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ABSTRACT

This paper investigates the subcycling of particle orbits in variational, geometric particle-in-cell methods, addressing the Vlasov–Maxwell
system in magnetized plasmas. The purpose of subcycling is to allow different time steps for different particle species and, ideally, time steps
longer than the electron gyroperiod for the global field solves while sampling the local cyclotron orbits accurately. The considered algorithms
retain the electromagnetic gauge invariance of the discrete action, guaranteeing a local charge conservation law, while the variational
approach provides a bounded long-time energy behavior.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0006403

I. INTRODUCTION

During the past decade, both understanding and developing
of structure-preserving algorithms for simulating plasmas have
leaped forward and, to a large extent, this development has been
driven by the so-called geometric particle-in-cell (GEMPIC)
methods1–11—see Ref. 12 for a review of the broader topic and an
exhaustive list of references on the mathematical structures in
plasma models. Based on discretizing either the underlying varia-
tional or Hamiltonian structure, GEMPIC algorithms provide
long-time fidelity and stability for models with possibly billions of
degrees of freedom. This is especially important for kinetic simula-
tions of magnetized fusion plasmas, where reaching macroscopic
transport at time scales of 10�6 s requires a breathtaking number
of time steps to resolve the electron cyclotron motion typically
appearing at the time scales of 10�11 s. Such an enormous feat has
been performed only very recently,11 but this will likely become
common place during the 2020s.

To our knowledge, the GEMPIC methods have so far considered
only synchronous integration of particle orbits and electromagnetic
fields, whereas the non-GEMPIC methods, which have become the
industry standard,13–21 implement the so-called subcycling or orbit-
averaging of particle orbits out of the box. The only GEMPIC attempt
in this direction, reported in Ref. 22, is based on an energy-conserving

temporal discretization technique rather than a variational integrator.
Especially in simulating multi-component, strongly magnetized plas-
mas treating both ions and electrons kinetically, multiple different
time scales naturally emerge as the ion and electron cyclotron periods
differ by their respective mass ratios. It would be preferable not to
restrict the field solve or the ion push to the fastest time scale—typi-
cally the electron cyclotron period unless the plasma density is very
high, in which case the electron plasma oscillations become domi-
nant—but to allow for the subcycling of particle orbits at their natu-
rally occurring frequencies. The absence of this feature from the
GEMPIC methods does not need to remain the state of the business,
though, and the purpose of this paper is to explore the possibilities in
modifying GEMPIC methods toward fully asynchronous and, in
future, possibly temporally adaptive integration.

We investigate two different strategies for subcycling of particle
orbits within the variational GEMPIC framework. Both approaches
retain the electromagnetic gauge invariance of the discrete action—
guaranteeing a local charge conservation law—and the variational
approach provides a bounded long-time energy behavior. The first
approach is intended for upgrading the existing variational GEMPIC
methods to include subcycling with minimal effort invested in modifi-
cations: the global field solves are explicit and the local particle push is
implicit for each particle individually, just as in the pioneering paper,1
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or explicit if rectilinear meshes with a diagonal metric and the novel
zigzag path10,11 are exploited. The requirement for gauge invariance,
however, leads to a peculiarity: the magnetic field is orbit-averaged,
but the effect of electric field on the particle orbits is evaluated only
once during the subcycling period. Numerical tests indicate that artifi-
cial oscillations may occur if the electric field impulse on the particle
orbit is too large, essentially, when the global time step approaches or
exceeds the cyclotron time scale. This behavior is likely credited to the
electric field not being orbit-averaged the same way as the magnetic
field is, which increases the instantaneous relative impulse from the
electric field in comparison to the impulse from the magnetic field.
Indeed, the oscillations are observed to vanish if orbit-averaging is
enforced also for the electric field, but then the particle push is no lon-
ger variational and the good long-time behavior is destroyed.

The second strategy is proposed to remedy the issues possibly
occurring with the first approach. Instead of relying on the
“summation-by-parts” trick, we observe that, in enabling proper par-
tial integration in the field–particle-interaction term of the discrete
action, both magnetic and electric field impulses can be orbit-averaged
and the variational structure together with gauge invariance can be
retained. Repeating the numerical tests confirms our hypothesis that
the artificial oscillations are rooted in not orbit-averaging the electric
field impulse, since the second scheme does not exhibit such artificial
oscillations. The choice of enabling proper partial integration in the
discrete action, however, appears to always lead to an implicit scheme,
in contrast to the clever summation-by-parts trick that admits an
explicit field solve and a fully explicit scheme in the case of rectilinear
meshes. This implicitness, however, only relates to how the electric
field, the current density, and the particle push are coupled, for the
Faraday equation remains explicit. Consequently, both algorithms
have Courant-Friedrichs-Lewy (CFL)-conditions on the field solves.
Per these findings, it remains to be seen if proper orbit-averaging could
be performed within the variational framework with explicit schemes.

We will begin by briefly recapitulating the essential elements of a
structure-preserving variational discretization of the Vlasov–Maxwell
system in Sec. II and then proceed to presenting the new algorithms.
The explicit scheme with an implicit particle push is introduced in Sec.
III together with the numerical experiments, indicating the possible
oscillation problem and a demonstration that brute-force orbit-averag-
ing the electric field removes them. The version with an explicit parti-
cle push, requiring rectilinear meshes, is provided in Sec. IV,
demonstrating a similar behavior. Building on this learning outcome,
the implicit scheme is derived in Sec. V and the numerical tests are
repeated yet again, demonstrating that the artificial oscillations no lon-
ger exist and that the global step size may safely exceed the cyclotron
period as long as it remains within the CFL limit. Finally, we engage in
a brief discussion regarding the high-performance computing aspects
and the stability of the algorithms in Sec. VI, while the results are sum-
marized and possible suggestions for future research directions are dis-
cussed in Sec. VII.

II. ELEMENTS OF STRUCTURE-PRESERVING
DISCRETIZATION

In this section, we briefly summarize some of the essential build-
ing blocks for implementing a variational GEMPIC method for the
Vlasov–Maxwell system. For more details, we refer the reader to the
excellent papers.1,9,10

Let us assume we have some domain X � R3 and a finite-
dimensional discretization of the associated de Rham complex: we
expect there to be the sets of scalar- and vector-valued basis functions
fW0

i gi; fW1
j gj; fW2

kgk, and fW3
‘ g‘, all functions of position x, such

that

rW0
i ðxÞ ¼ gradjiW

1
j ðxÞ; (1)

r�W1
j ðxÞ ¼ curlkjW

2
kðxÞ; (2)

r �W2
kðxÞ ¼ div‘kW

3
‘ ðxÞ; (3)

where gradji; curl
k
j , and div‘k denote the elements of the discrete gradi-

ent, curl, and divergence matrices, respectively. Einstein summation
over the repeated superscript–subscript index pairs is assumed
throughout, and the letters i; j; k; ‘ always refer to the corresponding
element spaces as denoted above. One typical way to construct such a
basis is via the Whitney interpolating functions on simplical meshes,
while structured rectilinear meshes often use regular polynomials.

Because the basis functions satisfy the de Rham complex, we
have that

0 ¼ r�rW0
i ¼ gradjir�W1

j ¼ gradjicurl
k
jW

2
k; (4)

0 ¼ r � r �W1
j ¼ curlkjr �W2

k ¼ curlkj div
‘
kW

3
‘ ; (5)

for all x 2 X, implying the matrix identities curlkj grad
j
i ¼ 0 and

div‘kcurl
k
j ¼ 0. The spatial discretizations of the vector and scalar

potential are then taken to be

AextðxÞ ¼ ajextW
1
j ðxÞ; (6)

Aðx; tÞ ¼ ajðtÞW1
j ðxÞ; (7)

/ðx; tÞ ¼ /iðtÞW0
i ðxÞ; (8)

where the subscript “ext” refers to a static, given quantity, and the defi-
nitions then imply the following expressions for the finite-dimensional
electric and magnetic fields

E ¼ ð� _aj � /igradjiÞW1
j � ejW1

j ; (9)

B ¼ ajcurlkjW
2
k � bkW2

k: (10)

A possible external, fixed magnetic field is naturally denoted by

Bext ¼ ajextcurl
k
jW

2
k � bkextW

2
k: (11)

The finite-dimensional magnetic field now satisfies the identities

@tB ¼ _ajcurlkjW
2
k ¼ �ejr�W1

j ¼ �r� E; (12)

@tr � B ¼ _ajcurlkj div
‘
kW

3
‘ ¼ 0; (13)

meaning that, if the degrees of freedom for B initially satisfy
bkdiv‘k ¼ 0, the magnetic field will stay divergence free for all times.

