' Aalto University

Smit, Peter; Virpioja, Sami; Kurimo, Mikko
Advances in subword-based HMM-DNN speech recognition across languages

Published in:
Computer Speech and Language

DOI:
10.1016/j.csl.2020.101158

Published: 01/03/2021

Document Version
Publisher's PDF, also known as Version of record

Published under the following license:
CC BY

Please cite the original version:
Smit, P., Virpioja, S., & Kurimo, M. (2021). Advances in subword-based HMM-DNN speech recognition across
languages. Computer Speech and Language, 66, Article 101158. https://doi.org/10.1016/j.csl.2020.101158

This material is protected by colpyright and other intellectual property rights, and duplication or sale of all or
part of any of the repository collections is not permitted, except that material may be duplicated by ?/ou for
your research use or educational purposes in electronic or print form. You must obtain permission for any
other tuhse: Elgctronic or print copies may not be offered, whether for sale or otherwise to anyone who is not
an authorised user.


https://doi.org/10.1016/j.csl.2020.101158
https://doi.org/10.1016/j.csl.2020.101158

Computer Speech & Language 66 (2021) 101158

Computer Speech & Language

journal homepage: www.elsevier.com/locate/csl

Contents lists available at ScienceDirect

Advances in subword-based HMM-DNN speech recognition

across languages

P
® CrossMark

Peter Smit™*, Sami Virpioja®*“, Mikko Kurimo?

2 Department of Signal Processing and Acoustics, Aalto University, Finland
b Department of Digital Humanities, University of Helsinki, Finland

€ Inscripta, Finland
d Utopia Analytics, Finland

ARTICLE INFO

Article History:

Received 8 January 2020

Revised 26 June 2020

Accepted 13 September 2020
Available online 28 September 2020

Keywords:

Large vocabulary speech recognition
Subword units

Character units

Recurrent neural network language models

ABSTRACT

We describe a novel way to implement subword language models in speech recognition sys-
tems based on weighted finite state transducers, hidden Markov models, and deep neural
networks. The acoustic models are built on graphemes in a way that no pronunciation dictio-
naries are needed, and they can be used together with any type of subword language model,
including character models. The advantages of short subword units are good lexical cover-
age, reduced data sparsity, and avoiding vocabulary mismatches in adaptation. Moreover,
constructing neural network language models (NNLMs) is more practical, because the input
and output layers are small. We also propose methods for combining the benefits of different
types of language model units by reconstructing and combining the recognition lattices. We
present an extensive evaluation of various subword units on speech datasets of four lan-
guages: Finnish, Swedish, Arabic, and English. The results show that the benefits of short
subwords are even more consistent with NNLMs than with traditional n-gram language
models. Combination across different acoustic models and language models with various
units improve the results further. For all the four datasets we obtain the best results pub-
lished so far. Our approach performs well even for English, where the phoneme-based acous-
tic models and word-based language models typically dominate: The phoneme-based
baseline performance can be reached and improved by 4% using graphemes only when sev-
eral grapheme-based models are combined. Furthermore, combining both grapheme and
phoneme models yields the state-of-the-art error rate of 15.9% for the MGB 2018 dev17b
test. For all four languages we also show that the language models perform reasonably well
when only limited training data is available.
© 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY
license (http://creativecommons.org/licenses/by/4.0/)

1. Introduction

The term large vocabulary continuous speech recognition typically refers to speech recognizers operating on tasks that have a
broad domain and cover the majority of regularly used words. Implicitly, it also assumes that a speech recognition system has a
vocabulary which must be large to sufficiently cover the language used. Originally, the term also implies that the vocabulary con-
sists of words, similarly as how the vocabulary is treated in linguistics, except that often the surface forms of the words are used

explicitly.
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Unfortunately, even the largest vocabularies limit the use of words into the listed ones. However, it is not possible to create an
exhaustive list of words, because all training data is also limited and languages evolve with new words appearing and old words
being forgotten. In speech recognition, the coverage of the vocabulary is often measured by the out-of-vocabulary rate. It is the
proportion of words that are not present in the vocabulary and thus cannot be recognized correctly.

For morphologically rich languages, such as Finnish, attempts to make a vocabulary to cover a sufficient part of the language is
even more problematic. Word formation by derivation and compounding produces a massive number of lexical words, and inflec-
tional processes further create a large number of variations requiring dozens or more surface forms to cover a single lexical word.

