphabet-optimal H-LRCs. Finally, since a special case of this construction leads to the
Reed–Muller codes RM(1,m), we obtain as a corollary to our result that the Reed–Muller
codes RM(1,m) are H-LRCs and we derive their locality parameters.
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The complete hierarchical locality of the punctured Simplex code

2 Preliminaries

We denote the set {1, 2, . . . , n} by [n] and the set of all subsets of [n] by 2[n]. The set of all
positive integers including 0 is denoted by Z+.

The Gaussian coefficient, which counts the number of subspaces of dimension k in the
vector space F

n
q , is denoted by

[
n

k

]
q

=
k−1∏
i=0

qn−i − 1

qi+1 − 1
.

For a length-n vector v and a set I ⊆ [n], the vector vI denotes the restriction of the vector
v to the coordinates in the set I . A generator matrix of a linear code C is GC = (g1 · · · gn)
where gi ∈ F

k
q is a column vector for i ∈ [n]. The shortening of a code C to the set of

coordinates I ⊆ [n] is defined by C/I = {c[n]\I : c ∈ C such that ci = 0 for all i ∈ I } and
the restriction of a code C to I is defined by C|I = {cI : c ∈ C}. For convenience, we call
the codes obtained by a restriction restricted codes. Two linear codes C and C′ are called
isomorphic if C′ can be obtained by a permutation on the coordinates of the codewords of C.

The support of a codeword c ∈ C is supp(c) = {i ∈ [n] : ci 	= 0} and its weight is
wt(c) = |supp(c)|. The weight enumerator of C is defined as

WC(x, y) =
∑
c∈C

xn−wt(c)ywt(c).

The Simplex code S(m), or sometimes Sq(m), is a linear code over Fq obtained via the
generator matrix Gm consisting of all pairwise linearly independent vectors in F

m
q . The

parameters of S(m) are therefore [(qm − 1)/(q − 1),m, qm−1].
Since most of the work in this paper is done on subsets of coordinates and restricted

codes, it is preferable to use the notion of an entropy function on the subsets I ⊆ [n] that
corresponds to the dimension of the restriction to I . We only state here the definition for
linear codes but it can be generalize to bigger class of codes (see [19]).

Definition 1 Let C be a linear code of length n and I ⊆ [n]. The entropy associated to C is
the function HC : 2[n] → Z with HC(I ) = dim(C|I ).
For ease of notation, if the underlying code of HC is clear, we drop the specification to C. For
a subset I ⊆ [n], HC(I ) is equivalent to the rank of the submatrix of the generator matrix
formed by the columns gi with i ∈ I or the rank function of I in the associated matroid of
C. As such, it has the following standard properties.

Proposition 1 Let C be a linear code of length n and H the entropy function associated to
C. For I , J ⊆ [n], we have
1. H(I ) ≤ |I |,
2. If I ⊆ J then H(I ) ≤ H(J ),
3. H(I ∪ J ) + H(I ∩ J ) ≤ H(I ) + H(J ).

The entropy function also behaves nicely for restricted codes. Let I ⊆ [n] and C|I be the
restriction of C to the set I . Then for J ⊆ I , we have HC|I (J ) = HC(J ).

Finally, we define a closure operation on the subsets of [n] for linear codes.
Definition 2 Let C be a linear code of length n and I ⊆ [n]. The closure operator cl : 2[n] →
2[n] is cl(I ) = {e ∈ [n] : H(I ∪ e) = H(I )}. A set I ⊆ [n] is a closed set if cl(I ) = I .

One can think of the closure operator via the generator matrix GC of C where cl(I ) is the
set of all columns in GC contained in the linear span of the columns indexed by I .
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2.1 Preliminaries onmatroids

Since we work on Simplex codes which have a lot of combinatorial properties, we use some
tools coming frommatroid theory.Matroids havemany equivalent definitions in the literature.
Here, we choose to present matroids via their rank functions. Much of the contents in this
part can be found in more detail in [5].

Definition 3 A (finite) matroid M = (E, ρ) is a finite set E together with a rank function
ρ : 2E → Z such that for all subsets X , Y ⊆ E ,

(R.1) 0 ≤ ρ(X) ≤ |X |,
(R.2) X ⊆ Y ⇒ ρ(X) ≤ ρ(Y ),

(R.3) ρ(X) + ρ(Y ) ≥ ρ(X ∪ Y ) + ρ(X ∩ Y ).

Any matrix G over a field F generates a matroid MG = (E, ρ), where E is the set of
indices of the columns of G, and ρ(X) is the rank of the submatrix of G formed by the
columns indexed by X . As elementary row operations preserve the row space of G(X) for
all X ⊆ E , it follows that row-equivalent matrices generate the same matroid. Thus, there
is a straightforward connection between linear codes and matroids. Let C be a linear code
of length n and H the entropy function associated to C. Since the entropy function fits the
requirements of a rank function of a matroid, we can associate a matroid to C by considering
the matroid MC = ([n], H).

TwomatroidsM1 = (E1, ρ1) andM2 = (E2, ρ2) are isomorphic if there exists a bijection
ψ : E1 → E2 such that ρ2(ψ(X)) = ρ1(X) for all subsets X ⊆ E1. We denote two
isomorphic matroids by M1 ∼= M2. This implies in particular that if C1 and C2 are two linear
codes and MC1 is isomorphic to MC2 , then C1 is isomorphic to C2.

One way of defining a new matroid from an existing one is obtained by restricting the
matroid to one of its subsets. For a given set Y ⊆ E , we define the restriction of M to Y to
be the matroid M |Y = (Y , ρ|Y ) by ρ|Y (X) = ρ(X) for all subsets X ⊆ Y . The restriction of
M to E −Y is called the deletion of Y and is denoted by M \Y . The two previous operations
correspond to the restriction and puncturing of a linear code C.

Let M = (E, ρ) be a matroid. The closure operator cl : 2E → 2E is defined by cl(X) =
{e ∈ E : ρ(X ∪e) = ρ(X)}. A subset F ⊆ E is a flat if cl(F) = F . The collection of flats of
M is denoted byF(M) and forms a lattice under the inclusion. For F1, F2 ∈ F(M), the meet
is F1∧F2 = F1∩F2 and join is F1∨F2 = cl(F1∪F2).We denote by� the covering relation,
i.e., F1 � F2 if F1 � F2 and there is no F3 ∈ F(M) with F1 � F3 � F2. For Y ⊆ E , we can
express the flats of M |Y via the flats of M by the relation F(M |Y ) = {F ∩ Y : F ∈ F(M)}.
A hyperplane H is a flat of M with ρ(H) = ρ(E) − 1 and the collection of all hyperplanes
is denoted by H(M). One interesting property of H(M) is the following.

Proposition 2 ([10, Proposition 1.7.8]) Let F be a flat in M and suppose that ρ(F) =
ρ(E) − m where m ≥ 1. Then there is a set {H1, H2, . . . , Hm} of hyperplanes such that
F = ∩m

i=1Hi .