In particle-in-cell methods, the idea is to let marker particles
carry the phase-space density forward in time, starting from a fixed
initial density distribution

F0 ¼
X
p

dðx0 � xpðt0ÞÞdðv0 � _xpðt0ÞÞ; (14)

where ðxpðt0Þ; _xpðt0ÞÞ are the initial position and velocity coordinates
for the marker trajectory ðxpðtÞ; _xpðtÞÞ. In practice, every marker

Physics of Plasmas ARTICLE scitation.org/journal/php

Phys. Plasmas 27, 092506 (2020); doi: 10.1063/5.0006403 27, 092506-2

Published under license by AIP Publishing

https://scitation.org/journal/php


should be weighted with a label wp, accounting for the number of real
particles the marker represents. Here we have, however, suppressed
this factor for notational clarity. From here on, we will also use
the tuples x ¼ fxpgp; _x ¼ f _xpgp; a ¼ fajgj; _a ¼ f _ajgjb ¼ fbkgk;
e ¼ fejgj, and / ¼ f/igi to group together the degrees of freedom.
Especially, it is to be understood that / now refers to the tuple of
degrees of freedom, not to the space-continuous electrostatic potential.

Once the above definitions are clear, one substitutes them to the
Vlasov–Maxwell action functional, performs the integrations over
phase space, and obtains a finite-dimensional yet time-continuous
action functional

S x;a;/½ � ¼
ðtf
ti

e0
2
ej1M1

j1;j2e
j2dt�

ðtf
ti

l�10

2
ðbk1 þ bk1extÞM2

k1k2ðb
k2 þ bk2extÞdt

þ
X
p

ðtf
ti

qðaj þ ajextÞW1
j ðxpÞ � _xpdt�

X
p

ðtf
ti

q/iW0
i ðxpÞdt

þ
X
p

ðtf
ti

1
2
mj _xpj2dt; (15)

where one is to remember the relations ej ¼ � _aj � gradji/
i and

bk ¼ curlkj a
j. The constant finite-element mass matrices, related to

one-form and two-form element bases, are defined according toð
X
W1

j1ðxÞ �W
1
j2ðxÞdx ¼ M1

j1 j2 ; (16)ð
X
W2

k1ðxÞ �W
2
k2ðxÞdx ¼ M2

k1k2 : (17)

From the perspectives of solving the Vlasov–Maxwell system of
equations while respecting the Gauss’ law constraints, the electromag-
netic gauge invariance turns out to be a key requirement. Let us first
perturb a! aþ �da and /! /þ �d/ and differentiate the per-
turbed action with respect to � at �¼ 0. This computation provides

@�j�¼0S x; aþ �da;/þ �d/½ �

¼ �
ðtf
ti

d
dt

daj1e0M
1
j1;j2e

j2
� �

dt

þ
ðtf
ti

daj1 e0M
1
j1;j2

_ej2 � l�10 curlk1j1 M
2
k1;k2ðb

k2 þ bk2extÞ
� �

dt

�
ðtf
ti

d/i1e0grad
j1
i1M

1
j1;j2e

j2dt

þ
X
p

ðtf
ti

qdajW1
j ðxpÞ � _xp � qd/iW0

i ðxpÞ
� �

dt: (18)

Applying Hamilton’s principle of least action, assuming the perturba-
tions da and d/ to be arbitrary and to vanish at ti and tf , the Euler–
Lagrange equations correspond to a discrete Ampère–Maxwell equation

e0M
1
j1;j2

_ej2 þ Jj ¼ l�10 curlk1j1 M
2
k1;k2ðb

k2 þ bk2extÞ; (19)

and a discrete Gauss’s law for the electric field

�e0grad
j1
i1M

1
j1;j2e

j2 ¼ .i; (20)

with current density Jj ¼
P

p qW
1
j ðxpÞ � _xp and charge density

.i ¼
P

p qW
0
i ðxpÞ. If, however, we choose the very specific forms for

the perturbations

daj ¼ vigradji; (21)

d/i ¼ � _vi; (22)

requesting that viðtiÞ ¼ viðtf Þ ¼ 0, we observe that the differentiation
of the transformed action can now be written as

@�j�¼0S½x; aj þ �vigrad
j
i;/

i � � _vi� ¼
ðtf
ti

vi gradjiJj � _.i

� �
dt: (23)

Because the action also has a strong symmetry with respect to arbitrary
vi in the sense that

S½x; aj þ �vigradji;/i � � _vi� ¼ S x;a;/½ �; (24)

the differentiation of the transformed action with respect to � has to
vanish, providing the finite-dimensional charge conservation law

gradjiJj � _.i ¼ 0: (25)

The importance of this identity lies in the fact that it eliminates the
need to solve the Gauss’ law: solving for the electric field ejðtÞ in (19)
guarantees such evolution for ejðtÞ that it automatically satisfies the
Gauss’ law (20). It is then a matter of finding a temporal discretization
which retains an analog of this property also in the fully discrete case.

III. SUBCYCLING OF PARTICLES WITH AN EXPLICIT
FIELD SOLVE

Turning into the details of implementing a subcycling scheme,
we first investigate a straigthforward modification of the pioneering
scheme.1 We obtain an algorithm where the particle push is implicit
and the field solve is explicit, just as in the pioneering work—an
explicit particle push, exploiting the zigzag path and rectilinear
meshes, is discussed in Sec. IV. Requesting electromagnetic gauge
invariance, the subcycling turns out such that the magnetic field is
properly orbit-averaged but the effect of the electric field on the parti-
cle orbits is evaluated only once during the sybcycling period.
Numerical tests then suggest that, if the global time step is too long,
the resulting large impulse from a single electric kick might lead to
artificial oscillations. Enforcing orbit-averaging also for the electric
field removes the artificial oscillations but renders the algorithm to no
longer be variational.

A. Discrete equations

The time integral in the action functional is split into intervals
½tn; tnþ1�, here of equal length Dt, and the total action then comprises
of the sum

S ¼
XN�1
n¼0

Sn;nþ1: (26)

One then assumes some discrete representations for the variable paths
in the intervals t 2 ½tn; tnþ1� and approximates the Sn;nþ1, typically
with some quadrature rule. Here, we closely follow the pioneering
work1 but introduce a modification, allowing for subcycling of the par-
ticles with V indicating the number of substeps per global time step
Dt.

We approximate the discrete action over the time interval
t 2 ½tn; tnþ1� with the expression
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Sn;nþ1 xn;xnþ1=V ;xnþ2=V ;…;xnþ1;an;anþ1;/n

� �
¼ Dt

e0
2
ej1nM

1
j1;j2e

j2
n � Dt

l�10

2
ðbk1n þ bk1extÞM2

k1k2ðb
k2
n þ bk2extÞ

þ
X
p

XV
�¼1

qðajnþ1 þ ajextÞ
ð1
0
W1

j ðxn;�p ðsÞÞ �
dxn;�p ðsÞ

ds
ds

�
X
p

q/i
nW

0
i ðxp;nÞDt þ

X
p

XV
�¼1

m
2

jxp;nþ�=V � xp;nþð��1Þ=Vj2

Dt=V ;

(27)

where the following abbreviations have been introduced

bkn ¼ ajncurl
k
j ; (28)

ejn ¼ �ða
j
nþ1 � ajnÞ=Dt � /i

ngrad
j
i; (29)

and xn;�p ðsÞ is a straight trajectory connecting the substeps ð� � 1Þ
and � is linked to a global step n and defined according to

xn;�p ðsÞ ¼ ð1� sÞxp;nþð��1Þ=V þ sxp;nþ�=V : (30)

