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We study one-dimensional chains of superconducting islands with a particular emphasis on the regime in
which every second island is switched into its normal state, thus forming a superconductor-insulator-normal
metal (S-I-N) repetition pattern. As is known since Giaever tunneling experiments, tunneling charge transport
between a superconductor and a normal metal becomes exponentially suppressed, and zero-bias resistance
diverges, as the temperature is reduced and the energy gap of the superconductor grows larger than the thermal
energy. Here we demonstrate that this physical phenomenon strongly impacts transport properties of inhomo-
geneous superconductors made of weakly coupled islands with fluctuating values of the critical temperature.
We observe a nonmonotonous dependence of the chain resistance on both temperature and magnetic field,
with a pronounced resistance peak at temperatures at which some but not all islands are superconducting. We
explain this phenomenon by the inhomogeneity of the chains, in which neighboring superconducting islands have
slightly different critical temperatures. We argue that the Giaever’s resistance divergence can also occur in the
zero-temperature limit. Such quantum transition can occur if the magnetic field is tuned such that it suppresses
superconductivity in the islands with the weaker critical field, while the islands with stronger energy gap remain
superconducting. In such a field, the system acts as a chain of S-I-N junctions.

DOI: 10.1103/PhysRevB.102.134502

I. INTRODUCTION

Typically, when a metallic film or a wire is cooled below
the critical temperature of the superconducting phase transi-
tion, its resistance monotonically decreases and approaches
zero at sufficiently low temperatures. The width of the phase
transition is usually determined by fluctuations of the super-
conducting order parameter, spontaneous creation of vortices
or phase slips, or by inhomogeneity of the sample. Surpris-
ingly, in some cases, especially in mesoscopic samples with a
strong disorder, zero bias resistance grows above the normal
resistance before it drops into the superconducting regime.
Thus, a pronounced peak in the temperature dependence of
the resistance is formed [1–7].

We study a model system showing this puzzling behavior
and explain the phenomenon by taking into account the chain
inhomogeneity leading to an alteration of superconducting
and normal elements. The phenomenon is similar in nature to
the resistive peak reported by Giaever [8] in superconductor-
normal metal tunnel junctions and related to the mismatch
of the electronic energy gap values in such junctions. The
generality and the importance of this phenomenon is based
on the fact that any granular thin film, made of small grains
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separated by oxidized layers or some other tunnel barriers,
should show a similar behavior. We show that if S-I-N type
patterns are present then the resistance is expected to diverge
[9]. Such weak coupling between normal and superconducting
lakes can also occur in films or thin wires composed of a
mixture of metallic atoms and oxygen atoms, where random
potential fluctuations are strong [7]. Here we propose a unify-
ing view to explain the origin of the ubiquitous resistance peak
in the resistance versus temperature and/or resistance versus
magnetic field dependences.

As a side note, we speculate that the physics of the Giaever
resistance divergence might even be applicable to strongly dis-
ordered but homogeneous amorphous superconducting films.
The basis of this hypothesis is a strong inhomogeneity of
the superconducting energy gap, previously discovered in
pioneering experiments of Sacépé et al. [10,11]. In these
experiments it was also discovered that a substantial fraction
of the sample can be in the insulating state, where the energy
gap does exist, but the divergence of the density of states at the
gap edges, expected in superconductors, cannot be observed.
If a sufficient percentage of the sample is insulating, then the
tunneling barriers can emerge between the superconducting
and/or normal regions. An S-I-N pattern can develop if the
temperature and/or the magnetic field are adjusted such that
some but not all superconducting segments of the samples
are converted into the normal states. A diverging resistance
is expected in such a regime.

Here we report the experimental study, accompanied by
the theory analysis, of the resistance peak effect in very long
S-I-S’ chains. Previously, such chains have been investigated
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at microwave frequency [12], and here we focus on the dc
transport. The chain consists of aluminum islands connected
by tunnel junctions with relatively high resistance of the order
of the quantum resistance. In our experiment, we observed
an increase of the sample resistance above the normal state
value at a certain temperature and/or magnetic field inter-
vals. We explain the observed nonmonotonous temperature
dependence of the zero-bias resistance by the difference in the
critical temperature of the even and the odd superconducting
islands. By lowering the temperature, let us say, odd-number
islands switch to the superconducting state while the neigh-
boring, even-number islands, still remain in the normal state.
As a result, in the temperature interval between the two crit-
ical temperatures, one obtains a one-dimensional chain of
normal metal-insulator-superconductor (S-I-N) Giaever junc-
tions. Zero bias resistance of such junctions is known to
always grow with lowering temperature due to the opening
of the gap in the density of states of the superconductor [8].
As soon as all the islands convert to the superconducting
state, we obtain a chain of Josephson S-I-S’ junctions, and
its zero-bias resistance begins to decrease with cooling. We
will demonstrate that this simple model well describes our
observations of the resistance peak.

We also extrapolate our data towards zero temperature and
argue that a superconductor-insulator quantum transition or
a crossover can occur if different islands or regions of the
sample have different critical magnetic field values. Such
a case is quite possible in disordered mesoscopic samples
exhibiting strong gap fluctuations [10,11]. So, even at zero
temperature, one can expect that, as the magnetic field is
increased, the regions (islands) with the lower critical tem-
perature will become normal, while the regions with a higher
critical temperature will remain superconducting. The resis-
tance of such an S-I-N chain should diverge. Thus, a zero
temperature crossover or a quantum transition can be envi-
sioned. We present indirect evidence of such transition in our
chains of islands with alternating critical temperatures.