Proof We argue by induction on m. The result is immediate for m = 1. Assume it is true for
m and let F a flat with ρ(F) = ρ(E)− (m + 1). Clearly, there exists an element y ∈ E − F .
As F is a flat, cl(F ∪ y) is a flat of M covering F . Thus, ρ(cl(F ∪ y)) = ρ(E) − m and
by the induction assumption, there are m hyperplanes H1, H2, . . . , Hm such that ∩m

i=1Hi =
cl(F∪y). Now, either E−y is a hyperplane ofM or not. In the former case, let Hm+1 = E−y.
In the latter case, there is a hyperplane that contains F and is contained in E − y. Let Hm+1

be this hyperplane.
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In both cases, since y ∈ ∩m
i=1Hi but y /∈ Hm+1, we have ∩m+1

i=1 Hi 	= ∩m+1
i=1 Hi . Thus,

F ⊆ ∩m+1
i=1 Hi � ∩m

i=1Hi = cl(F ∪ y).

But cl(F ∪ y) covers F , so F = ∩m+1
i=1 Hi . ��

3 Bound for H-LRCs

Codes with hierarchical locality were introduced in [15] to optimize further the number of
nodes contacted for repair. In this section, we first focus on H-LRCs with 2-level hierarchy
and derive an alphabet-dependent bound for these codes based on [3]. Then, we extend this
bound to H-LRCs with h-level hierarchy.

Definition 4 Let r2 ≤ r1 and δ2 < δ1. An [n, k, d] linear code C is a code with hierarchical
locality having locality parameters [(r1, δ1), (r2, δ2)] if for all code symbols i ∈ [n], there
exists a set Mi ⊆ [n] such that
1. i ∈ Mi ,
2. H(Mi ) ≤ r1,
3. The minimum distance of C|Mi is at least δ1,
4. C|Mi is an LRC with (r2, δ2)-locality.

The codes C|Mi are called middle codes and their restrictions of dimension ≤ r2 and
minimum distance ≥ δ2 are called local codes. Similarly, the middle sets and local sets are
the sets Mi and the sets such that the restrictions to them give the local codes. Notice that,
contrary to the standard definition of LRCs, the authors of [15] bound the dimension of the
restricted codes instead of the size. H-LRCs, as storage codes, allow a more optimal repair
process. If less than δ2 failures occurred inside a local set, then the corresponding local code
can be used to repair those failures by contacting at most r2 nodes in the storage system.
When the number of failures is in between δ2 and δ1 −1, the middle codes guarantee a repair
where at most r1 nodes are contacted. Finally, if the number of failures is in between δ1 and
d − 1, those failures can be repaired by contacting at most k nodes in the global code.

It was proven in [15, Theorem 2.1] that any [n, k, d] linear code with hierarchical locality
[(r1, δ1), (r2, δ2)] satisfies the following Singleton-type bound

d ≤ n − k + 1 −
⌊
k − 1

r2

⌋
(δ2 − 1) −

⌊
k − 1

r1

⌋
(δ1 − δ2). (3)

To obtain the alphabet-dependent bound in [3], the authors proved two results: the con-
struction of a restricted codewith small dimension and large size and a lemma about shortened
codes. The lemma is the following.

Lemma 1 ([3, Lemma 2]) Let C be an [n, k, d] linear code over Fq and I ⊆ [n] such that
H(I ) < k. Then the shortened code C/I has parameters [n − |I |, k − H(I ), d ′ ≥ d].

Therefore, to get an alphabet-dependent bound for H-LRCs, we need to construct a set
with an upper bound on its entropy and such that its size uses the hierarchical locality property
to be as large as possible. To achieve this requirement, we modify the construction algorithm
used in the proof of the Singleton-type bound in [15].

Lemma 2 Let C be an [n, k, d] H-LRC with locality [(r1, δ1), (r2, δ2)] and λ ∈ Z+ with
0 ≤ λ ≤ k. Then, there exists a set Ic such that
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– H(Ic) ≤ λ,

– |Ic| ≥ λ +
⌊

λ
r2

⌋
(δ2 − 1) +

⌊
λ
r1

⌋
(δ1 − δ2).

Algorithm 1 For the proof of Lemma 2
1: Let i1 = 0, i2 = 0, I = ∅.
2: while ∃ middle set Mj such that Mj � I and H(I ∪ Mj ) ≤ λ do
3: while ∃ local set Li ⊂ Mj such that Li � I do
4: i2 = i2 + 1
5: ai2 = H(I ∪ Li ) − H(I )
6: si2 = ai2 + δ2 − 1
7: I = cl(I ∪ Li )
8: end while
9: i1 = i1 + 1
10: si2 = si2 − δ2 + δ1
11: end while
12: Let Mx a middle set with Mx � I .
13: while ∃ local set Li ⊂ Mx such that Li � I and H(I ∪ Li ) ≤ λ do
14: i2 = i2 + 1
15: ai2 = H(I ∪ Li ) − H(I )
16: si2 = ai2 + δ2 − 1
17: I = cl(I ∪ Li )
18: end while

Proof We use the construction given in Algorithm 1 to build the set Ic. In the algorithm, ai2
denotes the incremental entropy and si2 is a lower bound on the incremental size. Indeed if
J ⊆ [n] and Li is a local set such that Li � J and H(J∪Li ) > H(J ), then |cl(J∪Li )|−|J | ≥
H(J ∪ Li ) − H(J ) + δ2 − 1. Similarly, if J ⊆ [n] and Mj is a middle set such that Mj � J
and H(J ∪ Mj ) > H(J ), then |cl(J ∪ Mj )| − |J | ≥ H(J ∪ Mj ) − H(J ) + δ1 − 1.

Denote by I the set obtained at the end of Algorithm 1 and by i1 and j2 the last indices.
The total number of local sets visited in this algorithm is i2 ≥ � λ

r2
� since the union of � λ

r2
�

arbitrary local sets has an entropy less than λ. By the same argument, we have i1 ≥ � λ
r1

�.
Let se = λ − H(I ) and A ⊆ [n] such that H(A) = se and I ∩ A = ∅ which is always

possible to construct. Finally, let Ic = I ∪ A. We prove now that Ic has the desired properties.
By construction, we have H(Ic) = λ. For the size, we have

|Ic| = se + |I | ≥ se +
i2∑
i=1

si

= se +
i2∑
i=1

(ai + δ2 − 1) + i1(δ1 − δ2)

= λ + i2(δ2 − 1) + i1(δ1 − δ2)

≥ λ +
⌊

λ

r2

⌋
(δ2 − 1) +

⌊
λ

r1

⌋
(δ1 − δ2).

Hence, Ic has the desired entropy and size. ��
Thus, we obtain the following bound for 2-level H-LRCs.
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Theorem 1 Let C be an [n, k, d] H-LRC over Fq with locality [(r1, δ1), (r2, δ2)]. Then we
have

k ≤ min
λ∈Z+

{
λ + k(q)

opt (n − ν, d)
}

(4)

where ν = λ+� λ
r2

�(δ2 − 1)+� λ
r1

�(δ1 − δ2) and k
(q)
opt (n, d) is the largest possible dimension

of a code of length n, for a given alphabet size q and minimum distance d.