The discrete Euler–Lagrange conditions are derived by perturbing
the variables, assuming the perturbations to vanish at the end points in
time and looking for an extrema point of the discrete action. With
respect to the perturbations an ! an þ �dan, this leads to the equation

@�j�¼0Sn;nþ1 an þ �dan½ � þ @�j�¼0Sn�1;n an þ �dan½ � ¼ 0; (31)

and, when written explicitly, provides the discrete Ampère–Maxwell
equation

e0M
1
j;j2

ej2nþ1 � ej2n
Dt

þ Jn;nþ1j ¼ l�10 curlkj M
2
k;k2ðb

k2
nþ1 þ bk2extÞ; (32)

with a discrete current density defined according to

Jn;nþ1j ¼
X
p

XV
�¼1

q
ð1
0
W1

j ðxn;�p ðsÞÞ �
dxn;�p ðsÞ

ds
ds
Dt
: (33)

With respect to perturbations /n ! /n þ �d/n, the variation of the
action leads to

@�j�¼0Sn;nþ1 /n þ �d/n½ � ¼ 0; (34)

which, when written explicitly, corresponds to the discrete Gauss’ law

.ni ¼ �e0grad
j
iM

1
j;j2e

j2
n ; (35)

with the discrete charge density being defined according to

.ni ¼
X
p

qW0
i ðxp;nÞ: (36)

Perturbing the particles’ spatial positions xn!xnþ�dxn provides

@�j�¼0Sn;nþ1 xn þ �dxn½ � þ @�j�¼0Sn�1;n xn þ �dxn½ � ¼ 0; (37)

while perturbing xnþ�=V ! xnþ�=V þ �dxnþ�=V provides

@�j�¼0Sn;nþ1 xnþ�=V þ �dxnþ�=V
� �

¼ 0; (38)

for each n ¼ 0;…;N � 1 and � ¼ 1;…;V � 1. Written explicitly,
these correspond to the equations for the indices n,

m
xp;nþ1=V � 2xp;n þ xp;n�1=V

ðDt=VÞ2

¼ q
xnþ1=V � xp;n

Dt=V

ð1
0
ð1� sÞðbknþ1 þ bkextÞW2

kðxn;1p ðsÞÞds

þq
xp;n � xp;n�1=V

Dt=V

ð1
0
sðbkn þ bkextÞW2

kðxn;0p ðsÞÞds

þqVejnW1
j ðxp;nÞ: (39)

and for the indices �,

m
xp;nþð�þ1Þ=V �2xp;nþ�=V þxp;nþð��1Þ=V

ðDt=VÞ2

¼q
xnþð�þ1Þ=V �xp;nþ�=V

Dt=V

ð1
0
ð1�sÞðbknþ1þbkextÞW2

kðxn;�þ1p ðsÞÞds

þq
xp;nþ�=V �xp;nþð��1Þ=V

Dt=V

ð1
0
sðbknþ1þbkextÞW2

kðxn;�p ðsÞÞds: (40)

Note that the electric field impulse is evaluated only for steps with
index n, not for the �.

The Eqs. (32), (35), (39), and (40) are completed by the discrete
Faraday equation which is a direct consequence of the definitions for
en; bn, namely,

bkn � bkn�1
Dt

¼ �curlkj e
j
n�1: (41)

The electromagnetic gauge invariance and the discrete charge
conservation law are verified in the following manner. Let

ajn ! ajn þ vingrad
j
i; (42)

/i
n ! /i

n �
vinþ1 � vin

Dt
; (43)

and the total discrete action (27) will satisfy the strong symmetry
condition

XN�1
n¼0

Sn;nþ1 ajn þ vingrad
j
i; a

j
nþ1 þ vinþ1grad

j
i; /i

n � ðvinþ1 � vinÞ=Dt
h i

¼
XN�1
n¼0

Sn;nþ1 an;anþ1;/n½ � þ
X
p

ep viNW
0
i ðxp;NÞ � vi0W

0
i ðxp;0Þ

� �
:

(44)

Differentiating with respect to vn at any n such that n 6¼ 0 and n 6¼ N ,
the right side vanishes identically as it is independent of vn, and one
finds the discrete charge conservation law

gradjiJ
n�1;n
j � .ni � .n�1i

Dt
¼ 0: (45)

The significance of this equation is that, if we assume the Gauss’ law
(35) to hold for n � 1, the charge conservation and the Ampère equa-
tion (32) then imply

.ni ¼ .n�1i þ Dt gradjiJ
n�1;n
j ¼ �e0grad

j
iM

1
j;j2e

j2
n ; (46)

meaning that the Gauss’ law is automatically satisfied, if it is satisfied
initially.
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Together, the discrete equations provide the means of advancing
the degrees of freedom xn; en, and bn in time according to the follow-
ing strategy:

1. Given x0, initialize e0 with the Gauss’s law (35) and approxi-
mate x�1=V using v0.

2. Given en;bn, compute bnþ1 from the Faraday equation (41).
3. Given ðen;bn;bnþ1Þ and ðxn�1=V ;xnÞ, push markers with (39)

to obtain xnþ1=V .
4. Given xn;xnþ1=V and bn;bnþ1, push markers to xnþ2=V ;…;

xnþ1 with (40) and accumulate Jn;nþ1j according to (33).
5. Given en;bnþ1 and the recorded value for Jn;nþ1j , invert the

Ampère–Maxwell equation (32) for enþ1.
6. Repeat the steps 1–4 indefinitely.

B. Numerical tests

We have implemented the method within the GEMPIC code in
the library SeLaLib.23 The code is based on compatible spline-finite-
element bases as described in Ref. 9. For our experiments, we have
chosen a solver based on cubic and quadratic splines. Remember that
without subcycling, the algorithm corresponds to the pioneering varia-
tional scheme,1 which will be used for verification. The scheme con-
tains a non-linearity in Eqs. (39) and (40). This non-linearity,
however, only couples the three components of the three positions of
each particle. This non-linear step can efficiently be solved by a first
guess obtained by extrapolation from the old values, followed by one
or more updates according to the Newton’s method. For this, an ana-
lytic formula for the derivative matrix can be found and evaluated
numerically in the implementation. In our experiments, we consider
the Newton iteration to be converged at a tolerance of 10�10.

1. An electrostatically dominated test case

As a first example of a simulation with a strong backgroundmag-
netic field, we consider a reduced, 1D-2V-dimensional phase space
and an initial distribution function of

f ðx; v1; v2Þ ¼
1þ 0:1 cos ð0:5xÞ

2p
exp � v21 þ v22

2

� �
; (47)

setup in a background magnetic field of B3ðx; 0Þ ¼ 2p10. We run the
variational subcycling and the Hamiltonian splitting algorithms with
32 grid points and 160 000 particles until time 20. In this case, the spa-
tial resolution is given by Dx ¼ 4p=32. Since we split the curl-part in
Faraday’s and Ampère’s law, we get a stability limit of Dt < Dxffiffiffiffiffiffiffiffiffiffiffiffi
17=42

p
� 0:2498 (cf. Ref. 22, Appendix A2). For our choice of the

magnetic field, the cyclotron period is 0.1.
Figure 1(a) shows the temporal dynamics of the first component

of the electric energy with respect to an increasing global time step and
a fixed substep length of Ds ¼ 0:005 (20 substeps per cyclotron
period). The results up to Dt ¼ 0:04 are reasonably resolved. For
Dt ¼ ð0:08; 0:16; 0:32Þ, we see that the solution becomes clearly less
accurate as the global step approaches and exceeds the cyclotron
period 0.1, but the macroscale behavior is nevertheless approximately
retained. The number of Newton steps stays constant in all runs and is
around 2.6 on an average (including the initial step) with substeps.
Without substeps, it increases slightly with the time step to reach

around 3.2 iterations on an average for Dt ¼ 0:24. A comparison
to the standard scheme, with no subcycling, is presented in
Fig. 1(b). One can see that the cyclotron-scale oscillations cannot
be sampled anymore as in the case with substepping and, as a con-
sequence, also the qualitative macroscale behavior is significantly
worse than with substeps. In complicated magnetic fields such as
those encountered in tokamaks and stellarators, we would expect
the results without subcycling to look even worse: the choice of
using 10–20 steps per cyclotron period is a rather common strategy
and often necessary in fusion-related orbit-following applications.
Table I confirms that the scheme is conserving Gauss’ law with and
without substeps and Table I shows the error in energy conserva-
tion of the scheme which is rather small.