II. SAMPLE FABRICATION AND MEASUREMENTS

We study long chains of Al islands coupled by tunnel
junctions, made of N = 33 000 rectangular islands in total
[Fig. 1(a)], which is possibly the largest number tested so far.
Such chains serve as a realistic model for a one-dimensional
(1D) conductor with alternating local critical temperatures,
TC . The TC alternation is achieved since the Al film critical
temperature is dependent on the substrate. In our chains, the
islands make tunnel junctions with their neighbors by overlap-
ping them. Thus, in each junction, one Al electrode rests on
the substrate while the other one rests on the first Al electrode.
Consequently, the critical temperatures of the banks of each
tunnel junction differ by a few percent. We have done tests and
explicitly confirmed this sensitivity of the critical temperature
to the substrate: Al films deposited on sapphire and on another
oxidized Al film showed different TC values.

The chains were fabricated using the standard Dolan bridge
technique involving MMA/PMMA bilayer resist patterned
by electron beam lithography with subsequent double-angle
deposition of aluminum with an intermediate oxidation step.
Due to the large number of junctions in the chain, pattern-

FIG. 1. (a) Optical image of the sample 053118SB. The contact
pads are visible on the right side of the sample. The two parallel
chains are connected at the bottom (not shown). (b) Scanning elec-
tron microscope (SEM) micrograph of the same sample. Individual
Al islands are visible here. (c) Schematic side view (cross section)
of the sample. The tunnel barrier between the islands is shown as a
black curve. This tunnel barrier is made of the oxide, Al2O3, grown
on the surface of the grains in a controlled oxidation procedure. This
schematic illustrates the fact that the chain is made of the islands
of two types: The first type includes the bottom islands, i.e., those
located directly on the oxidized Si wafer. The second type includes
the Al islands deposited over the Al islands of the first type. Thus,
the substrate for the second type islands is the oxidized aluminum
and not the oxidized Si. (d) Electrical scheme of the sample. The
sample contains 33 000 SIS junctions organized into two parallel
chains, mutually connected at the left end. The capacitance between
the superconducting islands is CJ , and the mutual chain-to-chain
capacitance is C0, per island.

ing was done by stitching multiple fields of view (100 μm
each) of the electron-beam writing system. Two samples have
been analyzed in detail 053118SB (sample B) and 082408SE
(sample E). The width of the islands was 0.54 μm in sample
B [Fig. 1(b)] and 0.3 μm in sample E. The unit cell repetition
length of each chain was 0.6 μm. The substrate for all samples
was a high-resistivity silicon wafer. Since Si is a semiconduc-
tor and its energy gap is much larger than the thermal energy
at the temperature of our experiment, the substrate behaves as
an insulator.

Each sample was configured as a double-chain line
[Figs. 1(a) and 1(d)], shorted at one of its ends, so that dc
transport current can pass through the entire chain. We esti-
mated the capacitance of each tunnel junction, CJ , by using
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specific capacitance [13] of 45 fF/μm2 and the junction area
(0.47 μm × 0.54 μm) from scanning electron microscope
(SEM) images [Fig. 1(b)]. The resulting values are CJ =
11.4 fF and 6.7 fF for sample B and sample E, respectively.
Accordingly, the estimated values of the Coulomb charging
energies are EC = e2/2CJ = 7 and 12 μeV for samples B and
E, respectively. The lowest temperature in the reported exper-
iments was T = 318 mK, which corresponds to the thermal
energy 27 μeV. The interchain charging energy is defined
as ECg = e2/2Cg, where Cg is the capacitance between each
island and the other chain. The charging energy ECg, which
is related to the island self capacitance, plays a key role
in the ultimate long-scale and zero-temperature behavior in
the theory [14]. In particular, a JJ chain is expected [12,14–
16] to undergo a quantum superconductor-insulator transition
at K0 = √

EJ/8ECg ∼ 1, where EJ is per junction Josephson
energy. We estimate that for sample B, Cg = 22.82 aF, ECg =
3.509 meV, EJ = 365 μeV, K0 = 0.114. For sample E, Cg =
20.53 aF, ECg = 3.898 meV, EJ = 192 μeV, K0 = 0.078.
Thus, both arrays should, in principle, show insulating behav-
ior at very low temperatures kBT � h̄ωp exp[−√

8EJ/EC] ∼
1 mK, which we, however, do not explore here. In this expres-
sion, ωp is the plasma frequency of a junction defined as ωp =√

8EJEC/h̄. For samples B and E we estimate, correspond-
ingly, h̄ωp = 144 μeV and h̄ωp = 135 μeV. The crossover
temperature from thermal activation to tunneling between the
wells of the “washboard” Josephson potential of a single junc-
tion, T ∗ = h̄ωp/2πkB, takes the value T ∗ = 266 mK for the
sample B and T ∗ = 249 mK for the sample E, which is below
the lowest temperature in the reported experiments, 318 mK.
Thus, in both samples thermally activated phase slips should
give the main contribution to zero bias resistance.