Proof Let λ ∈ Z+ with 0 ≤ λ ≤ k. By Lemma 2, there exists a set Ic ⊆ [n] such that
H(Ic) ≤ λ and |Ic| ≥ ν. Therefore, we have k = H(Ic) + k − H(Ic) ≤ λ + k − H(Ic).
Now, k − H(Ic) is the dimension of the shortened code C/Ic. By definition of k(q)

opt and by
Lemma 1, we have

dim(C/Ic) ≤ k(q)
opt (n − |Ic|, d ′) ≤ k(q)

opt (n − ν, d).

The statement now follows by taking the minimum over all λ ∈ Z+. ��
Lemma 2 can be seen as a proof of concept that we can modify the algorithms in [15]

to obtain an alphabet-dependent bound. Indeed, the algorithm presented here and the one
presented in [15] are equivalent in the sense that if λ = k − 1 and Ic is the set obtained by
the algorithm in the proof of Lemma 2, we obtain again the Singleton-type bound (3) via the
relation d ≤ n−|Ic|. This implies that the bound (4) is at least as good as the Singleton-type
bound (3).

3.1 Extension of the bound to arbitrary levels of hierarchy

In this part, we extend the alphabet-dependent bound to H-LRCs with h-level hierarchical
locality. The definition and notation of these codes is the following.

Definition 5 An [n, k, d] linear code C is a code with h-level hierarchical locality having
locality parameters [(r1, δ1), (r2, δ2), . . . , (rh, δh)] if for all code symbols i ∈ [n], there
exists a collection of sets {L1i , L2i , . . . , Lhi } such that for every j ∈ [h], we have
1. i ∈ L ji ⊆ [n],
2. H(L ji ) ≤ r j
3. The minimum distance of C|L ji

is at least δ j ,
4. C|L ji

is a code with (h − j)-level hierarchical locality having locality parameters
[(r j+1, δ j+1), (r j+2, δ j+2), . . . , (rh, δh)].
A set L ji for j ∈ [h] is referred to as a level- j set. It was proven in [15, Theorem 3.1] that

any [n, k, d] H-LRC with hierarchical locality [(r1, δ1), . . . , (rh, δh)] satisfies the following
Singleton-type bound

d ≤ n − k + 1 −
⌊
k − 1

rh

⌋
(δh − 1) −

h−1∑
l=1

⌊
k − 1

rl

⌋
(δl − δl+1). (5)

Obtaining an alphabet-dependent bound for these codes is done in the same manner as in
the case of h = 2.

Lemma 3 Let C be an [n, k, d] H-LRC with locality [(r1, δ1), . . . , (rh, δh)] and λ ∈ Z with
0 ≤ λ ≤ k. Then, there exists a set Ic such that

– H(Ic) ≤ λ,
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Algorithm 2 For the proof of Lemma 3
1: Let i1 = 0, i2 = 0, . . . , ih = 0; I = ∅;
2: M0 = [n], M1 = ∅, M2 = ∅, . . . , Mh = ∅.
3: for j ← 1, h do
4: while ∃ set L ji such that L ji � I and H(I ∪ L ji ) ≤ λ do
5: Mj−1 = L ji , Mj = L ji , l = j .
6: while cl(I ∪ L ji ) 	= I do
7: if ∃ a level-l set Lli ⊆ Ml−1 such that Lli � I then
8: Ml = Lli .
9: if l equals h then
10: ih = ih + 1, aih = H(I ∪ Mh) − H(I ), sih = aih + δh − 1.
11: I = cl(I ∪ Mh)

12: else
13: l = l + 1
14: end if
15: else
16: l = l − 1
17: il = il + 1, sih = sih + δl − δl+1.
18: end if
19: end while
20: for l ← j, h − 1 do
21: il = il + 1
22: end for
23: sih = sih + δ j − δh
24: end while
25: end for

– |Ic| ≥ λ +
⌊

λ
rh

⌋
(δh − 1) +

h−1∑
l=1

⌊
λ
rl

⌋
(δl − δl+1).

Proof We use the construction given in Algorithm 2 to build the set Ic. The basic idea is
the same as in the proof of Lemma 2. First, the algorithm identifies the smallest j such that
a level- j set L ji has H(L ji ) ≤ λ. This is important when λ < r1 or during the process of
the algorithm when λ − H(I ) becomes small. After this set is found, the algorithm visits
recursively the sets Lli with l ∈ [ j, h−1] such that each of them is contained in the previous
one and identifies a level-(h − 1) set L(h−1)i . Then, it starts adding to I the level-h sets
contained in L(h−1)i . When every symbol of L(h−1)i has been added to I , it steps back
one level, finds a new L(h−1)i ′ that contains new symbols not in I , and adds them in the
same manner using level-h sets. At some point, the algorithm adds to I a level-h set Lhi ′′
containing the last remaining symbols of L ji . The second while loop is not satisfied anymore
and because the last added set was a level-h set, the algorithm adds one to the count of the
visited sets per level between j and h − 1. Next, it pursues by identifying another level- j set
L ji ′ satisfying H(I ∪ L ji ′ ) ≤ λ or, if all level- j sets exceed λ, the algorithm searches for
valid level-( j + 1) sets.

As in the proof of Lemma 2, aih denotes the incremental entropy and sih is a lower bound
on the incremental size corrected accordingly to the level of the added set. The counters i j
for j ∈ [h] are the number of level- j sets visited by the algorithm.

When the algorithm terminates, the counters are lower-bounded by

il ≥
⌊

λ

rl

⌋
, 1 ≤ l ≤ h

since the union of � λ
rl

� arbitrary level-l sets L jl has an entropy less than λ.
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Denote by I the set obtained at the end of the algorithm and by i1, . . . , ih the last values of
the counters. Let se = λ − H(I ) and A ⊆ [n] such that H(A) = se and I ∩ A = ∅. Finally,
let Ic = I ∪ A. We prove now that Ic has the desired properties. By construction, we have
H(Ic) = λ. For the size, we have

|Ic| = se + |I | ≥ se +
ih∑
i=1

si

= se +
ih∑
i=1

ai +
ih∑
i=1

(δh − 1) + ih−1(δh−1 − δh) + ih−2(δh−2 − δh−1) + . . . + i1(δ1 − δ2)

= λ + ih(δh − 1) +
h−1∑
l=1

il(δl − δl+1)

≥ λ +
⌊

λ

rh

⌋
(δh − 1) +

h−1∑
l=1

⌊
λ

rl

⌋
(δl − δl+1).

Hence Ic has the desired entropy and size. ��
Thus, we obtain the following extension of the bound (4) for h-level H-LRCs.

Theorem 2 Let C be an [n, k, d] H-LRC over Fq with locality [(r1, δ1), . . . , (rh, δh)]. Then,
we have

k ≤ min
λ∈Z+

{
λ + k(q)

opt (n − ν, d)
}

(6)

where ν = λ + � λ
rh

�(δh − 1) +∑h−1
l=1 � λ

rl
�(δl − δl+1) and k(q)

opt (n, d) is the largest possible
dimension of a code of length n, for a given alphabet size q and minimum distance d.