In the context of these problems, subword-based speech recognizers have been developed to cope with unlimited (or open)
vocabulary tasks (Bisani and Ney, 2005; Hirsimaki et al., 2006). Instead of words, the vocabulary contains morphemes, syllables,
or other subword units that together can be used to create an unlimited amount of word forms. If the units have been appropri-
ately chosen, all words in the language can be generated and modeled by the system. This would include words not seen in the
training data or even words that might not even have existed yet at the time the system is created. One step further is to create a
vocabulary-free system based only on characters. These systems have full freedom to predict any word, as long as it can be writ-
ten by the characters known to the system.

A subword or vocabulary-free system also has drawbacks. Some languages, such as English, have strong pronunciation varia-
tions in words and character sequences, which are hard to model on the subword or character level. While this could be solved
by finding and introducing the relevant pronunciation variants in the pronunciation dictionary for subwords, we take here a pho-
neme-free approach and build the acoustic models directly for graphemes. Another drawback of subword lexicons is that while
they allow producing proper words that were not seen in the training data, they can similarly generate non-words. During
decoding, the possible search space is larger than for word-based recognition, and language models that can use long subword
contexts are needed to guide the decoder.

Besides in Hybrid HMM-DNN based systems, the character and subword-based language models are also relevant for ‘end-to-
end’ trained models such as Graves and Jaitly (2014); Chan et al. (2016). Although the latest end-to-end systems perform very
well, the Hybrid HMM-DNN systems are often still the preferred choice. This is, for example, the case when separate language
models are needed, or when much more text data is available than audio data. Especially in low-resource situations this is often
the case. However, the end-to-end systems do use subword and charater-based models for much of the same reasons, including
the size of layers in the neural networks as well as the more effective use of training data. Like in our systems, the grapheme-
based acoustic models are also relevant for end-to-end models and often are the preferred choice (Sainath et al., 2018; Rao and
Sak, 2017).

In the following sections, we describe how we created effective subword and character based models in a conventional speech
recognition system, where the acoustic and language models are trained separately. We introduce the concepts needed to imple-
ment subwords correctly in a weighted finite state transducer (WFST) based recognizer and the considerations needed to train
both conventional n-gram language models as well as modern recurrent neural network language models. Besides merely testing
systems with different units, we also propose, implement, and evaluate system combinations that combine models composed of
different units.

The experiments are repeated on benchmarks covering four different languages from three different language families with
different vocabulary sizes and morphological complexities. For all of these four speech datasets we obtain, to the best of our
knowledge, the best results published so far. The motivation for this work came from the improvements we obtained by develop-
ing the new subword WFSTs (Smit et al., 2017c), character-based language models (Smit et al., 2017b) and then winning the 2017
multi-genre broadcast speech recognition challenge by combining systems operating on different subwords (Smit et al., 2017a).
While some of the ideas were initially presented in these conference papers, they have now been extended and analyzed in detail
here. All the results are entirely new and the tasks include also Swedish and English, for which such methods have not been pro-
posed before.

In summary, the main novelty in this work is the set of tools and techniques for successful subword modeling for WFST-based
hybrid DNN-HMM speech recognition using graphemes instead of phonemes. In addition, it includes a thorough evaluation
across four diverse languages as well as an evaluation of these techniques in an under-resourced scenario. Moreover, it explores
the usage and considerations in using subword and character based neural-network language models for hybrid DNN-HMM sys-
tems. Lastly, it introduces and evaluates the tools for doing lattice combination across different language modeling units, allow-
ing, for example, Minimum Bayes Risk decoding with a larger variety of models.