DC transport measurements on the chains have been con-
ducted in a 3He cryostat. The sample was installed in a
Faraday cage. The resistive measurement leads, before enter-
ing the cage, were thermalized and filtered against external
electromagnetic noise by cryogenic Cu powder and Ag pow-
der filters. Additional π filters have been installed on the
cryostat room temperature input leads. The current bias of
the sample was generated by a function generator DS360,
which supplied a periodic voltage at a frequency of either
0.1 or 1 Hz. The voltage was applied to a standard resistor
(1 M�) connected in series with the sample. The voltages
on the resistor and on the sample are amplified by dedicated
PAR113 amplifiers and digitized. The voltage on the resis-
tor was then converted to the current in the circuit using
Ohm’s law. The voltage-current (V-I) curves are plotted in the
LabVIEW environment; the slope of the V-I curve measured
near zero bias equals the sample zero-bias resistance. The
magnetic field is generated by a superconducting solenoid and
was always oriented perpendicular to the substrate surface,
and, therefore, perpendicular to the planes of the overlap-type
Josephson junctions. In other words, the magnetic field was
always parallel to the tunneling supercurrent in the junctions.
The temperature was measured and controlled using Lake
Shore Cryotronics (LSC) 370AC system, connected to a com-
mercially calibrated RuO thermometer, also supplied by LSC.
The thermometer was placed near the sample into the same
socket, such that its cooling was achieved through the leads,
same way as the sample cooling.

FIG. 2. Voltage-current (VI) curves of sample B. The parameter
is the magnetic field. Here and everywhere the magnetic field was
applied perpendicular to the substrate plane.

Example V-I curves for sample B are shown in Fig. 2. Sim-
ilarly to the previous reports [13,17], the V-I curves show a
series of almost identical steps. The steps are due to phase slip
centers nucleating at individual junctions in the chain when
the applied current exceeds the critical current of the junction.
It is known that the size of the step is 2�, where � is the
superconducting energy gap [13]. The external magnetic field
suppresses the critical current, making the V-I curve almost
linear, as is illustrated in Fig. 2.

The arrays exhibit a resistance peak as the temperature is
reduced, as shown in Figs. 3(a) and 3(c). At the peak, the
resistance is larger than the normal resistance of the sample.
The peak effect is present even at zero magnetic field, yet it
becomes larger, both in height and in width, if a perpendicular
magnetic field is applied. We also find that at even higher
magnetic fields, where the superconductivity is completely
suppressed, the peak is not present, which indicates that the
peak is related to the presence of the superconducting conden-
sate in the system. A detailed model will be presented below.

As the temperature is further reduced, the resistance starts
to go down quickly, as all islands enter their superconducting
state. Yet, even at the lowest temperature tested, the samples
exhibit some residual resistance. As will be analyzed in the
next section, the sample resistance, in the temperature interval
tested, can be explained by thermally activated phase slips
occurring in the junctions of the chain.

III. ZERO BIAS RESISTANCE AT ZERO MAGNETIC FIELD

Here we present zero-bias resistance results measured at
low temperatures and use the simplest possible model of ther-
mally activated phase slips (TAPS) to analyze them. In this
section we ignore Coulomb blockade effects; they will be dis-
cussed later. We assume that all islands are superconducting
and that the junctions act as independent resistive elements
(due to TAPS) connected in series.
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FIG. 3. Zero bias resistance versus temperature for the samples E [(a), (b)] and B [(c), (d)]. Left panels [(a), (c)] show the measurements
and the right panels—theory predictions, Eqs. (13), (21), (26), and (28). The parameters used for the theory plots for sample E were EC =
e2/2CJ = 5.98 μeV (which corresponds to the junction capacitance CJ = 13.4 fF, two times more than the estimated capacitance CJ = 6.7
fF), BC1 = 233 G, BC2 = 227 G, TC1 = 1.325 K, TC2 = 0.95TC1 = 1.259 K, N = 33 000, the resistance of a single junction is Rn = 5857 �,
and the total normal state resistance of the array is RN = NRn = 1.933 × 108 �. The theory parameters for sample B have been chosen as
follows: EC = e2/2CJ = 7.15 μeV (which corresponds to the junction capacitance CJ = 11.2 fF), BC1 = 233 G, BC2 = 221 G, TC1 = 1.325 K,
TC2 = 0.95TC1 = 1.259 K, N = 33 000, the resistance of a single junction is Rn = 3118 �, and the total normal state resistance of the array is
RN = NRn = 1.029 × 108 �.

The probability for a single junction in the chain to ex-
perience a phase slip is defined by the Arrhenius activation
formula:

�jct (I ) = ωp(I )

2π
exp

[
− �U (I )

kBT

]
. (1)

Here I is the bias current, ωp(I ) is bias dependent plasma fre-
quency of the junction, and �U (I ) is the potential barrier for a
phase slip event. For each junction we use a tilted washboard
potential U (ϕ) = −(h̄IC/2e) cos ϕ − (h̄I/2e)ϕ. The mini-
mum of this potential occurs at ϕmin = arcsin(I/IC ) and the
subsequent energy maximum—at ϕmax = π − arcsin(I/IC ).
Thus, the energy barrier for the phase slips in the positive
direction is

�U+ = U (ϕmax) − U (ϕmin)

= h̄

e

[√
I2
C − I2 + I arcsin

I

IC
− π I

2

]
. (2)

In the same way, one finds the energy barrier for the antiphase
slips, in which the phase revolves in the opposite direction,

�U− = h̄

e

[√
I2
C − I2 + I arcsin

I

IC
+ π I

2

]
. (3)

The critical current for a single junction, IC , is given by
Ambegaokar-Baratoff formula [19]

IC = π

2

�(T )

eRn
tanh

�(T )

2kBT
, (4)

where Rn is the normal resistance of the junction. In this
section, we use Rn as well as the critical temperature as fitting
parameters. The dependence of the superconducting gaps of
the islands follows Bardeen-Cooper-Schrieffer (BCS) theory
[18], which we will approximate by an analytic expression:

� j (T ) = πe−γ kBTC j tanh

(√
8e2γ

7ζ (3)