As in the case h = 2, for λ = k − 1 and Ic the set obtained by Algorithm 2, we obtain
again the Singleton-type bound (5) via the relation d ≤ n−|Ic|, which shows that the bound
(6) is at least as good as the Singleton-type bound (5). Moreover, the bound (6) yields that
H-LRCs achieving any bound on the parameters [n, k, d] only are directly alphabet-optimal
H-LRCs by setting λ = 0.

4 Hierarchical locality ofS(m)− S(s)

In [16], the authors presented four different constructions of linear LRCs with small locality
and high availability. The constructions are based on a method developed in [4] where the
generator matrix of a code is obtained by deleting specific columns from the generator
matrix of a Simplex code. In this section, we are interested in the locality of one particular
construction in [16] where the deleted columns form again a Simplex code. This construction
is highly combinatorial and yields optimal codes achieving theGriesmer bound. The objective
is to describe the locality parameters for δ > 2 and all dimensions. We show that these codes
are locally repairable codes for every dimension implying a complete optimization of the
number of nodes contacted for repair according to the number of failures. Moreover, using
combinatorial techniques, we establish the complete list of possible locality and show how
the local sets can be arranged to form a hierarchical locality. Finally, we prove that these
codes are optimal LRCs for all localities and alphabet-optimal H-LRCs by the new bound
(6).

We start by formally defining the construction of these linear LRCs.
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Construction 1 ([16, Construction IV]) Let Gm be an m × qm−1
q−1 generator matrix of the

Simplex code S(m). Let GC be them× qm−qs

q−1 matrix obtained by deleting the qs−1
q−1 columns

inGm that beginwithm−s zeros. Notice that these qs−1
q−1 columns generate a code isomorphic

to S(s), the Simplex code of dimension s. ThenGC generates a linear code C over Fq denoted
by S(m) − S(s).

It was proven in [16, Theorem14] that the codeS(m)−S(s)withm ≥ 3 and s ∈ [2,m−1]
is a [ qm−qs

q−1 ,m, qm−1 − qs−1] linear LRC over Fq with locality (r = 2, δ = 2) if q > 2 or
if q = 2 and s < m − 1, and with locality (r = 3, δ = 2) when q = 2 and s = m − 1.
Moreover, S(m) − S(s) achieves the Griesmer bound by [16, Lemma 16]. Notice that the
code S(m) − S(m − 1) is isomorphic to the Reed–Muller code RM(1,m − 1).

The following example illustrates Construction 1.

Example 1 Let G4 and G2 be the generator matrices of the binary Simplex codes S2(4) and
S2(2) respectively. Then C = S2(4) − S2(2) is a binary [12, 4, 6] code generated by the
matrix

1 0 0 0 1 1 1 0 0 0 1 1 1 0 1
0 1 0 0 1 0 0 1 1 0 1 1 0 1 1
0 0 1 0 0 1 0 1 0 1 1 0 1 1 1
0 0 0 1 0 0 1 0 1 1 0 1 1 1 1

⎛
⎜⎜⎜⎝

⎞
⎟⎟⎟⎠

where the shadowed columns 3, 4, and 10 are deleted.

4.1 Locality ofS(m)− S(s)with dimensionm− 1

The goal of this subsection is to obtain the locality of S(m) − S(s) where the local codes
have a dimension of m − 1. For this, we make a detour to matroid theory by studying the
relation between the hyperplanes of the matroid associated to the Simplex code S(m) and
the hyperplanes of the matroid associated to S(m) − S(s). Indeed, the Simplex code has
intrinsically a lot of useful combinatorial structures and Construction 1 corresponds to a
deletion in matroid theory. Therefore, matroid theory is used here as a tool to understand
the closed sets of S(m) − S(s) of dimension m − 1 and to construct the local set for every
code symbol. We start by presenting a lemma that gives the relation between a flat and the
hyperplanes of the matroid associated to the Simplex code S(m).

Lemma 4 Let MS be the matroid associated to the Simplex code S(m) and Y ∈ F(MS) a
flat with ρ(Y ) ≤ m−1. Then, for all hyperplanes H ∈ H(MS) either Y ⊆ H or H ∩Y �Y .

Proof This claim can be proven using arguments from linear algebra. In fact, for Sq(m), MS
can be viewed as the matroid associated to the projective geometry PG(m−1, q). Therefore,
every element of MS spans a 1-subspace of F

m
q and the rank of a flat is the dimension of the

subspace spanned by the elements of this flat.
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Assume now that Y � H . Using the familiar vector space identity, we have

ρ(H ∩ Y ) = dim(span(H ∩ Y )) = dim(span(Y )) + dim(span(H)) − dim(span(H ∪ Y ))

= dim(span(Y )) + m − 1 − m

= ρ(Y ) − 1.

Hence, we have indeed that H ∩ Y � Y . ��
Because the Simplex code S(s) in Construction 1 is a closed set, we can use the previous

lemma applied to S(s) to understand the hyperplanes of S(m) − S(s) via the hyperplanes
of S(m) and the deletion corresponding to removing the columns in the generator matrix of
S(m).

Proposition 3 Let MS = (ES , ρS) be the matroid associated to the Simplex code S(m) and
MC = (EC, ρC) the matroid associated to the code C = S(m) − S(s). Let also Y ⊆ ES be
such that MS \ Y = MC . Then, the map

φ : {H ∈ H(MS) with Y 	= H} → H(MC)

H �→ H − H ∩ Y

is a bijection.

Proof By construction, the image of φ is a subset of 2EC . Firstly, we prove that H(MC) is
contained in the image of φ. Secondly, we prove that φ is well-defined which implies with
the first part that φ is a surjection. Finally, we prove that φ is an injection.

The flats of MC can be obtained by the flats of MS via the relation

F(M |(E − Y )) = {F ∩ (E − Y ) : F ∈ F(M)}
and F ∩ (E − Y ) = F − Y = F − F ∩ Y .

Therefore, we have that φ(H) ∈ F(MC). Moreover, since ρC(EC) = m, all hyperplanes
of MC have a rank equal to m − 1. Combining this with the fact that ρC(F − F ∩ Y ) =
ρS(F − F ∩ Y ) ≤ ρS(F) implies that if HC ∈ H(MC), then there exists H ∈ H(MS) such
that HC = H − H ∩ Y . Thus H(MC) is contained in the image of φ.

Let H ∈ H(MS) with H 	= Y . To show that φ is well-defined, it is enough to prove that
ρC(φ(H)) = m − 1, since φ(H) ∈ F(MC). Let MH = MS |H . By restriction and deletion
definitions, we have

ρC(φ(H)) = ρS(φ(H)) = ρMH (φ(H)).