2. Subword modeling for ASR

Subword modeling has been used for almost twenty years in speech recognition. For some languages, such as Arabic, it has
been popular to use linguistic units such as morphemes as the basic language modeling unit (Choueiter et al., 2006; Kirchhoff
et al., 2006; Mousa et al., 2013). For other languages, such as Finnish, the subword segments are often created with data-driven
methods (Hirsimaki et al., 2006; Creutz et al., 2007). Multiple data-driven methods for subword segmentation have been used in
speech recognition. In Smit et al. (2017c) we have tested multiple methods such as byte-pair encoding (Gage, 1994), Morfessor
(Creutz and Lagus, 2002) and Greedy Unigram (Varjokallio et al., 2013). The results show that if the parameters and context
length for the language model are optimized to a comparable level, the actual segmentation method has only a minor effect on
the speech recognition performance.
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Not only do these systems need a subword segmentation, but also a method to reconstruct words back from the subword
units. This can be done by e.g. adding a dummy unit to mark a word boundary, or by creating different subword variants based
on the location in a word. The first subword systems often used a separate word boundary marker (Hirsimaki et al., 2009) or a
continuation marker attached on the left side of the subword when there is no word boundary (Arisoy et al., 2009; Tarjan et al.,
2014). In Smit et al. (2017c) we showed that the selected marking style can actually have a profound effect on the speech recogni-
tion result and that the optimal marking style often depends on the data set. Table 1 shows a list of the common marking styles,
as well as the corresponding abbreviations used in this paper.

After segmenting the training texts into subwords, conventional tools can be used for training the language models by treat-
ing the marked subwords as independent words. Only when the word-based perplexity is calculated, the actual reconstructed
words need to be accounted for. If the word boundary tags ( <w> ) are used for that, these tags will be treated as normal tokens
which have their own probability. This is necessary to predict the word boundaries correctly, otherwise any location of word
boundary tags would be as likely.

In this work we design our subword modeling in such way that it is independent from the acoustic model. The acoustic model
can be trained on sequences of phones (or graphemes), and any type of language model can be used with it, whether it is using
characters, other subwords, or words.

2.1. Data-driven subword segmentation

Multicharacter subword units are typically derived in an unsupervised manner from the training data. Smit et al. (2017c) com-
pared three data-driven segmentation methods for Finnish ASR: Morfessor Baseline (Creutz and Lagus, 2002; 2007; Virpioja et al.,
2013), Greedy Unigram (Varjokallio et al., 2013), and the byte-pair ecoding (BPE) algorithm popular in neural machine translation
(Gage, 1994; Sennrich et al., 2015). The Morfessor segmentation was found to be slightly but consistently better on three different
lexicon sizes, so we use it in this work.

Morfessor Baseline defines a unigram model over the subword segments. The parameters (i.e. the segments) are optimized for
maximum a posteriori criterion, with a prior inspired by the Minimum Description Length principle (Rissanen, 1978). A greedy
local search algorithm is used for minimizing the cost function (see, e.g., Virpioja et al., 2013). The granularity of segmentation
can be controlled by adding a hyper-parameter o between the cost of encoding the lexicon and the cost of encoding the corpus
part in the cost function:

L(6,Dw)=-logP(6)—a logP(Dy|6), (1)

where 6 includes the model parameters and Dy, are the words in the training data. A small value of & emphasizes the prior,
resulting in shorter subwords and smaller lexicon than with a large value. The training can be based on word tokens, word types,
or using the word frequencies with logarithmic dampening (Virpioja et al., 2011).

2.2. Pronunciation lexicon

In a traditional speech recognition system, the vocabulary is directly linked with the pronunciation lexicon. For languages
such as English, where the pronunciation is not based on rules, often hand-crafted lexicons that map each word to the correct
phoneme sequence are used. Typically, most words include only a single or only a few pronunciations.

When words are split into subwords, it is not always clear what the pronunciation of each subword is. A word can have more
or fewer phonemes than graphemes, and the relation that might be obvious to humans might be hard to determine algorithmi-
cally. Many subwords will also have multiple pronunciation variants. Moreover, many subwords will share the same pronuncia-
tion sequence, which increases the complexity of the recognition process.

One solution to this problem is to use grapheme-based units instead of phonemes, and let the acoustic model learn the pro-
nunciation patterns from the training data. In languages that are highly phonemic, e.g. Finnish, this is a natural thing to do. For
languages that have a more irregular pronunciation pattern, e.g. English, this is more complicated, because the acoustic model
must learn the pronunciation of characters based on their context. In Gaussian mixture model (GMM) based acoustic models, the
phoneme-based recognizers outperform the grapheme-based ones for English by margins as big as a 50% relative increase in
word error rate (WER) (Mirjam Killer, 2003). However, a recent work (Wang et al., 2018) shows that modern deep neural

Table 1
Four methods of marking subword units so that the original word sequence ‘two slip-
pers' can be reconstructed.