√
TC j

T
− 1

)
, (5)

where the subscript j = 1, 2 distinguishes the two types of
the islands in the chain, ζ (x) is the Riemann zeta function,
and γ = 0.5772 is the Euler Mascheroni constant. Since this
section is focused on the low-temperature part of the resis-
tance versus temperature curve, we neglect small differences
in the critical temperature and use one value, which represents
the average critical temperature, i.e., we treat TC1 = TC2 = TC

for the islands. Finally, the plasma frequency of the junction,
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appearing in Eq. (1), depends on the bias current as:

ωp(I ) = 1

h̄

√
4EJe2

CJ + Cg/4

(
1 − I2

I2
C

)1/4

. (6)

Here EJ = h̄IC/2e, CJ is the capacitance of each tunnel junc-
tion, and Cg is the capacitance of the island to the ground or the
other parallel chain. Since in both samples we find Cg � CJ ,
we neglect Cg when computing the plasma frequency.

Having determined the rates for a single junction, we find
the rates for the phase slips and antiphase slips in the entire ar-
ray by simply multiplying them with the number of junctions,

�±(I ) = N
ωp(I )

2π
exp

(
−�U ±(I )

kBT

)
. (7)

Here N = 33 000 is the number of islands in the chain.
In the limit of low current bias the plasma frequency be-

comes independent of I ,

ωp(0) ≈ 2e

h̄

√
EJ

CJ
= 1

h̄

√
e
0

CJ

�(T )

Rn
tanh

�(T )

2kBT
, (8)

where 
0 = π h̄/e is the flux quantum. In this regime, the
voltage is expressed as

V (I ) = π h̄

e
[�+(I ) − �−(I )]

= N
h̄ωp(0)

e
exp

(
− 2EJ

kBT

)
sinh

π h̄I

2ekBT
, (9)

and the zero bias resistance takes the form

R0 = lim
I→0

V (I )

I
= NRq

h̄ωp(0)

4kBT
exp

(
− 2EJ

kBT

)
. (10)

Here Rq = h/e2 is the resistance quantum.
We use the expressions presented above in order to esti-

mate the thermal phase slip rates in our arrays. We find that
these rates are high, even at the lowest temperature achieved

FIG. 4. Zero bias resistance versus temperature for the samples
E and B. The experimental points are shown by the squares while the
simple thermal phase slip model is shown by the continuous curves.
The fitting parameters for sample B are: Rn = 4.18 k�, TC = 1.33 K,
and CJ = 11.2 fF. For sample E the parameters are: Rn = 9.435 k�,
TC = 1.39 K, and CJ = 3.5 fF.

in the experiment. Namely, the zero bias rate is found to be
1010 s−1 for the sample B and 5 × 1012 s−1 for the sample E.
Simple numerical simulation showed that the net phase slip
rate does not depend significantly on the bias current if it is
less than 1 nA. Accordingly, in order to calculate zero bias
resistance, we use a very small bias current of 0.1 nA.

In Fig. 4, we present a comparison between the simple
model presented in this section and the experimental results.
The best fit parameters are indicated in the figure caption.
The agreement is good for sample B and also satisfactory for
sample E, taking into account the simplicity of the model.
Yet, the fitting parameters are notably different from their
expected values, which have been obtained independently. In
the next section, we present a more advanced model, which
gives better agreement with our experimental results.

IV. SUPERCONDUCTING TRANSITION
IN MAGNETIC FIELD

The resistance versus temperature, R(T ), curves measured
at various magnetic fields are shown in Figs. 3(a) and 3(c).
In this section, we present more advanced theoretical model,
which allows us to fit R(T ) curves in a better way. The result
of this model is plotted in Figs. 3(b) and 3(d) and shows
qualitatively similar behavior to the experimental curves. In
particular, the model reproduces the key result—the resistance
peak. It also shows that the peak grows with increasing mag-
netic field.

In what follows, we present the model in some detail.
First, we outline the main results related to superconducting
tunnel junctions. We will neglect possible self-capacitance
of the islands in the chain and treat the tunnel junctions as
independent. We assume for now that the magnetic field is
absent. The key property of the considered chain, causing the
resistance peak, is that neighboring superconducting islands
have slightly different critical temperatures, namely, the is-
lands with odd numbers have the critical temperature TC1 and
the islands with even numbers—TC2, and TC1 > TC2. (Here
the inhomogeneity is important. If one assumes TC1 < TC2 the
results would be identical.)

The current through each Josephson junction in the middle
of the chain is the sum of quasiparticle and Josephson contri-
butions,

I (V ) = Iqp(V ) + IC〈sin ϕ〉. (11)

Here V is the voltage drop across a single junction, IC is the
critical current of the junction given by Ambegaokar-Baratoff
formula for the junction between two superconductors with
different gaps [19]

IC = 1

eRn

∫ �2

�1

dE
�1�2 tanh E

2kBT√
E2 − �2

1

√
�2

2 − E2
, (12)

and angular brackets denote the averaging over the fluctua-
tions of the phase ϕ. In accordance with Eq. (11), the inverse
zero bias resistance of the chain has the form

R−1
0 (T ) = R−1

qp (T ) + GJ (T ), (13)
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where

1

Rqp(T )
= 1

N

∂Iqp(V )

∂V

∣∣∣∣
V =0

, (14)

GJ (T ) = 1

N

∂

∂V
IC〈sin ϕ〉

∣∣∣∣
V =0

. (15)

Clearly, for temperatures T > TC2 the Josephson conductance
GJ vanishes and quasiparticle contribution defines the resis-
tance of the chain. This is the regime of Giaever tunneling.