Since the restricted codeS(m)|H is isomorphic to the Simplex codeS(m−1), itsminimum
distance is equal to qm−2. One equivalent definition of the minimum distance states that a
code of length n and dimension k has aminimum distance d if n−d is themaximal number of
columns of the generator matrix of the code that span a (k−1)-dimensional vector subspace.
By rephrasing this definition in terms of the matroid MH , its rank ρMH , and the minimum
distance dMH = qm−2, we obtain that

dMH = min{|A| : A ⊆ H and ρMH (H − A) < ρMH (H)}.
We distinguish two cases. Assume that s < m−1. By construction of C and MC , the size of Y
is |Y | = qs−1

q−1 . Since |H ∩ Y | ≤ |Y | = qs−1
q−1 < qm−2 = dMH , we have ρMH (H − H ∩ Y ) =

ρMH (H) = m − 1. Thus, ρC(φ(H)) = m − 1.
Assume now that s = m − 1. Then, there is a unique hyperplane of MS that contains Y

which is Y itself. By Lemma 4, we have H ∩ Y � Y . Since the restricted code S(m)|H∩Y
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is isomorphic to the Simplex code S(m − 2), we have |H ∩ Y | = qm−2−1
q−1 < qm−2. By the

same argument as before, we have

ρC(φ(H)) = ρMH (H − H ∩ Y ) = ρMH (H) = m − 1.

Hence, φ is well-defined and since the image of φ contains H(MC), φ is a surjection.
To prove the injection, suppose that φ(H1) = φ(H2) for H1, H2 ∈ H(MS) with Y 	=

H1, H2. Then, H1 − H1 ∩ Y = H2 − H2 ∩ Y . Now we look at these sets in MS . Since we
showed that ρS(H1 − H1 ∩ Y ) = m − 1, we have that cl(H1 − H1 ∩ Y ) = H1 because H1

is a hyperplane containing H1 − H1 ∩ Y . Similarly, we have cl(H2 − H2 ∩ Y ) = H2. Hence
H1 = H2 and φ is an injection. ��

The map in Proposition 3 gives us the relation between the hyperplanes of MC and the
hyperplanes of the matroid MS . We can now completely describe the restrictions of C to
hyperplanes and see that these restrictions are in fact isomorphic to certain codes obtained
by Construction 1.

Proposition 4 Let C be the code C = S(m) − S(s), MC the matroid associated to C, and
HC ∈ H(MC). Then C|HC is either isomorphic to the code S(m − 1) − S(s − 1) or to
S(m − 1) − S(s).

Proof LetMS be thematroid associatedwithS(m) andY ∈ F(MS) such thatMC = MS \ Y .
By Proposition 3, there exists H ∈ H(MS) such that HC = H − H ∩ Y . We prove the
isomorphism by distinguishing two cases depending on Lemma 4.

Suppose that Y ⊆ H . By restriction properties, we have

MC |HC = MS \ Y |HC = MS \ Y |(H − Y ) = MS |H \ Y .

By construction of the Simplex code, the matroid MS |H is isomorphic to M(S(m − 1)),
the matroid associated to the Simplex code S(m − 1). Since Y ∈ F(MS |H), we have that
(MS |H)|Y = MS |Y is isomorphic to M(S(s)).

Let EH and ES(m−1) be the ground sets of MS |H and M(S(m − 1)) respectively. Then,
there exists a bijection ϕ : EH → ES(m−1) that preserves the rank. Let GS(m−1) be a
matrix associated to M(S(m − 1)), {gi : i ∈ ES(m−1)} the set of columns of GS(m−1) and
Ŷ = {ϕ(e) : e ∈ Y }. Then MS |H \ Y is isomorphic to M(GS(m−1) − {gi : i ∈ Ŷ }).
Since the submatrix formed by the columns indexed in Ŷ has a rank equal to s, we can
perform some suitable row operations on GS(m−1) to transform the columns gi with i ∈ Ŷ
such that they are of the form g̃i = (0, 0, . . . , 0, g̃i1 , . . . , g̃is ) ∈ F

m−1
q . Let G̃S(m−1) be the

matrix obtained after the row operations. Then the matrix G̃S(m−1) − {g̃i : i ∈ Ŷ } is exactly
the generator matrix of the code S(m − 1) − S(s). By the previous isomorphism, we have
M(G̃S(m−1) − {g̃i : i ∈ Ŷ }) ∼= M(GS(m−1) − {gi : i ∈ Ŷ }) ∼= MS |H \ Y ∼= MC |HC . Hence
we have indeed that C |HC is isomorphic to S(m − 1) − S(s).

For the other case, assume now that Y � H . By Lemma 4, we have that HC = H −H ∩Y
with H ∩ Y � Y . Now this case follows the previous case in a similar manner by replacing
Y by H ∩Y and s by s − 1 since MS |(H ∩Y ) is isomorphic to S(s − 1). Therefore the same
type of isomorphisms yields that C |HC is isomorphic to S(m − 1) − S(s − 1). ��

It remains to show the existence of such closed sets for every code symbol in order to
prove that the code S(m) − S(s) is an LRC with locality obtained by restrictions to closed
sets of dimension m − 1.
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Theorem 3 Let C be the linear code C = S(m) − S(s) of length n with m ≥ 2 and s ≥ 0.
Then, for all e ∈ [n] we have the following.
– If s = 0, there is a set H ⊆ [n] containing e such that C|H is isomorphic to S(m − 1).
– If s = m − 1, there is a set H ⊆ [n] containing e such that C|H is isomorphic to

S(m − 1) − S(m − 2).
– If 1 ≤ s ≤ m − 2, there exist two sets H1, H2 containing e with H1 � H2 such that C|H1

is isomorphic to S(m − 1) − S(s) and C|H2 is isomorphic to S(m − 1) − S(s − 1).

Theorem 3 shows that every coordinate of C is contained in a restriction isomorphic to
a Simplex code or to a code obtained by Construction 1. To prove that C is an LRC, it
only remains to show that the minimum distance of the restrictions is greater than 1. This is
done later in Corollary 1 where we compute the minimum distance for many restrictions of
different dimensions.

Proof Let MS = (ES , ρS) be the matroid associated with the Simplex code S(m) and
Y ⊆ ES such that MC = MS \ Y . Let e ∈ ES \ Y . The general idea of the proof is the
following. First, we construct a specific hyperplane inH(MS) containing e. Secondly, we use
Proposition 3 to get a hyperplane of MC . Finally, we apply Proposition 4 to this hyperplane
to obtain the isomorphism.

If s = 0, then the code C is the Simplex code S(m) and there is therefore a hyperplane
H ∈ H(MC) containing e such that C|H is isomorphic to S(m − 1).

If s = m − 1, then Y ∈ H(MS) and is the only hyperplane containing Y . We know that
there exists at least one hyperplane inH(MS) that contains e. Let HS be such a hyperplane.
By Proposition 3, H := HS − HS ∩ Y is a hyperplane of MC containing e. Applying
Proposition 4 yields that C|H is isomorphic to S(m − 1) − S(s − 1) since Y is not contained
in HS .

Suppose now that 1 ≤ s ≤ m − 2. Since ρS(Y ∪ {e}) ≤ m − 1, there is a hyperplane
HY ,e in H(MS) that contains Y ∪ e. Therefore, Proposition 3 and Proposition 4 yield that
H1 := HY ,e−Y is a hyperplane ofMC containing e andC|H1 is isomorphic toS(m−1)−S(s).