2. An electromagnetic test case

As a second example, we look at an electromagnetically domi-
nated test case with initial distribution

FIG. 1. Electrostatically dominated test case: time evolution of jjE1jj2 for varying
global time steps (given in the legends together with the number of substeps) with
Bðx; 0Þ ¼ 2p10. (a) Subcycling (Ds ¼ 0.005) and (b) no subcycling.
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f ðx; v1; v2Þ ¼
1

2pr1r2
exp � v21

2r2
1
þ v22
2r2

2

 ! !
; (48)

and initial magnetic field B0ðxÞ ¼ b1 þ b2 cos ðkxÞ on the domain
½0; 2pk Þ. We choose the parameters to be k¼ 1.25, r1 ¼

ffiffiffi
2
p
� 0:01;

r2 ¼
ffiffiffiffiffi
12
p

r1; b1 ¼ 20p; b2 ¼ 0:001. This test case is electromagnetic
and a variation of the Weibel instability with a strong background
field. The example is a variation of the test problem proposed in Ref.
24. We run a simulation until time 20 with 32 grid points, 100 000 par-
ticles, and spline basis functions of degree 3. The stability limit due to
the splitting of the Maxwell’s equation is at Dt < ð2pÞ=ð1:25� 32Þffiffiffiffiffiffiffiffiffiffiffiffi
17=42

p
� 0:09 994 in this case.

As in the previous example, we look at the oscillations in the first
component of the electric energy. Again, the cyclotron period is 0.1.
Figure 2(a) shows the results for various global time steps and fixed
Ds ¼ 0:005 and Fig. 2(b) shows the results for the same global time
steps but without subcycling. We can see that the qualitative behavior
is the same as for the electrostatically dominated test case. Also Gauss’
law is conserved to machine precision as shown in Table II. The
energy conservation properties of the algorithm are summarized in
Table II. The fact that the energy conservation is better compared to
the other test case, and that there is almost no difference comparing
the scheme with and without subcycling, reflects the fact that the influ-
ence of the microscale is smaller in this test case with smaller electric
energy. The number of Newton iterations needed (including the initial
step) in this test case is only 1.7 on an average with subcycling and
increases up to 2.0 without subcycling for the largest time step.

C. Enforced orbit-averaging of electric impulse

To investigate whether the root cause for the possible numerical
oscillations is indeed the way the electric field is evaluated in particle
orbits, we will now enforce orbit-averaging also for the electricfield
contribution. For the indices n, we will use the following modified par-
ticle push

m
xp;nþ1=V � 2xp;n þ xp;n�1=V

ðDt=VÞ2

¼ q
xnþ1=V � xp;n

Dt=V

ð1
0
ð1� sÞðbknþ1 þ bkextÞW2

kðxn;1p ðsÞÞds

þq
xp;n � xp;n�1=V

Dt=V

ð1
0
sðbkn þ bkextÞW2

kðxn;0p ðsÞÞds

þqejnW1
j ðxp;nÞ; (49)

and similarly for the indices �,

FIG. 2. Electromagnetically dominated test case: time evolution of jjE1jj2 for vary-
ing global time steps (given in the legends together with the number of substeps)
with Bðx; 0Þ ¼ 2p10. (a) Variational subcycling and (b) variational algorithm.

TABLE I. Electrostatic test case: conservation laws for the variational integrator with
and without substeps.

(a) Conservation of Gauss’ law

Dt With substeps Without substeps

0.005 1:21� 10�14

0.01 1:20� 10�14 1:21� 10�14

0.02 1:20� 10�14 1:22� 10�14

0.04 1:12� 10�14 1:11� 10�14

0.08 1:27� 10�14 1:69� 10�14

0.16 1:10� 10�14 1:07� 10�14

0.24 1:23� 10�14 1:15� 10�14

(b) Conservation of energy (relative)

Dt With substeps Without substeps

0.005 7:94� 10�10

0.01 1:42� 10�9 2:08� 10�9

0.02 2:97� 10�9 5:34� 10�9

0.04 8:32� 10�9 1:09� 10�8

0.08 9:91� 10�8 1:57� 10�8

0.16 1:57� 10�8 3:79� 10�8

0.24 3:17� 10�7 7:72� 10�8
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m
xp;nþð�þ1Þ=V �2xp;nþ�=V þxp;nþð��1Þ=V

ðDt=VÞ2

¼q
xnþð�þ1Þ=V �xp;nþ�=V

Dt=V

ð1
0
ð1�sÞðbknþ1þbkextÞW2

kðxn;�þ1p ðsÞÞds

þq
xp;nþ�=V �xp;nþð��1Þ=V

Dt=V

ð1
0
sðbknþ1þbkextÞW2

kðxn;�p ðsÞÞds

þqejnW1
j ðxp;nþ�=VÞ: (50)

We stress that this particle push is neither derived from an action prin-
ciple and is not expected to provide bounded long-time energy behav-
ior like the variational schemes nor to conserve the multisymplectic
two-form. For the field equations, we use the Ampère and Gauss’ law
as described previously for they satisfy a charge conservation law
regardless of how the particle orbits are sampled.

We then repeated the numerical tests from the Sec. III B for the
larger time steps using the above particle equations. For the electrostat-
ically dominated test case, Fig. 3 shows the evolution of the first com-
ponent of the electric energy as a function of time with the new
algorithm. We observe that the algorithm samples the curve quite
accurately even if the global step size is increased beyond the cyclotron
period. This indicates that finding a variational algorithm that properly
orbit-averages the electric field impact should work well.

IV. EXPLICIT FIELD SOLVE WITH AN EXPLICIT
SUBCYCLING OF THE PARTICLE PUSH

So far we have discussed the introduction of subcycling to the
pioneering algorithm.1 The more recent GEMPIC algorithms, how-
ever, are largely based on a particularly clever choice of representing
the interaction term in the discrete action: instead of using a straight
line in cartesian space, a zigzagging path and rectilinear meshes allow

explicit particle push.10 Exploiting the zigzagging path, the subcycling
push can also be made explicit.

To prevent the excessive use of symbols, here we focus on the
particle-relevant part of the action – suppressing some indices to dem-
onstrate that explicit subcycling is possible. An essential role is played
by the following maps:

xzigðx1; x2; sÞ
yzigðx1; x2; sÞ
zzigðx1; x2; sÞ

2
4

3
5 ¼ ðx1 þ sðx2 � x1Þ; y1; z1Þ

ðx2; y1 þ sðy2 � y1Þ; z1Þ
ðx2; y2; z1 þ sðz2 � z1ÞÞ;

2
4

3
5; (51)

and a rectilinear mesh is required so that the vector-valued basis func-
tions can be represented component-wise along each coordinate direc-
tion. An interested reader may consult, for example, Appendix A in
Ref. 10. Effectively, one needs a representation of the basis where,
e.g., the discrete vector potential in cartesian coordinates becomes
A ¼ aj;xW1

j;x þaj;yW1
j;y þ aj;zW1

j;z and can be split along the coordi-
nate axes to the related components ðAx;Ay;AzÞ. The code within the
SeLaLib23 package with spline basis is implemented exactly in this
manner.

Once the prerequisites are met, the subcycling can then be intro-
duced by discretizing the single-particle relevant part of the action
according to

Sn;nþ1 xn;xnþ1=V ;…;xnþ1;Anþ1;/n

� �
¼
XV
�¼1
½qðxnþ�=V �xnþð��1Þ=VÞ

ð1
0
Ax;nþ1ðxzigðxnþð��1Þ=V ;xnþ�=V ;sÞÞds

þqðynþ�=V �ynþð��1Þ=VÞ
ð1
0
Ay;nþ1ðyzigðxnþð��1Þ=V ;xnþ�=V ;sÞÞds

þqðznþ�=V �znþð��1Þ=VÞ
ð1
0
Az;nþ1ðzzigðxnþð��1Þ=V ;xnþ�=V ;sÞÞds�

�q/nðxnÞDtþ
XV
�¼1

m
2

ðxnþ�=V �xnþð��1Þ=VÞ2

Dt=V

"

þm
2

ðynþ�=V �ynþð��1Þ=VÞ2

Dt=V þm
2

ðznþ�=V �znþð��1Þ=VÞ2

Dt=V

#
: (52)

FIG. 3. Electrostatically dominated test case: time evolution of jjE1jj2 for the subcy-
cling algorithm with enforced electric field orbit-averaging for various time steps
(given in the legends together with the number of substeps).