Style (abbreviation) Example

boundary tag (<w>) <W> two <w> slippers <w>
left-marked (+m) two slipp +er +s

right-marked (m+) two slipp+er+s

left+right-marked (+m+) two slipp+ +er+ +s
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network (DNN) acoustic models can learn the English pronunciations better, and the difference between phoneme and graph-
eme-based recognizers can be as low as 5% relative WER. Also, the modern sequence-to-sequence trained recognizers often pre-
dict graphemes directly without using a separate pronunciation lexicon (Prabhavalkar et al., 2017).

In this work, we used grapheme-based acoustic models for all languages, which solves the problem of generating pronuncia-
tions for all subwords.

2.3. Subword modeling in WEST based speech recognition

In the weighted finite state transducer (WFST) framework (Mohri et al., 2008) a decoding graph is created by the composition
of four different FSTs, abbreviated with the term HCLG. The H-FST maps HMM states to context-dependent phones, the C-FST
maps these to context independent phones. The L-FST (lexicon) maps the phone sequences to words and the G-FST scores the
sequences of words with a language model.

In a basic implementation of the decoding graph, it would be possible to use subwords by simply using those instead of words
when creating the separate FSTs. This would naturally still need a method for reconstructing words, but this could be handled by
using markers on the subwords, similar as has been done in this paper. However, there are two common extensions made to the
lexicon FST, which do have an impact on subword models. First, the lexicon FST often allows optional silence phones to be
inserted between words and on the beginning and end of the utterance. However, in subword FSTs, there cannot be any silence
phones between subwords that belong to the same word. Second, in words, different phoneme-variations are used depending on
the location, e.g. whether the phoneme is the first or last one in a word. To take this into account, also the subword FSTs must be
aware of their position in the current word. For example, when using the +m+ marking style with the subwords ‘hel+' and ‘+lo’
we want ‘hel+ to map to the phones ‘h_B e_I |_I' where ‘_B’ indicates a phone on the beginning of a word and ‘_I' a word-internal
phone. Similarly, for ‘+lo’ we want the phones ‘I_I o_E’ where ‘_E’ indicates a phone on the end of a word.

Fig. 1 shows how the lexicon FST can be created in such a way that these properties still hold for subword-based systems. The
subword lexicon is split into four categories (prefix, infix, suffix, and complete words) in which the position-dependent phones
are marked appropriately. Note that depending on the marking style a subword might appear in multiple categories. E.g., with
the <w> -style, all subwords belong to all four categories. More details and evaluations can be found in Smit et al. (2017c).

2.4. Language modeling with subword units

The choice of language modeling unit has significant implications for a speech recognizer. Although the tools and techniques
do not necessarily change—simple n-gram models will work to a certain degree—the optimization of these tools and techniques
is very dependent on the chosen unit. The choice of units changes the characteristics of the tokenized training text, changing
both the number of different tokens, the number of tokens in the text, and the number of times a token is used. When words are
split more, the number of tokens increases and number of types decreases. The extreme case is to split into characters, where the
lexicon would constitute of only the character set.

When the number of tokens in a sentence increases, it increases the number of units needed to represent the required context
information. In n-gram models, the only way to capture the more context information with shorter units is to increase the n, the
length of the preceding context. Without any pruning techniques, this would also increase the size of the model exponentially.
For this reason, we use the VariKN toolkit (Siivola et al., 2007), which uses dynamic modified Kneser-Ney growing and pruning of
n-gram models. The resulting models, so-called varigrams, do not fix the length of the preceding contexts but let it depend on
the improvement it gives to the model. In practice, a model with characters as units might have the majority of n-grams with a
context between 8—14 preceding tokens. The algorithms implemented in VariKN have been compared to traditional fixed-length
n-gram models for Finnish and Estonian (Hirsimaki et al., 2009) and Northern Sdmi (Smit et al., 2016) speech recognition, show-
ing clear improvements. Fig. 3 in Section 3.1 illustrates the distribution of n-grams used by some of the varigram models trained
in our experiments.