Let X ∈ F(MS) such that X �Y and let Xe = cl(X ∪{e}) ∈ F(MS). By the hyperplanes
property, we have Xe = ⋂{HS : Xe ⊂ HS and HS ∈ H(MS)}. Thus, there exists HX ,e ∈
H(MS) such that Xe ⊆ HX ,e and Y � HX ,e. Applying Proposition 3 and Proposition 4
yields that H2 := HX ,e − HX ,e ∩ Y = HX ,e − X is a hyperplane of MC containing e and
C|H2 is isomorphic to S(m − 1) − S(s − 1). ��

Theorem3 can be seen as showing the existence of certain hyperplaneswhile Proposition 4
is of the form of a uniqueness statement on the parameters size, dimension and minimum
distance of the hyperplanes. Therefore, the two combined with Proposition 3 yield the com-
plete characterization of all the hyperplanes of the matroid associated to S(m) − S(s) and
thus the characterization of all restrictions of S(m)−S(s) to closed sets of dimensionm−1.

4.2 Weight enumerator ofS(m)− S(s)

Before we continue deriving the localities with dimension less than m − 1, the results
developed so far allow us to compute the weight enumerator of the codes obtained by Con-
struction 1. For this, we use a theorem from [10] that links the hyperplanes and the codeword
supports.

Theorem 4 ([10, Theorem9.2.4])For each linear codeC, the hyperplanes of MC are precisely
the complements of the minimal non-empty codeword supports of C.
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In order to compute the weight enumerator of C = S(m) − S(s), the idea is to associate
the codewords of C with the codewords of S(m) and the hyperplanes of MS . Then, we can
use Lemma 4 to understand the effect of the puncturing of S(m) on the hyperplanes of MS .
We start by a lemma that links the codewords of S(m) and the hyperplanes of MS .

Lemma 5 Let Sq(m) be the Simplex code of dimension m over Fq and MS the associated
matroid. Define ∼ as the equivalence relation on the non-zero codewords of S(m) given by
c ∼ c′ if c = ac′ with a ∈ F

∗
q . Then the map

ϕ : {c : c ∈ S(m), c 	= 0}/ ∼ → H(MS)

[c] �→ [n] − supp(c)

is a bijection.

Proof It is clear that∼ is indeed an equivalence relation. Furthermore, themap iswell-defined
since all multiples of a codewords share the same support. Then, Theorem 4 implies that ϕ

is a surjection. Now, there are qm−1
q−1 equivalence classes of codewords and

[ m
m−1

]
q

= qm−1
q−1

hyperplanes in MS since they are exactly the linear spaces of dimensionm − 1 in F
m
q . Hence

ϕ is a bijection. ��
We can now state the formula for the weight enumerator of C.

Theorem 5 The weight enumerator of the code C = Sq(m) − Sq(s) over Fq is

WC(x, y) = x
qm−qs

q−1 + (qm − qm−s)x
qm−1−qs−1

q−1 yq
m−1−qs−1 + (qm−s − 1)x

qm−1−qs

q−1 yq
m−1

.

Proof Let c ∈ C be a non-zero codeword of C and Y ⊂ [n] such that S(m)|[n]−Y = C, where
n is the length of S(m). Since both codes C and S(m) have the same dimension, there is a
bijection π : {c′ : c′ ∈ S(m)} → {c : c ∈ C} given by π(c′) = c′|[n]−Y

. Let c′ ∈ S(m) be such

that π(c′) = c. We have

wt(c) = wt(π(c′)) = wt(c′|[n]−Y
) = wt(c′) − wt(c′|Y ).

Let H ∈ H(MS) be the hyperplane obtained by H = ϕ(c′) in Lemma 5. Then, wt(c′) =
|supp(c′)| = n − |H | and wt(c′|Y ) = |Y | − |H ∩ Y |, since H is the set of coordinates where
c′
i = 0 for i ∈ H . Hence, if nC denotes the length of C, we obtain

wt(c) = nC − |H − H ∩ Y |.
This shows that the weight of c can be computed from the hyperplanes of S(m) and their
relation with Y . By Lemma 4, the hyperplanes of MS split into two disjoint sets depending
on whether they contain Y . We consider these two cases separately.

Suppose first that Y ⊂ H . Then, we have

wt(c) = nC − |H | + |Y |

= qm − qs

q − 1
− qm−1 − 1

q − 1
+ qs − 1

q − 1

= qm−1.

Now, the number of different hyperplane containing Y in MS is
[ m−s
m−s−1

]
q

= qm−s−1
q−1 . By

Lemma 5, each hyperplanes yields a different equivalence class of codewords. Since there
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are q − 1 codewords in each class, the number of codewords of weight qm−1 is equal to
qm−s − 1.

Suppose now that Y � H . By Lemma 4 and the flats of the Simplex code, we know that

|H ∩ Y | = qs−1−1
q−1 . Then, we have

wt(c) = nC − |H | + |H ∩ Y |

= qm − qs

q − 1
− qm−1 − 1

q − 1
+ qs−1 − 1

q − 1

q = qm−1 − qs−1.

The number of hyperplanes not containing Y is
[ m
m−1

]
q

− [ m−s
m−s−1

]
q

= qm−qs

q−1 . By the same

previous argument, the number of codewords of weight qm−1−qs−1 is then equal to qm −qs

and this concludes the proof. ��

4.3 The complete locality ofS(m)− S(s)

In this subsection, we describe the restrictions of C = S(m) − S(s) of dimension less than
m−1 to obtain the rest of the possible localities. The main observation is that Theorem 3 was
carefullywritten as a recursive statement on the same type of construction already considered,
i.e., a Simplex code removed from another Simplex code. Therefore, we can apply Theorem 3
again on the restriction C|H to obtain, up to isomorphism, the restricted codes of dimension
m − 2 of C|H and thus of C as well. Moreover, since every code symbol is contained in a
restriction of C of dimensionm−1, applying Theorem 3 again on the restricted codes implies
that every code symbol is also contained in a restriction of C of dimension m − 2. This is
crucial when considering the locality of C. We start with an example.

Example 2 Let C = S2(4) − S2(2) be the [12, 4, 6] binary linear code of Example 1. Since
s < m − 1, Theorem 3 implies that for all code symbols e ∈ [n], there exist two sets
H1, H2 ⊆ [12] containing e such that C|H1 is isomorphic to S2(3) − S2(1) and C|H2 is
isomorphic to S2(3)−S2(2). In other words, there are two restrictions C|H1 , C|H2 containing
e with parameters [6, 3, 3] and [4, 3, 2] respectively. Therefore, C is an LRC with locality
(r = 4, δ = 3) and also an LRC with locality (r = 3, δ = 2). Notice that r = 4 for the first
locality even if the dimension of the restricted codes is equal to 3. This is due to the fact that
r must satisfy |Ri | ≤ r + δ − 1 as opposed to the definition of H-LRCs where H(Ri ) ≤ r1.

If we apply Theorem 3 to S2(3) − S2(1), we obtain by isomorphism that there exist
H3, H4 ⊆ H1 containing e such that C|H3 is isomorphic to S2(2) − S2(1) and C|H4 is
isomorphic to S2(2). S2(2) − S2(1) is a [2, 2, 1] code and thus does not provide an extra
locality. On the other hand, S2(2) is a [3, 2, 2] code which implies that C is also an LRC with
locality (r = 2, δ = 2). Furthermore, by construction of the local sets, C is an H-LRC with
locality [(3, 3), (2, 2)].