TABLE II. Electromagnetic test case: conservation laws for the variational integrator
with and without substeps.

(a) Conservation of Gauss’ law

Dt With substeps Without substeps

0.005 2:61� 10�15

0.01 2:65� 10�15 2:26� 10�15

0.02 2:42� 10�15 2:13� 10�15

0.04 2:10� 10�15 2:31� 10�15

0.08 2:08� 10�15 1:99� 10�15

(b) Conservation of energy (relative)

Dt With substeps Without substeps

0.005 3:98� 10�13

0.01 7:98� 10�13 7:96� 10�13

0.02 1:61� 10�12 1:60� 10�13

0.04 3:27� 10�12 3:24� 10�12

0.08 1:47� 10�11 6:69� 10�12
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To derive the discrete equations of motion, one proceeds by per-
turbing xnþ�=V ! xnþ�=V þ dx to get

m
q

xnþð�þ1Þ=V � 2xnþ�=V þ xnþð��1Þ=V
Dt=V

¼ ðynþ�=V � ynþð��1Þ=VÞ
ð1
0
Bz;nþ1ðyzigðxnþð��1Þ=V ; xnþ�=V ; sÞÞds

�ðznþ�=V � znþð��1Þ=VÞ
ð1
0
By;nþ1ðzzigðxnþð��1Þ=V ; xnþ�=V ; sÞÞds;

(53)
perturbing ynþ�=V ! ynþ�=V þ dy, one obtains

m
q

ynþð�þ1Þ=V � 2ynþ�=V þ ynþð��1Þ=V
Dt=V

¼ �ðxnþð�þ1Þ=V � xnþ�=VÞ
ð1
0
Bz;nþ1ðxzigðxnþ�=V ; xnþð�þ1Þ=V ; sÞÞds

þðznþ�=V � znþð��1Þ=VÞ
ð1
0
Bx;nþ1ðzzigðxnþð��1Þ=V ; xnþ�=V ; sÞÞds;

(54)

and perturbing znþ�=V ! znþ�=V þ dz provides

m
q

znþð�þ1Þ=V � 2znþ�=V þ znþð��1Þ=V
Dt=V

¼ ðxnþð�þ1Þ=V � xnþ�=VÞ
ð1
0
By;nþ1ðxzigðxnþ�=V ; xnþð�þ1Þ=V ; sÞÞds

�ðynþð�þ1Þ=V � ynþ�=VÞ
ð1
0
Bx;nþ1ðyzigðxnþ�=V ; xnþð�þ1Þ=V ; sÞÞds:

(55)
For the synchronizing steps, one perturbs xn ! xn þ dx which

leads to
m
q

xnþ1=V � 2xn þ xn�1=V
Dt=V

¼ ðyn � yn�1=VÞ
ð1
0
Bz;nðyzigðxn�1=V ; xn; sÞÞds

�ðzn � zn�1=VÞ
ð1
0
By;nðzzigðxn�1=V ; xn; sÞÞdsþ Ex;nðxnÞDt;

(56)
and yn ! yn þ dy which provides

m
q

ynþ1=V �2ynþyn�1=V
Dt=V

¼�ðxnþ1=V �xnÞ
ð1
0
Bz;nþ1ðxzigðxn;xnþ1=V ;sÞÞds

þðzn�zn�1=VÞ
ð1
0
Bx;nðzzigðxn�1=V ;xn;sÞÞdsþEy;nðxnÞDt; (57)

while perturbing zn ! zn þ dz gives
m
q

znþ1=V �2znþzn�1=V
Dt=V

¼ðxnþ1=V �xnÞ
ð1
0
By;nþ1ðxzigðxn;xnþ1=V ;sÞÞds

�ðynþ1V �ynÞ
ð1
0
Bx;nþ1ðyzigðxn;xnþ1=V ;sÞÞdsþEz;nðxnÞDt: (58)

These maps provide explicit update rules for particles and display the
same behavior as the explicit subcycling scheme in the sense that the
effect of the electric field is evaluated only once per subcycling period,
i.e., during the synchronizing steps. The field solves remain the same
as in the earlier algorithm, apart from remembering to perform the
current deposits coordinate-direction-wise via the ðxzig; yzig; zzigÞ
maps.

Let us revisit the electrostatically dominated test case, but use the
exlicit particle subcycling instead. Figure 4(a) shows the results with
the same parameters as in Fig. 1(a). We observe that the results are
very similar, i.e., also with the explicit particle push, very accurate
results are obtained until Dt ¼ 0:04 and the macroscopic behavior is
approximately covered until the stability limit of the Maxwell solver.
Moreover, the cyclotron oscillations are covered a bit more accurately
in this example by the zigzagging scheme as a zoom into the curves
would reveal. On the other hand, if we do not use any substeps, the
algorithm becomes unstable already for Dt ¼ 0:04—Fig. 4(b) displays
only the stable step sizes. Moreover, the solution already with

FIG. 4. Electrostatically dominated test case: time evolution of jjE1jj2 for varying global
time steps (given in the legends together with the number of substeps) with Bðx; 0Þ
¼ 2p10. (a) Zigzag with subcycling (Ds ¼ 0.005) and (b) zigzag no subcycling.
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Dt ¼ 0:02 covers the macroscopic properties less accurately than
when subcycling is used. Figure 5 shows the results for the electromag-
netically dominated test case again with Ds ¼ 0:005, i.e., 20 substeps
per cyclotron period. The results are again very good except for the
largest global time step of Dt ¼ 0:08. Also, in this case, a slight devia-
tion of the result is visible for Dt ¼ 0:04.

We conclude that the explicit substepping with the zigzag algo-
rithm not only allows for an accurate resolution of the phase with a
moderate number of substeps, but also comes with an increased stabil-
ity domain in terms of the global time step in comparison to using the
zigzag algorithm with no substeps. Tables III and IV show the conser-
vation properties of the algorithm for the two test cases.

V. AN IMPLICIT SCHEME WITH FULL ORBIT-
AVERAGING AND ELECTROMAGNETIC GAUGE
INVARIANCE

To find a variational scheme that would succeed in fully
orbit-averaging the particle trajectories, we suggest a temporal dis-
cretization that appears to lead to an implicit scheme. Essentially,
we have learned that the key, likely, is in handling the interaction
term in the action integral in a manner that properly allows one to
perform integration by parts in time, instead of the summation-
by-parts trick that works nicely without subcycling and apparently
with certain limitations together with subcycling as described in
Secs. III and IV. It remains to be seen whether an explicit field-
solve strategy, succeeding in both proper orbit-averaging and elec-
tromagnetic gauge-invariance, is possible. We also introduce arbi-
trary time steps, for it might be useful in the near future for
adaptive temporal integration.

A. Polyline particle trajectories

We will now assume that the particle trajectories form a polyline
between different time instances and shall respect this assumption in
the discretization. We partition the interval ½ti; tf � into multiple arbi-
trary intervals ti ¼ t0 < t1 < � � � < tm�1 < tm < tmþ1 < � � � < tf
and during each interval, the particle trajectory is expressed as

xm;mþ1p ðtÞ ¼ xp;m þ
t � tm

tmþ1 � tm
ðxp;mþ1 � xp;mÞ; (59)

_xm;mþ1p ðtÞ ¼ xp;mþ1 � xp;m
tmþ1 � tm

; (60)

making sure that the time derivative is consistent with the trajectory.
Substituting these expressions into the action, we find the following
particle-relevant contribution over the interval ½tm; tmþ1�,

FIG. 5. Electromagnetically dominated test case, zigzag scheme with subcycling
(Ds ¼ 0:005): time evolution of jjE1jj2 for varying global time steps (given in the
legends together with the number of substeps) with Bðx; 0Þ ¼ 2p10.