Since the chain consists of junctions with the resistances
of a few k�, Coulomb blockade effects should be taken into
account. Let us first consider the quasiparticle contribution
to the current Iqp(V ). At temperatures kBT � EC , where the
effect of random gate potentials induced in the islands by
charged impurities is negligible, one can express the quasi-
particle current in the form [20,21]

Iqp(V ) = 1

Rn

∫
dE1dE2 N1(E1 − eV )N2(E2)

×{ f (E1 − eV )[1 − f (E2)]Pqp(E1 − E2)

− [1 − f (E1 − eV )] f (E2)Pqp(E2 − E1)}. (16)

In this expression f (E ) = 1/(1 + eE/kBT ) is the Fermi func-
tion, Nj (E ) = |Re(E/

√
E2 − �2

j )| are the densities of states
in the islands of the two types, Rn is the normal state resistance
of a single junction, and Pqp(E ) is the probability of emission
of the energy E into the environment during a quasiparticle
tunneling event. The function Pqp(E ) is given by [20]

Pqp(E ) =
∫

dt

2π h̄
eiEt/h̄〈eiϕ̂(t )/2e−iϕ̂(0)/2〉. (17)

While evaluating this correlator one should treat the Joseph-
son phase as a quantum operator ϕ̂(t ). In the limit of highly
resistive environment, which is relevant for our experiment,
one can make an approximation [20]

Pqp(E ) = δ(E − EC ) (18)

and express the current Iqp(V ) in terms of “bare” quasiparticle
current through the junction, i.e., the current evaluated at zero
charging energy, EC = 0,

I (0)
qp (V ) = 1

Rn

∫
dEN1(E − eV )N2(E )

× [ f (E − eV ) − f (E )]. (19)

Namely, for highly resistive environment one finds

Iqp(V ) = I (0)
qp (V − EC/e)

1 − e(EC−eV )/kBT
+ I (0)

qp (V + EC/e)

1 − e(EC+eV )/kBT
. (20)

The quasiparticle contribution to zero bias resistance of the
chain (14) then takes the form

1

Rqp(T )
= eI (0)

qp (EC/e)

2NkBT sinh2 EC
2kBT

− 2

N (eEC/kBT − 1)

dI (0)
qp (EC/e)

dV
. (21)

This expression can be easily evaluated numerically. It takes
three different forms in the temperature intervals T < TC2

(superconductor-insulator-superconductor junctions), TC2 <

T < TC1 (normal metal-insulator-superconductor junctions),
and T > TC1 (normal metal-insulator-normal metal junc-
tions). In the latter case and in the limit kBT 
 EC Eq. (21)
reduces to the well known expression

Rqp(T ) = NRn(1 + EC/3T ), (22)

which is used for the Coulomb blockade thermometry [22].
Next, we consider the average value of the Josephson cur-

rent. We first consider the limit EJ 
 EC at zero temperature.
In this case, in the temperature interval 2EJ/kB � T < TC2

one can use perturbation theory is EJ combined with the
theory of environmental Coulomb blockade [20] and express
the Josephson current in the form [21,23]

IC〈sin ϕ〉 = π h̄I2
C

4e
[Pcp(2eV ) − Pcp(−2eV )]. (23)

Here

Pcp(E ) =
∫

dt

2π h̄
eiEt/h̄〈eiϕ̂(t )e−iϕ̂(0)〉 (24)

is the probability to emit energy E in the environment during
a Cooper pair tunneling event in one of the junctions. The
function Pcp(E ) resembles the function (17) but differs from it
by a different prefactor in front of the phase. This difference
arises from the difference between the charge of a single
electron (e) and that of a Cooper pair (2e). For a junction in
highly resistive environment one can approximate [20]

Pcp(E ) = exp
[− (E−4EC )2

16EC kBT

]
√

16πECkBT
. (25)

Taking the derivative of Eq. (23) at zero bias, we find the
Josephson conductance in the form

GJ (T ) = π h̄I2
C

N
P′

cp(0) = 1

NRq

E2
J

E2
C

(
πEC

kBT

)3/2

e− EC
kBT . (26)

Due to the presence of the factor e− EC
kBT this expression ex-

hibits insulating behavior in the limit T → 0. However, at
sufficiently low temperatures, namely for

√
8EJEC

2πkB
� T � 2EJ

kB
, (27)

the height of the barrier between the neighboring wells of the
cosine Josephson potential, 2EJ , exceeds the temperature, and
the Josephson conductance becomes determined by thermally
activated phase slips. In this case it has characteristic Arrhe-
nius temperature dependence,

1

GJ (T )
= NRq

√
8EJEC

4kBT
e− 2EJ

kBT , (28)

which is equivalent to Eq. (10) from the previous section, and
should replace Eq. (26). The expression (28) implies super-
conductivity at low temperatures. In the limit, EJ � EC , one
should use the expression (26) for the Josephson conductance
down to zero temperature because the condition (27) is never
satisfied. If EJ ∼ EC , both expressions (28) and (26) give
similar results except for very low temperatures.
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FIG. 5. Zero bias resistance of sample E versus magnetic field. Panel (a) shows the experiment, panel (b)—theory based on Eqs. (13), (26),
and (21). The parameters used for the theory plots for sample E were the same as in the caption of Fig. 3.