Example 2 illustrates how Theorem 3 can be used to obtain the locality for different
dimensions. Moreover, because of the recursive form of Theorem 3, the local sets can be
arranged in such a way that we obtain a hierarchical locality. We break down what happens
to the restrictions when we iterate Theorem 3 by considering the restriction types, i.e., the
different isomorphic restrictions. Suppose for simplicity that m is sufficiently large and s is
close to half of m. As illustrated in Fig. 1, applying Theorem 3 on the two restriction types
of dimension m − 1 gives three new restriction types of dimension m − 2, as two of them
lead to the same isomorphic code.
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Fig. 1 Illustration of the top level
locality of the code S(m) − S(s)
after appropriate isomorphisms

Suppose now that, after some iterations of Theorem 3, we obtain the restriction types of
dimension κ . Let a, b ∈ Z+ such that all restriction types are of the form S(κ) − S(i)
with a ≤ i ≤ b. Now, the restriction types of dimension κ − 1 can be obtained by applying
Theorem 3 on the restriction types of dimension κ . Two extremal cases need to be taken into
account. If a = 0, the only restriction type that we get from S(κ) − S(a) is S(κ − 1). If
b = κ −1, the only restriction type is S(κ −1)−S(κ −2). This is illustrated in Fig. 2 where
the two dashed boxes represent the conditional new restriction types that exist only if a > 0
or b < κ − 1. This sketches the high level idea of the proof of the next theorem describing
precisely the different restriction types for a given dimension κ .

Theorem 6 Let C = S(m) − S(s) with m ≥ 3 and 0 ≤ s ≤ m − 1. Let κ ∈ [2,m − 1] and i
be an integer such that max{0, s − m + κ} ≤ i ≤ min{s, κ − 1}. Then for all code symbols
e ∈ [n], there is a set Fi ⊆ [n] containing e such that C|Fi is isomorphic to S(κ) − S(i).

Remark 1 Notice that max{0, s−m+κ} ≤ min{s, κ −1}. Indeed we have min{s, κ −1} ≥ 0
since κ ≥ 3 and s ≥ 0. Since κ ≤ m − 1 and s ≤ m − 1, then s − m + κ ≤ s − 1 and
s −m + κ ≤ κ − 1. Thus, min{s, κ −1} ≥ s −m + κ and we have that max{0, s −m + κ} ≤
min{s, κ − 1}. Therefore, the claim of Theorem 6 is that there always exist such restrictions
for all dimensions κ ∈ [2,m − 1].
Proof We denote by Iκ the set Iκ = {i ∈ Z+ : max{0, s − m + κ} ≤ i ≤ min{s, κ − 1}}.
Let also e ∈ [n] be an arbitrary code symbol.

The case κ = m − 1 is exactly Theorem 3 with the set Im−1 being equal to {0} when
s = 0, Im−1 = {m − 2} if s = m − 1, and Im−1 = {s − 1, s} if 1 ≤ s ≤ m − 2.

We now prove the theorem by doing a reverse induction on κ as long as κ ≥ 3. Assume
that the claim is true for κ , i.e., for all j ∈ Iκ and for all code symbol e ∈ [n], there exists
a set Wj ⊆ [n] containing e such that C|Wj is isomorphic to S(κ) − S( j). The goal is to
construct the restrictions of dimension κ − 1.

Let b = min{s, κ −1}. By the induction hypothesis, there exists a setWb ⊆ [n] containing
e such that C|Wb is isomorphic to S(κ) − S(b).

If b = κ −1 then applying Theorem 3 on C′ = S(κ)−S(κ −1) yields that for all symbols
e′ ∈ [n′], with n′ being the length of the code C′, there is a set F ⊆ [n′] containing e′ such
that C′|F is isomorphic to S(κ − 1) − S(κ − 2). Therefore, there exists a set Fb−1 ⊆ [n]

Fig. 2 Sketch of an iteration of Theorem 3 on the different restrictions types
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containing e such that C|Fb−1 is isomorphic to S(κ − 1) − S(κ − 2) since we have that
C|Fb−1 = (C|Wb )|Fb−1 . Since b = κ − 1, then we have that κ − 2 = b − 1 = min{s, κ − 2}.

If b = s < κ − 1, then the third case of Theorem 3 applied to S(κ) − S(s) and the
corresponding isomorphisms yields that there exists a set Fb such that C|Fb is isomorphic to
S(κ) − S(b). Moreover, since b < κ − 1, then b = min{s, κ − 2}.

Let j ∈ [max{0, s −m + κ},min{s, κ − 1} − 1]. Notice that this interval might be empty
for example if s = m − 1. If the interval is not empty, let Wj the set containing e by the
induction hypothesis such that C|Wj is isomorphic to S(κ)−S( j). Since by definition of the
interval, we have that j < κ −1, we can apply Theorem 3 to obtain a set Fi ⊆ [n] containing
e such that C|Fi is isomorphic to S(κ − 1) − S( j).

Finally, ifmax{0, s−m+κ} > 0, then let a = s−m+κ andWa containing e such thatC|Wa

is isomorphic to S(κ)−S(a). Since a ≥ 1, we can use the third case of Theorem 3 applied to
S(κ)−S(a) to obtain a set Fa−1 ⊆ [n] such that C|Fa−1 is isomorphic to S(κ −1)−S(a−1).
Moreover, we have a − 1 = max{0, s − m + κ − 1}.

Hence, we have constructed a set for e isomorphic to S(κ − 1) − S(i) for all i in the set

[max{0, s − m + κ},min{s, κ − 1} − 1]
∪ min{s, κ − 2} ∪ max{0, s − m + κ − 1}

= [max{0, s − m + κ − 1},min{s, κ − 2}]
= Iκ−1.

Since e was an arbitrary symbol, this concludes the proof. ��
As a corollary of Theorem 6, we have that C is an LRC as long as the restriction types have

a minimum distance greater than or equal to 2. We choose to give here the length, dimension
and minimum distance of the local codes to avoid confusion on the parameter r and r1 in the
two definitions of LRCs and H-LRCs.

Corollary 1 Let C = S(m) − S(s) with m ≥ 3 and 0 ≤ s ≤ m − 1. Let κ ∈ [3,m − 1] and
i be an integer such that max{0, s − m + κ} ≤ i ≤ min{s, κ − 1}. Then C is an LRC with
local code parameters ⎧⎨

⎩
[
qκ−qi

q−1 , κ, qκ−1 − qi−1
]

if i > 0,[
qκ−1
q−1 , κ, qκ−1

]
if i = 0.

Furthermore, for κ = 2, we have the following local parameters:

– If 0 ≤ s ≤ m − 2, then C is an LRC with local parameters [q + 1, 2, q]
– If q > 2 and 1 ≤ s ≤ m − 1 then C is an LRC with local parameters [q, 2, q − 1].

Proof When κ ≥ 3, Theorem 6 guaranties that for every code symbol e ∈ [n], there is a
restriction containing e isomorphic to S(κ) − S(i). Therefore C is an LRC code with the
parameters of the local sets given by the parameters of S(κ)−S(i)with a minimum distance
greater than or equal to 2.