TABLE III. Electrostatic test case: conservation laws for the variational integrator
with explicit zigzagging trajectories with and without substeps.

(a) Conservation of Gauss’ law

Dt With substeps Without substeps

0.005 1:27� 10�14 5:29� 10�14

0.01 1:28� 10�14 6:52� 10�14

0.02 1:23� 10�14 3:92� 10�14

0.04 1:12� 10�14 …
0.08 1:25� 10�14 …
0.16 1:22� 10�14 …
0.24 1:05� 10�14 …

(b) Conservation of energy (relative)

Dt With substeps Without substeps

0.005 2:56� 10�5 2:56� 10�5

0.01 2:56� 10�5 1:11� 10�4

0.02 2:56� 10�5 6:60� 10�4

0.04 2:56� 10�5 …
0.08 2:56� 10�5 …
0.16 2:56� 10�5 …
0.24 2:57� 10�5 …

TABLE IV. Electromagnetic test case: conservation laws for the variational integrator
with explicit ziggagging trajectories with and without substeps.

(a) Conservation of Gauss’ law

Dt With substeps Without substeps

0.005 2:88� 10�15

0.01 2:68� 10�15 2:98� 10�15

0.02 2:46� 10�15 2:63� 10�15

0.04 2:42� 10�15 …
0.08 1:97� 10�15 …

(b) Conservation of energy (relative)

Dt With substeps Without substeps

0.005 2:87� 10�13

0.01 2:87� 10�7 3:15� 10�13

0.02 2:87� 10�7 4:94� 10�13

0.04 2:87� 10�7 …
0.08 2:87� 10�7 …
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Spm;mþ1 aðtÞ;/ðtÞ;xm;xmþ1½ �

¼ q
ðtmþ1
tm

ðajðtÞ þ ajextÞW1
j ðxm;mþ1p ðtÞÞ � _xm;mþ1p ðtÞdt

�q
ðtmþ1
tm

/iðtÞW0
i ðxm;mþ1p ðtÞÞdt þ 1

2
m
ðtmþ1
tm

j _xm;mþ1p j2dt: (61)

Perturbing the particle polylines into xm þ �dxm and minimizing the
action with respect to the variations in the particle positions, we obtain
the following discrete Euler–Lagrange condition for each particle

@�j�¼0S
p
m;mþ1 xp;m þ �dxp;m

� �
þ @�j�¼0S

p
m�1;m xp;m þ �dxp;m

� �
¼ 0:

(62)

Written explicitly, this corresponds to the following discrete
Euler–Lagrange condition

m
xp;mþ1�xp;m
tmþ1� tm

�m
xp;m�xp;m�1
tm� tm�1

¼ q
xp;mþ1�xp;m
tmþ1� tm

ðtmþ1
tm

tmþ1� t
tmþ1� tm

ðbkðtÞþbkextÞW2
kðxm;mþ1p ðtÞÞdt

þq
xp;m�xp;m�1
tm� tm�1

ðtm
tm�1

t� tm�1
tm� tm�1

ðbkðtÞþbkextÞW2
kðxm�1;mp ðtÞÞdt

þq
ðtm
tm�1

t� tm�1
tm� tm�1

ejðtÞW1
j ðxm�1;mp ðtÞÞdt

þq
ðtmþ1
tm

tmþ1� t
tmþ1� tm

ejðtÞW1
j ðxm;mþ1p ðtÞÞdt; (63)

where we have associated ejðtÞ ¼ � _ajðtÞ � /iðtÞgradji.
In deriving the expression (63), it was necessary to request time-

continuity for ajðtÞ but not for /iðtÞ. Hence, we can imagine a piece-
wise time-constant electric field ejðtÞ ¼ � _ajðtÞ � gradji/

iðtÞ. The
magnetic field bkðtÞ appearing in the particle equation, however, has
to be at least piecewise linear in time as it needs to be compatible with
the requirement of at least piecewise linear ajðtÞ in the interaction part
of the action.

B. Polyline a(t) and piecewise constant /ðtÞ
Next we partition the interval ½ti; tf � according to ti ¼ t0 < t1

< � � � < tn�1 < tn < tnþ1 < � � � < tf , again with arbitrary intervals.
During each interval ½tn; tnþ1�, we assume the following behavior for
the electromagnetic degrees of freedom

ajn;nþ1ðtÞ ¼ ajn þ
t � tn

tnþ1 � tn
ðajnþ1 � ajnÞ; (64)

/i
n;nþ1ðtÞ ¼ /i

n; (65)

which implies that we can define the electric and magnetic fields dur-
ing the interval directly via the relations

bkn;nþ1ðtÞ ¼ ajn;nþ1ðtÞcurlkj

� bkn þ
t � tn

tnþ1 � tn
ðbknþ1 � bknÞ; (66)

ejn;nþ1ðtÞ ¼ �
ajnþ1 � ajn
tnþ1 � tn

� /i
ngrad

j
i

� ejn: (67)

The above discretizations satisfy the requirements for the magnetic
field and potential to be at least time-continuous and the electric field
at least piecewise constant, thus being compatible with (63). The dis-
cretization also implies a form for the discrete Faraday law

bknþ1 � bkn
tnþ1 � tn

¼ �ejncurlkj : (68)

Substituting these expressions into the action, we find the following
electromagnetic-relevant contribution over the interval ½tn; tnþ1�,

SEMn;nþ1 an;anþ1;/n;xðtÞ½ �

¼ e0
2
ej1nM

1
j1;j2e

j2
n ðtnþ1 � tnÞ

�l�10

2

ðtnþ1
tn

ðbk1n;nþ1ðtÞ þ bk1extÞM2
k1k2ðb

k2
n;nþ1ðtÞ þ bk2extÞdt

þ
X
p

ðtnþ1
tn

qðajn;nþ1ðtÞ þ ajextÞW1
j ðxpðtÞÞ � _xpðtÞdt

�
X
p

ðtnþ1
tn

q/i
nW

0
i ðxpðtÞÞdt: (69)

Next we perturb the degrees of freedom for the vector potential
into an þ �dan and minimize the action with respect to the variations
dan. This provides the discrete Euler–Lagrange equation

@�j�¼0SEMn;nþ1 an þ �dan½ � þ @�j�¼0SEMn�1;n an þ �dan½ � ¼ 0; (70)

and explicitly it provides the following discrete Ampère equation

e0M
1
j1;j2ðe

j2
n � ej2n�1Þ þ Jn;nþ1jþ þ Jn�1;nj�

¼ l�10 curlk1j1 M
2
k1k2

1
6
bk2nþ1 þ

1
3
bk2n þ

1
2
bk2ext

� �
ðtnþ1 � tnÞ

þl�10 curlk1j1 M
2
k1k2

1
3
bk2n þ

1
6
bk2n�1 þ

1
2
bk2ext

� �
ðtn � tn�1Þ; (71)

where the discrete current densities are defined via the relations

Jn;nþ1jþ ¼ q
X
p

ðtnþ1
tn

tnþ1 � t
tnþ1 � tn

W1
j1ðxpðtÞÞ � _xpðtÞdt; (72)

Jn;nþ1j� ¼ q
X
p

ðtnþ1
tn

t � tn
tnþ1 � tn

W1
j1ðxpðtÞÞ � _xpðtÞdt: (73)

Note that in deriving the expression (71), it is enough to require conti-
nuity from xpðtÞ, while the corresponding _xpðtÞ can be a piecewise
constant. Hence, this Ampère equation and the equation for the parti-
cle motion (63) are fully compatible with each other. One only has to
account for the fact that the instances tn and tm do not necessarily
coincide.