Finding the maximum of the average Josephson current
(23), in which Pcp(E ) is given by Eq. (25), one can deter-
mine the apparent critical current, i.e., the maximum current,
achieved at V = 2EC/e, at which the switching of a junction
to the resistive state should occur in the temperature interval
EC, 2EJ < kBT < kBTC2:

Isw =
√

π h̄I2
C

16e
√

ECkBT
= NkBT

2eR0(T )
. (29)

This expression is applicable when the junction resistance is
still close to its normal state value, and the phase slips are so
frequent that they overlap in time. Therefore, this expression
cannot be used at the lowest temperatures of the experiment,
where clear critical current is observed in our V-I curves.
Equation (29) is presented here for the completeness of the
picture.

The presence of magnetic field suppresses superconductiv-
ity in each aluminum island due to the Meissner currents. Thus
the expressions for the resistance of the chain given above
should be modified. The full theory of this regime has been
developed by Maki [24]. Here we, instead, use a simplified
approach, which should be valid for rather thick films and low
magnetic fields used in our experiment. Namely, we assume
that the critical temperature of an island scales with the mag-
netic field as [25,26]

TC j (B) = TC j
(
1 − B2/B2

C j

)
, (30)

where BC j are zero-temperature critical fields of the even and
odd islands. We then substitute the critical temperatures (30)
in the approximate gap equation (5) and subsequently evaluate
the critical current (12) and the quasiparticle current (19) with
the new values of the superconducting gaps �1(B) and �2(B).

In Fig. 3, we compare theory predictions with the experi-
ment. The data for the highly resistive sample E are well fitted
by Eqs. (13), (21), and (26). For this sample the condition
(27), which is required for the activation approximation for
the conductance (28) to be valid, is never truly satisfied, and
we used the expression (26) down to the lowest temperature.
In contrast, for the low resistive sample B we have used both
Eqs. (26) and (28) for the corresponding temperature inter-
vals. The mismatch between these expressions at kBT = 2EJ

produces small jumps in the theoretical curves. The overall

agreement between the theory and the experiment is quite
good. All fit parameters for sample B, listed in the caption
of Fig. 3, have been verified independently except for the
values of the critical fields BC1 and BC2. For sample E, we
also had to reduce the charging energy EC by a factor of two
as compared to its estimated value. The focus of this paper is
the higher-than-normal resistance peak, observed with cooling
when the sample just begins developing local superconductiv-
ity in the islands. Yet, globally it is not superconducting, and
the resistance of the chain increases, as is shown in Figs. 3(a)
and 3(c). A similar increase of the resistance with cooling has
been observed in quench-condensed superconducting films
[1], in granular superconducting films [2], and in high-TC

superconducting materials which are made of weakly coupled
superconducting layers [3,4]. Thus, this phenomenon is quite
general.

In Fig. 5, we plot zero-bias resistance of sample E versus
magnetic field for different temperatures. The experimental
panel (a) also shows a pronounced resistance peak, which gets
larger at lower temperatures. The right panel (b) presents the
results of the theoretical model outlined above. The agreement
between the theory and the experiment is quite good. The
peak appears to diverge in the limit of zero temperature due
to vanishing tunneling probability in S-I-N junctions. Thus a
phase transition in such chains can occur, in principle, even at
zero temperature.

V. SCALING

In this section we report scaling behavior of the experi-
mental resistance curves, which may point to an interesting
physics. We do not yet fully understand the origin of this
scaling, although it is clearly related to the transition from
a chain of S-I-S’ Josephson junctions to a chain of S-I-N
Giaever junction at a certain value of the magnetic field.

To observe the scaling behavior in the data, we plot a set
of R(B) curves measured at various temperatures [Fig. 5(a)].
Then we shift all curves along the horizontal axis so that
the peaks are positioned at the same magnetic field for all
curves. The shift is denoted �B. For the lowest temperature
curve (T = 318 mK; red squares) �B = 0. As such shifts
are finalized, the critical point Bq emerges on such plot as a
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FIG. 6. (a) Same data as in Fig. 5(a), but the curves are shifted along the horizontal axis such that the resistive peak occurs at the same
position, namely at the position of the peak of the T = 300 mK curve. The point where all the measured curves cross indicate a possible critical
point, Bq = 187 G, RC = 194.6 MOhm. (b) Scaling of the R(B) curves, taken at various temperatures, using the scaling relation. The scaling
exponent is νz = 0.5. The scaling analysis here does not include points at fields higher than the peak field Bc1 since at B > Bc1 vortices are
present in the islands. Also, the low-field points where the resistance saturates, presumably due to thermal phase slips, are excluded.

crossing point for all curves, see Fig. 6(a). The crossing of all
the measured curves at the same point suggests that this point
can be considered a critical point.

Let us first discuss the peak, and then it will be easier
to understand the crossing point. The resistance maximum
[the peak in Fig. 6(a)] occurs at the field which suppresses
the BCS condensate in the islands with lower TC , which we
have denoted as BC2. A higher field, at which the resistance
approaches the normal resistance Rn, is the critical field of the
islands with higher TC , namely, BC1.

If we assume that the crossing point is the critical point of
a phase transition at zero temperature, then we expect that,
as the temperature approaches zero, the slope of the curve
approaches infinity, namely dR/dB→ ∞ at B = Bq. On the
other hand, the resistance peak height increases with cooling
(which will be shown explicitly in the next section), so its
maximum, positioned at B = BC2, should also approach in-
finite resistance in the limit of zero temperature. Interestingly,
the peak appears at a fixed separation, about 25 G, from the
crossing point [Fig. 6(a)]. Therefore, one concludes that, in
the limit of T → 0, the resistance in the range Bq < B < BC2

should be infinity, R(B) → ∞. Thus the most natural way to
understand the critical (crossing) point in the family of R(B)
curves as the point where the even-numbered islands experi-
ence a transition between normal and superconducting states.
At fields and temperatures below this point, the condensate
begins to flow along the chain, on the time scale defined by
the time intervals between consecutive phase slips.