For recurrent neural network (RNN) based language models, it is of less importance how many tokens there are in a sentence,
as the models can learn dependencies that occur between tokens further apart in history (Mikolov et al., 2010). Besides that, the
subword models have an advantage over word models because of their smaller vocabulary size. If the vocabulary of a system is
too large, a lot of computing and training time is used for learning the parameters of the input and output layer which contain
the same number of units as the vocabulary size. Multiple methods to combat this, such as class-based training (Botros et al.,
2015) or hierarchical softmax (Morin and Bengio, 2005; Kuo et al., 2012) have been proposed, but for the subword models, these
methods are typically not needed as the size of the input and output layer is reasonable by default.

For both n-gram and RNN language models, the most prominent advantage can be found in the increased vocabulary coverage
and the reduced sparsity of the training data. The data-driven subword models mentioned in Section 2.1 have the ability to pre-
dict almost any word in the language, even words that were not seen in the training data and those that only came into existence
after the models were trained. Also, the units of subword models occur more frequently and in more different contexts, giving
the models more examples to train from. In a word-based system, more than half of the words might only appear once or twice,
which is not enough to build a robust estimate of their occurrence in future texts.
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Fig. 1. The original lexicon FST (top) and the subword-modified lexicon FST (middle). The labels on the arcs show the input:output label for each transition. e rep-
resents the empty symbol. Labels starting with '#” are dummy labels that are used for keeping the FSTs deterministic (a requirement in the Kaldi toolkit). Labels
that start with $ are replaced with linear FSTs containing the actual pronunciations of the applicable words. The bottom figure is an expanded example FST for
the sequence ‘ <w> juo <w> kah vi a’(translation: ‘drink coffee’)

3. System evaluations

To evaluate the properties of subword and character-based models in a modern neural network-based speech recognition
system, we have built systems for benchmarking tasks in four different languages from three different language families. First,
we evaluate for each language the general performance of a word-based model and then the performance on different subword
marking styles for n-gram-based language models. After that, we select the best marking and evaluate the different levels of seg-
mentation by changing the corresponding parameter in Morfessor. We evaluate these models both on n-gram language models
and two different recurrent neural network architectures; one “shallow” and one “deep” neural network. The details of these sys-
tems are described in Section 3.1.

3.1. Setup

We have used the same set of tools and recipes to create the acoustic and language models for all four languages.
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3.1.1. Acoustic model training

The acoustic models are trained with the Kaldi toolkit (Povey et al., 2011). First GMM-based models are trained, which are
used to automatically clean and segment the data with the standard facilities present in Kaldi. The resulting cleaned data set is
used to train a neural network based acoustic model. For all languages, we trained three different models. The most basic one is a
time-delay neural network (TDNN) (Peddinti et al., 2015), which is a non-recurrent neural network that takes a fixed time win-
dow as input. Furthermore, the parameters of lower layers are shared between smaller time windows in a similar fashion to con-
volutional neural networks. The second NN-based model was a mixture of TDNN layers and long short-term memory layers
(LSTM), which is a recurrent architecture that retains information from previous samples to improve its modeling power. The
last model is a bi-directional TDNN-LSTM model, which also unrolls a network forward in time (Cheng et al., 2017). In our experi-
ence, the recurrent models require more data in order to be trained adequately. Therefore, they are not expected to outperform
the regular TDNN model for smaller data sets.

All neural network acoustic models are trained with lattice-free MMI (Povey et al., 2016), which does not primarily optimize
frame-based phone prediction accuracy, but instead decodes part of the utterance on the fly and calculates the error with the
Maximum Mutual Information as a sequence-based criterion. However, frame-based cross-entropy is still used for regulariza-
tion.

For all languages, we first used a simple word n-gram model to determine the best of the three optional acoustic models and
then used that model through all experiments.

3.1.2. Subword segmentations

The different subword segmentations, besides the character one, are trained with the Morfessor 2.0 (Virpioja et al., 2013),
using the basic unsupervised Morfessor Baseline algorithm (Creutz and Lagus, 2002). The training is based on word tokens. In
order to obtain models that have different vocabulary sizes, multiple values for the corpus weight parameter « are used in Mor-
fessor (Section 2.1).

The vocabulary sizes for the different languages and segmentations are shown in Table 2. In addition, Fig. 2 shows histograms
for the number of units per word after segmentation. While the lexicon sizes of the largest Morfessor lexicons (with «=0.1) are
10-20 times higher than the smallest (o« =0.001), they still produce a high degree of segmentation for all languages. For example,
there are always more words that have been split into three units than words that are not split at all.