Finally, perturbing the degrees for the scalar potential to /n
þ�d/n and extremizing the action with respect to arbitrary variations
d/n according to

@�j�¼0SEMn;nþ1 /n þ �d/n½ � ¼ 0; (74)

provides the discrete Gauss’ law
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.n;nþ1i ¼ �e0grad
j
iM

1
j;j2e

j2
n ; (75)

where the discrete charge density is defined as

.n;nþ1i ¼ q
X
p

ðtnþ1
tn

W0
i ðxpðtÞÞ

dt
tnþ1 � tn

: (76)

C. Gauge invariance and the charge conservation law

To demonstrate that the Gauss’ law (75) serves only as an initial
condition and that it is enough to advance the electric field degrees of
freedom via the discrete Ampère equation (71), we start from the elec-
tromagnetic gauge invariance.

We define a gauge transformation with a function

vin;nþ1ðtÞ ¼ vin þ
t � tn

tnþ1 � tn
ðvinþ1 � vinÞ; (77)

and change the discrete vector and scalar potentials according to

ajn;nþ1ðtÞ ! ajn;nþ1ðtÞ þ vin;nþ1ðtÞgrad
j
i; (78)

/i
n;nþ1ðtÞ ! /i

n;nþ1ðtÞ � _vi
n;nþ1ðtÞ: (79)

The discrete electric and magnetic fields are trivially unchanged under
these substitutions and the relevant part of the action then satisfies

XN�1
n¼0

SEMn;nþ1 ajnþgrad
j
iv

i
n;anþ1þgrad

j
iv

i
nþ1;/n�ðvinþ1�vnÞ=ðtnþ1�tnÞ

h i

¼
XN�1
n¼0

SEMn;nþ1 ajn;anþ1;/n

� �
q
X
p

viNW
0
i ðxpðtf ÞÞ�vi0W

0
i ðxpðtiÞÞ

� �
:

(80)

Proceeding as previously described, i.e., differentiating the above rela-
tion with respect to vin for arbitrary n 2 f1;…;N � 1g, provides the
discrete charge conservation law

gradji Jn;nþ1jþ þ Jn�1;nj�

� �
� .n;nþ1i � .n�1;ni

	 

¼ 0; (81)

where the current and charge densities are as defined in the Eqs. (72),
(73), and (76).

Assuming the discrete Gauss’ law (75) to hold for n � 1, it is
then a straightforward task to use the Ampère equation (71) together
with the charge conservation law (81) to obtain

.n;nþ1i ¼ .n�1;ni � gradji Jn;nþ1jþ þ Jn�1;nj�

� �
¼ �e0grad

j
iM

1
j;j2e

j2
n : (82)

This means that, if the Gauss’ law holds initially, it will be satisfied for
all times when we solve the electric field from the Ampère equation.
This result is fully analogous with the one we obtained for the algo-
rithm with an explicit field solve in Sec. III.

D. Solver strategy and equal-step sequencing

Next we propose one possible strategy to implement the implicit
scheme as described above, using equal step sizes for all but the first
global step and fixed-point iteration for the non-linear solves. Letting

V denote the number of particle subcycling steps per one global time
step Dt, we define for n ¼ 1; m ¼ 1,

t1 ¼ t0 þ Dt=V; (83)

while for n > 1;m > 1 we define

tnþ1 ¼ tn þ Dt; (84)

tmþ1 ¼ tm þ Dt=V: (85)

Introducing the index � as in the explicit section, one could then inter-
pret the time instances tm to correspond to tnþ�=V ¼ tn þ �=VDt,
with n ¼ bðmþ ðV � 1ÞÞ=Vc; � ¼ mod ðm;VÞ for m> 0. In
explaining our sequencing strategy, we shall hence refer with xnþ�=V to
particle location at tm ¼ tnþ�=V .

The solution strategy proceeds by first setting up the simulation

1. Given x0;v0 as samples from the initial distribution, compute
x1 ¼ x0 þ Dt=Vv0.

2. Given x0;x1, compute .0;1i from (76), solve e0 from (75), and
compute J0;1j� from (73).

3. Given e0;b0, solve b1 from (68).

Next we assume to be in possession of en�1; bn�1;bn; J
n�1;n
j�

and xn�1=V ;xn, which is now obviously true for n¼ 1. To advance
the index n, we may proceed by following an iterative strategy:

1. Guess en.
2. Given en;bn, compute bnþ1 from (68).
3. Given xn�1=V ;xn, compute xnþ1=V using en�1; en and bn�1;bn;

bnþ1 from (63).
4. Given xn;xnþ1=V , compute xnþ2=V ;…;xnþ1 using en;bn;bnþ1

from (63).
5. Given xn;…;xnþ1, compute Jn;nþ1jþ from (72).
6. Given Jn�1;nj� ; Jn;nþ1jþ , and en�1;bn�1;bn;bnþ1, solve en from (71).
7. Iterate the steps 2–6 until en converges.

Note that in performing the particle push, the expressions
bkðtÞ; ejðtÞ appearing in (63) are given by Eqs. (66) and (67), and simi-
larly the particle trajectory appearing in the expressions for the current
densities is the polyline (59).

E. Stability limit of the Maxwell solver

Even though Maxwell’s equations are solved implicitly in this
scheme, the Maxwell part is not unconditionally stable. We can per-
form a stability analysis of the scheme in 1D-2V phase-space following
Appendix A2 of Ref. 22. From this analysis, we get a stability condition

of Dt <
ffiffiffiffi
17
14

q
Dx for the case of a cubic spline finite element solver

(that we use in our experiments). This means that the stability limit is
relaxed by a factor of

ffiffiffi
3
p

compared to the explicit scheme.

F. Numerical tests

We again repeat the previous experiments. The non-linear itera-
tion for each particle is stopped at a tolerance of 10�10 as before and
the non-linear iteration over the fields is considered converged at a tol-
erance of 10�13.

Figure 6 shows the evolution of the first component of the electric
energy for the two test cases studied previously, now obtained with the
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implicit scheme. We observe that the implicit scheme with subcycling
provides a solution that accurately follows the macroscale behavior of
the solution for all of the time steps up to the stability limit of the
scheme. Unlike the non-variational explicit enforced orbit-averaging
scheme, the implicit scheme also appears to “step over” the fastest
time scales and provides a rather smooth, averaged overall behavior
when using time steps longer than the cyclotron period.

Again, we see from the second column of Table V that the
Gauss law is satisfied to machine precision. From the third column of
Table V, we see that the relative energy error is almost independent of
the global time step for these simulations with a constant Ds.

Regarding the computational performance, the number of
Newton updates for solving the individual particle push is slightly
increased compared to the scheme with the explicit field solve, to
about 3.9 in the electrostatically dominated test case and 2.0 in the
electromagnetically dominated test case. The number of global
iterations in the electromagnetically dominated case, to perform
the field solves, is 2.0 on an average for all global time steps but

Dt ¼ 0:16, where it is 2.4. In the electrostatically dominated case,
the corresponding number of global iterations is similar, namely
2.0 for Dt ¼ ð0:005; 0:01; 0:02Þ, 2.7 for Dt ¼ 0:08, and 3.0 for
Dt ¼ ð0:16; 0:32; 0:4Þ.

VI. DISCUSSION ON THE COMPUTATIONAL
EFFICIENCY AND STABILITY

Finally, let us provide some insight into the computational effi-
ciency and stability of the novel schemes, at least on a theoretical level.
To properly access the performance computationally, a platform spe-
cific high-performance implementation would be necessary. Efficient
and hardware-aware implementation of particle-in-cell codes, particu-
larly containing integrals over intervals of varying length, is a research
topic on its own and beyond the scope of this work.

The main supposed computational benefit in using a subcycling
scheme, in comparison to no subcycling at all, is the fact that the global
step size for the field solves can be relaxed from the step size for elec-
trons and that the different ion species can have their own time steps
characterized by the ion cyclotron timescales—one needs to be mind-
ful of the fundamental limits set by the CFL-condition and the plasma
frequency, though. In order to get an idea on the gain of the subcy-
cling, let us assume that the total computational cost is dominated by
the particle push, as it often tends to be in a particle-in-cell
implementation.

If we can increase the step size for all S ion species toM-times the
time step of electrons, the computational complexity of the subcycling
methods applying explicit field solves, compared to the same algo-
rithms with no subcycling at all, behaves as

FIG. 6. Implicit subcycling scheme: time evolution of jjE1jj2 with various time steps
(given in the legends). (a) Electrostatically dominated and (b) electromagnetically
dominated.