Phase transitions are known to exhibit scaling behavior.
The scaling analysis of Fig. 6(b) is based on the well-known
resistance scaling equation [5,27,28]

R0(T, B) = F

( |B − Bq|
T νz

)
. (31)

Here F is an unknown function, which has two branches,
one representing the superconducting regime and the other
corresponding to the insulating regime. The product of the
space and time correlation exponents, νz, is chosen to produce
the best possible collapse of the experimental curves on the
universal scaling function F . In our case, the best value is

νz = 0.5. The collapse of the curves provides evidence that a
phase transition occurs in the chain when even number islands
become normal. Note that it was recently demonstrated that
the exact type of the phase transition cannot be determined
from the scaling analysis along because models developed
for two-dimensional systems appear to be applicable to one-
dimensional samples such as superconducting nanowires [29].

Theoretical model of Sec. IV does not show the exact
scaling property Eq. (31); it agrees with Eq. (31) only roughly.
The model states, for example, that zero bias resistance of the
array should be a function of three dimensionless parameters:
�1(B)/kBT , �2(B)/kBT , and EC/kBT . The ratios �1(B)/kBT
and �2(B)/kBT can be further expressed in terms of the two
dimensionless combinations

x j = TC j (B)

T
≡ TC j

T
− TC j

B2
C j

B2

T
, j = 1, 2. (32)

Here we have used the expression (30) for the critical tempera-
tures of the islands in the presence of the field. Thus, magnetic
field always appears in the theory as the ratio B/

√
T , which is

in agreement with the value of the scaling parameter νz = 0.5
discussed above. Two scaling parameters can emerge if the
magnetic field is near the critical field, corresponding to zero
temperature, of one of the islands. Then the gap in the even
islands would be approaching zero while the gap in the odd
islands would remain strong and could be treated as a constant
near such field-driven transition.

VI. EXTRAPOLATION TO ZERO TEMPERATURE

In what follows, we will argue, phenomenologically, that
below a specific field, the resistance peak can grow so large
that it will cover a temperature interval extended down to
zero temperature. The magnetic field at which the resistance
peak maximum coincides with the point T = 0 could present a
critical point of a quantum superconductor-insulator transition
(SIT) for a chain of Giaever junctions (i.e., S-I-N junctions).
For the evidence of such behavior one can look at the R(T )
curves measured at 156 G for sample B and at 250 G for
sample E [Figs. 3(a) and 3(c)]. These curves exhibit growing
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FIG. 7. (a) The peak resistance value, Rmax, is plotted versus the
temperature at which the peak occurs, during a cool-down with the
magnetic field being fixed. The linear fits are given by the formulas
Rmax = 0.24GOhm/(T/1K )0.27 and Rmax = 0.13GOhm/(T/1K )0.45

for samples E and B correspondingly. Both the vertical and the
horizontal scales are logarithmic. The Rmax positions are shown by
arrows in Figs. 3(a) and 3(c). (b) Temperature dependence of the peak
half-width, �T = Tin − Tmax, is plotted versus the magnetic field.
It was measured from the higher-temperature side of the resistance
peak to the resistance maximum. The formula for the fit is �T =
�T (0)(1 + B2/B2

1 ), where �T (0) = 67.68 mK and B1 = 68.58 G
for sample B, and �T (0) = 71.52 mK, B1 = 98.32 G for sample E.

resistance in the entire explored temperature interval. Note
that if the magnetic field is made much higher than these
values, then the local superconductivity within each grain
becomes suppressed and the resistance peak disappears. This
fact confirms that the resistance peak is related to the super-
conductivity in the islands.

We now analyze the resistance peak and show that, as the
magnetic field is increased, and the system approaches zero-
temperature field-controlled transition, the peak exhibits and
accelerated growth, both in height and in width. The normal
resistance Rn is defined as the sample resistance at high tem-
perature (T > Tin), and Rmax is the resistance at the maximum
of the peak. Here Tin is the temperature at which the resistance
begins to increase with cooling, see Figs. 3(a) and 3(c). Is is
clear from the log-log plots in Fig. 7(a) that the peak height,
Rmax, exhibits a power-law growth with the temperature at
which the peak occurs. This is due to the electron trans-
fer suppression between the normal and the superconducting
grains in S-I-N junctions at low temperatures. Our chains can
mimic disordered superconductors in which the local value
of the critical field fluctuates considerably, and the observed
saturation of the resistance indicates an insulating regime in
such S-I-N structures. The theory model of Sec. IV leads to
a similar dependence of the peak height on temperature, as it
is evident from Figs. 3(b) and 3(d). Unfortunately, no simple
analytical expression can be derived for the range of parame-
ters of Fig. 7(a). The model predicts, however, a divergence of
the peak height as the magnetic field approaches the critical
field of the islands with weaker superconductivity. Moreover,
the peak position in the limit B → BC2 shifts towards zero
temperature. Thus, the superconductor-insulator phase transi-
tion may indeed occur at the magnetic field BC2, at which the
superconductivity in the weaker islands is suppressed.