After segmenting the language model training text into subword tokens, four different unit boundary marker variants are cre-
ated as explained in Section 2.3. For the language modeling toolkits, all variants can be trained using the same procedure; the
only difference is that the marked subwords are given as input instead of words.

3.1.3. Language models

The n-gram language models are trained with the VariKN toolkit (Siivola et al., 2007). This toolkit uses modified Kneser-Ney
smoothing and grows and prunes n-gram models dynamically, possibly including very long contexts if that results in a better
model. In practice, the models are trained without limiting the order n. Instead, the total model size is controlled by the growing
and pruning parameters. For the first recognition pass, we train a model with appr. 4—10 million n-gram contexts. For the rescor-
ing pass, we train larger models, with no limits for growing or pruning. This means that all contexts that add anything to the pre-
diction power will be added to the model. For word models, there remain typically between 50—80 million n-gram contexts, for
character models typically up to 400 million n-gram contexts. The need for long contexts, especially in the case of subword mod-
els, is illustrated in Fig. 3. It shows the proportion of n-gram hits per order for the larger (rescoring) models on the development
sets as reported by the VariKN toolkit’s perplexity command. Taking Arabic as an example, in more than half of the cases the
word model is able to use only 2-grams, whereas for the character model the most common hit, over 15% of all hits, is for 9-
grams.

We train the RNN language models with the TheanoLM toolkit (Enarvi and Kurimo, 2016). Both a shallow and a deep version
of these networks is used; their basic architecture is shown in Fig. 4. We train the models at most 15 epochs with AdaGrad, and
stop early if perplexity on the development set does not decrease. For models with a very large vocabulary, we use a class-based
output using classes trained with the exchange algorithm (Botros et al., 2015; Kneser and Ney, 1993). The RNN-based models are
then used to rescore the n-gram-based lattices. Standard pruning algorithms such as limiting the amount of active search paths

Table 2
Vocabulary sizes for the different lexicons (char = characters, morf =
Morfessor segmentation with the corresponding corpus weight

parameter).

Segmentation  Finnish Arabic Swedish English
char 29 40 32 29

morf 0.001 9502 5406 10996 9712
morf 0.01 53183 28 802 50537 35441
morf 0.1 248 257 111713 197 022 100983

word 4308628 1303163 3543864 757627
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Fig. 2. Distribution of number of subwords per word for character segmentation (char) and Morfessor segmentation (morf) with different values of the corpus
weight parameter.

and restricting the maximum history (from 25 tokens for word models to 100 tokens for character models) are applied in a simi-
lar manner as in Enarvi et al. (2017). The “shallow” and “deep” architectures were only mildly optimized. The “shallow” network
was chosen as it corresponds to our previous work (Smit et al., 2017b) and the “deep” architecture was the same as in
Enarvi et al. (2017), inspired by Srivastava et al. (2015). We further optimized the number of parameters in the deep model.

3.1.4. Evaluation scores

The language model perplexities reported in the experiments are normalized on the number of words, so that the values are
comparable across different language modeling units. For models using a separate word boundary marker, the marker is consid-
ered to be part of the preceding word. Words that cannot be predicted by the model are considered out-of-vocabulary (OOV) and
excluded from the perplexity values. Note that due to different out-of-vocabulary rates, the perplexities are comparable only
approximatively: For a high OOV rate, many rare words are excluded, lowering the average perplexity values.

Arabic English
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Fig. 3. N-gram hit rates for development sets using the varigram models trained for rescoring. Subword models use the <w=> -style word boundary marking.
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Fig. 4. The two used RNNLM architectures. Both networks start with a projection and LSTM layer (Hochreiter and Schmidhuber, 1997). On the left the "shallow"
architecture that only contains a single highway and dropout layer. On the right the 'deep’ architecture that has four pairs of dropout (Srivastava et al., 2014) and
highway (Srivastava et al., 2015) layers. The number between parenthesis is the number of units in the layer.
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For all speech recognition experiments, we report the word error rate (WER), which uses the counts of substitutions, dele-
tions, and insertions to the reference text to calculate the error rate.