When κ = 2, we need to distinguish some cases as theminimumdistancemight be smaller
than 2. Let I2 = {i : max{0, s − m + 2} ≤ i ≤ min{s, 1}} be the range of the parameter i
when κ = 2. If s = 0, then I2 = {0} and by Theorem 6, there is a restriction containing e
isomorphic to S(2). The parameters of the restriction is then [q + 1, 2, q] and the minimum
distance is thus greater than or equal to 2.
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If 1 ≤ s ≤ m − 2, then s − m + 2 ≤ 0 so max{0, s − m + 2} = 0 and I2 = {0, 1}. By
Theorem 6, every code symbol is contained in a restriction isomorphic to S(2) and in another
restriction isomorphic to S(2)−S(1). Since the parameters of S(2)−S(1) are [q, 2, q −1],
then the minimum distance is greater than or equal to 2 if and only if q > 2.

Finally, if s = m − 1, then s − m + 2 = 1 and I2 = {1}. Thus, C is an LRC code with
locality parameters [q, 2, q − 1] if q > 2. ��

Notice that when κ = 2, we obtain again the locality proven in [16]. We explain next why
the list of localities of Corollary 1 is the complete list of possible localities with closed local
sets. In Corollary 1, the list of different localities is established by removing the restrictions
leading to codeswithminimumdistance 1 from the list of Theorem6.But the list of Theorem6
relies on consecutive iterations of Theorem 3, where Proposition 4 can be applied at each
iteration guaranteeing the uniqueness of the restriction types. Therefore, Theorem 6 contains
the complete list of restriction types and Corollary 1 contains the complete list of possible
localities with closed local sets.

We will now look at two special cases of Theorem 6 and Corollary 1. In the first example,
we study the case when s = 0.

Example 3 Let C = S(m) − S(0) = S(m) with m ≥ 3. Let Iκ = {i : max{0, s − m + κ} ≤
i ≤ min{s, κ − 1}} be the range of the parameter i in Theorem 6. Since s = 0, we have that
Iκ = 0. Then Theorem 6 and Corollary 1 imply that C is an LRC code with local parameters
[ qκ−1
q−1 , κ, qκ−1] for all κ ∈ [2,m − 1]. This result was already proven in [7].

For the second example, we look at the case when s = m − 1 and C corresponds to the
Reed–Muller code RM(1,m − 1).

Example 4 Let C = S(m) − S(m − 1) with m ≥ 3 corresponding to the Reed–Muller code
RM(1,m − 1). Let Iκ the set Iκ = {i : max{0, s − m + κ} ≤ i ≤ min{s, κ − 1}}. Since
s = m−1, we have Iκ = {κ−1}. Hence Theorem 6 and Corollary 1 imply that RM(1,m−1)
is an LRC with local parameters [qκ−1, κ, qκ−1 − qκ−2] for all κ ∈ [3,m − 1] and the local
codes are isomorphic to the Reed–Muller code RM(1, κ − 1). Furthermore, if q > 2, then
RM(1,m − 1) is also an LRC with local parameters [q, 2, q − 1]. Moreover, since every
locality is obtained by restrictions on the previous local sets, we get that the Reed–Muller
codes RM(1,m − 1) are H-LRCs with (m −3)-level hierarchy over the binary field and with
(m − 2)-level hierarchy over Fq with q > 2.

We conclude this section by showing the optimality of S(m) − S(s) with respect to the
bounds (2) and (6) and present a table containing binary codes obtained by Construction 1
and their hierarchical localities.

Theorem 7 Let C = S(m) − S(s) with m ≥ 3 and 0 ≤ s ≤ m − 1. Then C is an optimal
LRC for every locality described in Corollary 1. Moreover, C is an optimal H-LRC with

{
(m − 2)-level hierarchical locality when q > 2 or q = 2 and s < m − 1,
(m − 3)-level hierarchical locality when q = 2 and s = m − 1.

Proof Since C already achieves the Griesmer bound on the parameters [n, k, d], it will
achieves the bound (2) for λ = 0 and thus be an optimal LRC code for each locality described
in Corollary 1.
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Fig. 3 Table of the complete hierarchical locality for binary codes S2(m) − S2(s) with m ∈ [2, 6] and
s ∈ [0, 4]

We exhibit now a particular chain of subsets that yields the hierarchical locality. Vaguely
speaking, the chain is obtained by taking the left foremost diagonal restriction types in Figs. 1
and 2 .

Formally, let e ∈ [n] be an arbitrary code symbol. By Theorem 6, for all κ ∈ [2,m − 1],
there exists a set Fκ ⊆ [n] containing e such that C|Fκ is isomorphic to S(κ)−S(max{0, s−
m + κ}). Define Fm = [n]. Each Fκ was obtained in the proof of Theorem 6 by applying
Theorem 3 to C|Fκ+1 . Therefore, we have F2 ⊆ F3 ⊆ · · · ⊆ Fm−1 ⊆ [n]. Moreover,
because C|Fκ is isomorphic to S(κ) − S(max{0, s − m + κ}), for every a ∈ Fκ , there
exists such a chain F2,a ⊆ F3,a ⊆ · · · ⊆ Fκ−1,a with a ∈ Fl,a and C|Fl,a is isomorphic to
S(l) − S(max{0, s − m + l}) for l ∈ [2, κ − 1].

Now if d is theminimumdistance of C, then theminimumdistance ofS(κ)−S(max{0, s−
m + κ}) is

δκ =
{
qκ−1 − qs−m+k−1 = d

qm−κ if κ > m − s,

qκ−1 if κ ≤ m − s.

Notice that δκ is less than 2 if and only if q = 2, s = m − 1, and κ = 2 by Corollary 1.
Hence, if q > 2 or q = 2 and s < m − 1, then C is an H-LRC with (m − 2)-level

hierarchical locality having locality parameters

[(m − 1, δm−1), . . . , (2, δ2)].
When q = 2 and s = m − 1, C is an H-LRC with (m − 3)-level hierarchical locality having
locality parameters

[(m − 1, δm−1), . . . , (3, δ3)].
Finally, C achieves the new alphabet-dependent bound (6) for H-LRC codes when λ = 0

and kqopt is taken to be the Griesmer bound. ��
The table in Fig. 3 represents the binary linear codes obtained by the construction S2(m)−

S2(s). The columns are sorted by s ∈ [0, 4] and the rows are sorted bym ∈ [2, 6]. Moreover,
the lines describes the locality of dimension m − 1 obtained by Theorem 3. Therefore, if C
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and C′ are two codes in the table such that there exists a path from C′ to C, then C has locality
C′, i.e., each symbol of C is contained in a restriction isomorphic to C′. Figure 3 gives also
the hierarchical locality of a binary code via the paths to smaller codes. Finally, the codes in
blue are the binary Reed–Muller codes RM(1,m − 1).

5 Conclusion

In this paper, we presented a new alphabet-dependent bound for codes with hierarchical
locality. Then, we worked on a class of codes obtained by deleting a Simplex code from
another Simplex code of higher dimension. We derived the weight enumerator of these codes
and the complete list of possible localities with closed repair sets. Finally, we used this list
to show that these codes are optimal LRCs and optimal H-LRCs by the new bound.
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