We also analyze the width of the resistance peak as a
function of the applied magnetic field. We define it as the
half-width of the peak, �T = Tin − Tmax, where Tin is the
temperature at which the resistance begins to grow (in a cool-
down), and Tmax is the temperature at which the resistance

FIG. 8. (a) The beginning of the resistance peak, Tin, plotted
versus magnetic field, for the two samples. The formula for the fit
is Tin (B) = Tin (0)(1 − B2/B̃2

in ), where Tin (0) = 1325 mK, B̃in = 233
G for sample B (red circles), and Tin (0) = 1325 mK, B̃in = 300 G
for sample E (blue squares). (b) The position of the maximum of
the resistance peak, Tmax, plotted as a function of the magnetic field.
The formula for the fit is Tmax(B) = Tmax(0)(1 − B2/B̃2

max). The fit
parameters are Tmax(0) = 1257 mK, B̃max = 180 G for sample B (red
circles) and Tmax(0) = 1253 mK, B̃max = 238 G for sample E (blue
squares).

reaches its maximum. The result of this analysis is shown in
Fig. 8. The temperatures Tin and Tmax have parabolic depen-
dence on the magnetic field, Tin(B) = Tin(0)(1 − B2/B̃2

in ) and
Tmax(B) = Tmax(0)(1 − B2/B̃2

max). According to the model,
we expect Tin = TC1(B) and Tmax = TC2(B) and the critical
temperatures should, indeed, have parabolic dependence on
magnetic field (30). The fitting gives the values of the fields
B̃in and B̃max similar but not equal to the critical fields BC1 and
BC2 used for the theory plots in Figs. 3(b) and 3(d). This dis-
crepancy may be explained by broadening of the experimental
resistance peaks, which complicates precise determination of
the values of the fields BC1 and BC2. Finally, the peak width
�T = Tin − Tmax, plotted in Fig. 7(b), also has quadratic de-
pendence on the magnetic field.

In the end of this section, we would like to note that
the superconductor-insulator phase transition, which we dis-
cussed above, differs from the commonly discussed one
[15,16]. The latter phase transition is caused by partial sup-
pression of the Josephson energy of a single junction and
at the critical field EJ becomes of the order of ECg. At this
field all islands in the chain still remain superconducting. The
interplay between the two phase transitions may be compli-
cated. Indeed, as we have discussed above, our arrays should
formally be insulating at zero temperature. However, this insu-
lating behavior can only be observed at very low, inaccessible,
temperatures. In contrast, the transition to the chain of S-I-N
junctions at B = BC2 can be visible already at rather high
temperatures. On the other hand, a chain of S-I-N junctions
is never truly insulating in the absence of Coulomb blockade
because Andreev tunneling and elastic cotunneling through
the normal islands limit growth of the resistance at low tem-
peratures. We hope our results will initiate further in-depth
theoretical analysis of S-I-N chains involving these issues.

VII. CONCLUSION

In conclusion, we study phase transitions in chains of
weakly coupled superconducting islands that have alternating
critical temperatures and alternating critical fields. If the tem-
perature and/or magnetic field is such that superconductivity
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is suppressed in all islands, then all islands are normal, and the
chain behaves like a normal metal. If the temperature and/or
magnetic field is such that superconductivity is suppressed
in all even islands, while all odd islands remain internally
superconducting, then the chain behaves as a sequence of
Giaever junctions (i.e., S-I-N junctions) and is insulating in
the limit of zero temperatures (if Andreev reflection and co-
tunneling are negligible). The experimental manifestation of
this insulating behavior is the observed resistance peak. At
the peak, the chain resistance goes higher than its resistance in
the normal state. Finally, if the temperature and magnetic field
are low enough, all islands become superconducting, and the
chain acts as a sequence of S-I-S junctions, which is supercon-
ducting, with resistance dropping roughly exponentially with
cooling.

Our results are directly applicable to systems and materials
in which small superconducting grains are separated by strong
barriers, such as oxidized layers for example. We speculate
that under certain conditions an analogous behavior might
even occur in homogeneous amorphous metallic films if, due
to strong disorder, a significant fraction of the film becomes
gapped. In this respect, it is interesting to consider the pio-
neering STM (scanning tunneling microscopy) spectroscopy
studies of the superconducting gap in strongly disordered thin
films, performed by the Sacépé and collaborators [10,11].
They demonstrated that superconductivity is not completely
suppressed at the critical disorder but persists into the insu-
lating regime in the form of localized superconducting lakes
or islands. The key fact linking the STM study results and
our present results is that insulating regions and islands have
been also observed, even in the homogeneous but strongly
disordered films. Thus, an interesting possibility exists that
those insulating regions might provide sufficiently strong bar-

riers between the superconducting regions for the creation
of S-I-N patterns. Additional research is needed to make a
definite conclusion about such a possibility. In case if the
strongly disordered films can indeed spontaneously develop
insulating regions which play the role of the barriers, then the
temperature and/or the magnetic field could be adjusted such
that superconducting, normal, and insulating regions would
form S-I-N junctions even at zero temperature. Then, due to
the Giaever resistance divergence, as insulating regime can
emerge. We hope our model system will initiate further re-
search into this type of mechanism, generating insulating or
highly resistive regimes in granular superconducting systems,
in which superconducting grains are separated by sufficiently
strong insulating barriers. Its applicability to strongly disor-
dered but homogeneous films remains hypothetical.

The conductivity of an S-I-N- infinite chain in the limit
of zero temperature remains an open theoretical problem.
Although Andreev reflection and co-tunneling could generate
some conductivity, so the chain would not be fully insulating,
the Coulomb charging phenomena could render the chain
insulating. Further transport measurements on such arrays and
systems with the critical temperature fluctuations, at lower
temperatures, are also warranted.
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