3.1.5. Hyper-parameter optimization

By nature speech recognition systems have many different hyper-parameters that can be tuned and chosen. Throughout this
experiments we try to highlight the most important hyper-parameters in subword based systems and choose the hyper-parame-
ters according to the results shown. Not all experiments show significant differences between multiple parameters, but we follow
the local optimal result nonetheless. Naturally, from any single system it is difficult to make any conclusions that will hold across
other languages or datasets. Therefore, we try to make only strong conclusions if we see a pattern that occurs across all the four
languages.

3.2. Finnish

Finnish is an agglutinative language from the Uralic language family with a very large word vocabulary, which makes it espe-
cially suited to subword-based recognition. The written language is highly phonemic; a phoneme-based lexicon would be almost
equivalent to a grapheme-based lexicon.

We use 1500 hours of acoustic modeling data from three different data sets. The Speecon corpus (Iskra et al., 2002) contains
read speech in multiple different conditions. The Speechdat database (Rosti et al., 1998) also contains read speech from a high
number of speakers over telephone lines. Lastly, the parliament corpus (Mansikkaniemi et al., 2017) is used which has speech
from the Finnish parliament. For evaluation, we use a broadcast news set, obtained from the Finnish national broadcaster YLE.
The test conditions are the same as in Smit et al. (2017b).

For language modeling we used data from the Finnish Text Collection (CSC - IT Center for Science, 1998) which contains
mainly newspapers and books from around the turn of the century. Our selection contained 12M sentences with in total 143M
tokens. The number of unique words was 4.2M.

Based on the initial experiments, where we trained three different acoustic model architectures and a small word-based n-
gram language model, we chose the TDNN-BLSTM acoustic model for the Finnish task (see Table 3a). Note that later experiments
show that the optimal acoustic model depends on the type of language model used and that in some cases a TDNN model could
perform better (see Table 10a).

For Finnish, we trained two n-gram models for all segmentations and all different marking styles. The first-pass n-gram mod-
els were tuned to have appr. 4M n-gram-contexts. For the rescored models the amount of n-gram contexts depends on the level
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Table 3

Evaluations for the Finnish YLE broadcast news data set.

TDNN TDNN-LSTM TDNN-BLSTM

194 18.5 184

(a) Comparison of different acoustic models using a word n-gram language model.

Segmentation <W> +m+ m+ +m
char 173 169 171 17.0
morf 0.001 159 15.7 16.2 16.4
morf 0.01 16.0 15.8 164 164
morf 0.1 16.1 15.7 16.4 164
word 16.7

(b) Rescored n-gram results for different subword markers and segmentations using a TDNN-BLSTM acoustic model.

Segmentation <W> +m+ m+ +m

char 4589 (13) 4090 (35) 4158 (13) 4270 (13)
morf 0.001 3499 (13) 3507 (35) 3486 (13) 3540 (13)
morf 0.01 3489 (21) 3522 (46) 3364 (21) 3395 (23)
morf 0.1 3607 (37) 3494 (90) 3347 (48) 3390 (49)
word 2328 (810)

(c) n-gram perplexity results for different subword markers and segmentations on the ASR development set. The number of OOV words are presented between
parenthesis.

RNNLM
Segmentation n-gram shallow deep
char 16.9 144 13.8
morf 0.001 15.7 135 13.1
morf 0.01 15.8 14.7 14.2
morf 0.1 15.7 14.2 14.0
word 16.7 15.0 14.6

(d) Comparison of different language models using a TDNN-BLSTM acoustic model and the +m+-subword marking style.

of segmentation, ranging from 50M contexts for the word model to 200M contexts for the character models. Table 3b shows that
the +m+-style marker is giving the best performance, which is in line with (Smit et al., 2017c; 2017b). The Morfessor-based sub-
word models are giving the best performance, with the best segmentation having a 5% relative improvement over a word-based
model. The character model is performing similarly to the word model, having only a 1% relative degradation.

When we compare the speech recognition results with the perplexity values on the same development set (Table 3c), we see
that they do not follow the same pattern. We calculated the perplexity values also for the other languages and observed similarly
that they do not indicate the best subword segmentation and marking style for speech recognition. For example, the +m+-style
tends to perform better in speech recognition than in language modeling, as it can help to disambiguate pronunciation variants
for the same grapheme sequences.