TABLE V. Implicit subcycling scheme: conservation laws for different time steps.

(a) Electrostatically dominated test case

Dt Gauss’ law Energy

0.005 8:91� 10�15 1:48� 10�9

0.01 1:26� 10�14 2:21� 10�9

0.02 1:68� 10�14 3:82� 10�9

0.04 2:26� 10�14 6:97� 10�9

0.08 2:47� 10�14 8:40� 10�9

0.16 3:54� 10�14 7:94� 10�9

0.32 3:94� 10�14 7:81� 10�9

0.40 5:48� 10�14 7:57� 10�9

(b) Electromagnetically dominated test case

Dt Gauss’ law Energy

0.005 4:32� 10�15 4:01� 10�13

0.01 4:97� 10�15 8:09� 10�13

0.02 7:44� 10�15 1:65� 10�12

0.04 8:53� 10�15 3:43� 10�12

0.08 1:10� 10�14 7:38� 10�12

0.12 8:59� 10�15 1:19� 10�11

0.16 1:14� 10�14 1:68� 10�11
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M þ S
ðSþ 1ÞM : (86)

With only one species of ions (S¼ 1) and, say, eight subcycling steps
(M¼ 8) which still appeared to provide reasonable accuracy in our
tests in Secs. III and IV, the computational complexity would be
reduced to 0.56 times the original, already close to the ideal 0.5. If the
number of ion species is increased to S¼ 4, the computational com-
plexity is reduced to 0.3 times the original. This means that the subcy-
cling schemes with explicit field solves have excellent potential to
reduce the computational complexity in simulations of especially mul-
tiple species in magnetized plasmas. This observation is emphasized
by the fact that the modifications introduced by the subcycling to the
corresponding existing variational methods without subcycling are
minimal.

The analysis of the fully implicit scheme against the explicit field
solve schemes is not that much different: the implicit field solve
requires an iterative approach which increases the number of neces-
sary evaluations of the particle orbits and, if the comparison is done
against the fully explicit scheme, also the number of iterations neces-
sary for a single-particle push need to be accounted for. If we denote
the total number of iterations by a factor of I, we have a new estimate
for the relative complexity

IðM þ SÞ
ðSþ 1ÞM : (87)

For example, in the electrostatically dominated simulation with the
global step of Dt ¼ 0:32 and the number of subcycling steps of 64, we
had to evaluate three fixed-point iterations on an average and four iter-
ations for the particle. If compared to the fully explicit scheme with no
sybcycling, we then take I¼ 12. Assuming only one ion species, the
complexity of the implicit scheme would be 6.09; but with S¼ 4, this
would be reduced to 2.55. If compared to the explicit field solve
method which uses the implicit particle push, one would use I¼ 3 and
relative complexities in the cases of one ion species and S¼ 4 would be
1.52 and 0.64, respectively. Hence, based on these estimations, we
could expect the new fully implicit scheme to reach a breakeven even
against the fully explicit scheme, when there are approximately 10
times more ion marker particles than electron markers.

Finally, both the explicit and implicit subcycling methods are
expected to increase the arithmetic intensity as all of the substeps dur-
ing one subcycling period can be performed without updating the field
parameters. This should render the subcycling algorithms to behave
favorably on modern computer architecture. Assessing this property
thoroughly would, however, require high-performance implementa-
tions of the methods.

Regarding the performance of the algorithms in long-time simu-
lations, variational methods (and Hamiltonian splitting schemes) in
general are the best tools available. This is typically merited to the con-
servation of the multisymplectic two-form and the good behavior of
energy, in the sense that it is bounded with the bounds depending on
the time step size. The analyses are typically performed for synchro-
nous integrators, but examples exist also for asynchronous variational
integrators.25 We anticipate that such rigorous analysis could be
extended also to our subcycling schemes, but this is left to a future
study.

It would also likely be possible to perform the so-called backward
error analysis using the flow maps of the numerical schemes to find a

Taylor series expression for the Hamiltonian the discrete flow map
conserves exactly. This procedure has been left for future analysis,
though, for we expect it to be somewhat more complicated a proce-
dure than the backward error analysis of synchronous integrators.
Instead, we have simply run some of the simulations over prolonged
intervals, corresponding to 1000.0 time units. Figure 7(a) shows the
time evolution of the total energy for the electromagnetically domi-
nated test case using a coarse resolution of 16 grid points and 50 000
particles. We observe the typical behavior for variational integrators:
the energy is oscillating, displaying multiple different frequencies, but
remains bounded nevertheless. On the contrary, the behavior of the
total energy for the non-variational enforced orbit-averaging scheme
completely blows up as seen in Fig. 7(b).

VII. SUMMARY

In this paper, we have introduced two possible subcycling strate-
gies for variational GEMPIC methods addressing the Vlasov–Maxwell

FIG. 7. (a) Evolution of the total energy over 1000 time units with all three varia-
tional schemes and (b) the non-variational explicit orbit-averaging scheme. The
number of Dt;V is given in the legend. [(a) Variational schemes and (b) non-
variational scheme].
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system in magnetized plasmas. The first one is a straightforward
upgrade of the existing variational GEMPIC methods, specifically of
the ones discussed in Refs. 1 and 10. The algorithm was tested both in
electrostatically and electromagnetically dominated cases. The tests
revealed that the resulting, rather peculiar subcycling scheme—the
magnetic field is properly orbit-averaged but the electric field impulse
is evaluated only once per the subcycling period—may result in artifi-
cial oscillations if the electric field impulse is too strong in relation to
the magnetic field impulse. The root cause was verified by enforcing
the electric field orbit-averaging, which removed the spurious oscilla-
tions but would result in a non-variational particle push. We have per-
formed also low-resolution 3D simulations and the results remain
qualitatively the same.

Our second strategy is aimed at mitigating the possible
limitations of the first algorithm. Instead of relying on the
“summation-by-parts” trick, which is the cornerstone of the existing
electromagnetically gauge-invariant variational GEMPIC methods,
we considered the possibility of performing genuine integration by
parts instead. This leads us to suggest an algorithm where the orbit-
averaging is done properly for both the electric and magnetic
impulse and which retains the gauge invariance and hence the alge-
braic charge conservation law. Numerical tests confirmed our
hypothesis and the artificial oscillations completely vanished. The
trade-off with the second algorithm is that it requires a global
implicit solve, for the electric field, the current density, and the par-
ticle push are entangled. Furthermore, it appears to be difficult to
find an explicit scheme that would handle the electric and magnetic
fields equally. It seems to be necessary to treat the electromagnetic
potential as being time-continuous for the sake of performing par-
tial integrations in the field–particle interaction part of the discrete
action and this tightly couples the degrees of freedom for the fields
to the degrees of freedom for the particles during the synchronizing
global steps, effectively resulting in a globally implicit scheme. The
non-synchronous particle steps fortunately remain decoupled and
lead to only an individually implicit push.

While the first approach may introduce a visible error, the overal
macroscopic behavior of the algorithm in our tests nevertheless
appeared to be reasonable, even when the global time step was pushed
beyond the cyclotron period. Since this particular strategy also admits a
fully explicit scheme, including the subcycling of the particle orbits, it
would be interesting to test whether the introduced error—in our tests,
the error remains acceptable when using a moderate number of sub-
steps and a global step size below the cyclotron period—would remain
acceptable in large-scale simulations such as the ones performed in Ref.
11. If the error would not turn out to be prohibitively large, the fully
explicit scheme with subcycling could have the potential to reduce the
complexity of such simulations significantly.

Overall, it remains to be seen whether subcycling of particle
orbits in explicit, variational geometric particle-in-cell methods with
proper orbit-averaging of both electric and magnetic impulses is possi-
ble. Since our fully implicit scheme displays all the desired proper-
ties—apart from being implicit—a fully explicit variational scheme
with similar orbit-averaging would likely become the goto method
among the plethora of particle-in-cell algorithms. In future, we also
aim to investigate the possibility of adaptive temporal integration.
Such an algorithm could be ideal from the perspective that the guiding
magnetic field may vary spatially.
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