When we rescore and interpolate the results with RNN-based language models we see a remarkable improvement for all lan-
guage models. As expected, the character-based model benefits most from RNNLMs, probably because the RNN is more effective
than n-gram in capturing long contexts. When the smaller “shallow” network and the larger “deep” network are compared, the
improvement is largest for the character-based model. Compared to the previous best result in Smit et al. (2017b), 14.0%, we out-
perform it by 6.5% relative.

3.3. Arabic

The Arabic, as well as the Finnish language, has a structure that makes it naturally suitable for subword-based speech recogni-
tion. In previous work, linguistic units have been used frequently, but also data-driven units have been applied successfully
(Choueiter et al., 2006; Creutz et al., 2007; Mousa et al., 2013).

Both the acoustic modeling and language modeling data used in this work come from the 2016 MGB-challenge. The audio is
multi-genre broadcast data from Al-Jazeera and the language modeling text has been sourced from transcripts and the Al-Jazeera
website. In total 1020 hours of data is used for acoustic model training and 121M tokens of text for language model training. The
evaluation set used is the development set provided for the MGB2 challenge (Ali et al., 2016).

Although previously phoneme-based lexicons have shown better performance than grapheme-based lexicons (Ali et al.,
2014), we have opted to use only grapheme-based lexicons to be able to run all subword systems with the same acoustic model
and without preparing pronunciation dictionaries for the subwords. Note that our grapheme-based system for the MGB-3 chal-
lenge outperformed all competitors, even when only word units were used (Ali et al., 2017; Smit et al., 2017).

As for Finnish, we tested again all TDNN, TDNN-LSTM, and TDNN-BLSTM acoustic models. Table 4(a) shows that for Arabic the
TDNN-BLSTM outperforms the other models by a considerable margin, hence TDNN-BLSTM models are used for further experiments.
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Table 4

Evaluations for the Arabic MGB-2 broadcast data set.

TDNN TDNN-LSTM TDNN-BLSTM

20.8 194 18.2

(a) Comparison of different acoustic models using a word n-gram language model.

Segmentation <W> +m+ m+ +m
char 17.8 18.1 183 183
morf 0.001 173 17.2 17.2 17.4
morf 0.01 17.4 17.2 17.1 17.4
morf 0.1 175 173 173 175
word 17.7

(b) Rescored n-gram results for different subword markers and segmentations using a TDNN-BLSTM acoustic model and the m+-subword marking style.

RNNLM
Segmentation n-gram shallow deep
char 183 16.8 16.5
morf 0.001 17.2 16.0 15.7
morf 0.01 171 15.8 15.6
morf 0.1 17.3 16.4 16.2
word 17.7 16.7 16.5

(c) Comparison of different language models using a TDNN-BLSTM acoustic model and the m+-subword marking style.

Table 4 (b) shows the results for different segmentations and marking styles. Unlike for Finnish, none of the markings outper-
form the others clearly. As the best result (17.1%) was obtained with the m+-marking, we use this in further experiments. The dif-
ferent segmentations perform in a similar way as the Finnish ones, with the Morfessor-based models outperforming both word
and character-based models.

After the RNN-based rescoring, the Morfessor segmentations are still performing the best, with the morph 0.01 segmentation
achieving a result of 15.6% word error rate. Again, the character-based model has the highest gain from increasing the depth and
complexity of the RNN model. The previous best, single-system result, was 15.9% (Smit et al., 2017a).

3.4. Swedish

Swedish is a North Germanic language in the Indo-European language family. As these languages do not typically have very
phonemic orthography, subword-based ASR models are not common. However, Swedish has many compound words, which sug-
gests that subword units could work well for the lexicon.

We train our models with the data provided by the Sprakbanken corpus, a public domain corpus hosted by the National
Library of Norway. We used 354 hours of acoustic data from the training section of the corpus for training and 9 hours of acoustic
data for development and evaluation, which is roughly 50% of the provided evaluation data.

For language modeling purposes the Sprakbanken corpus contains n-gram-counts up to the 6th order, calculated from their
language modeling texts. Unfortunately, the source texts, required for doing subword n-gram or RNN-based modeling, are not
available. To overcome this, we reconstructed an approximation of the original language modeling corpus from the n-gram-
counts that is 6-count-consistent. The procedure for this was simple, by starting with a 6-gram context that begins with a sen-
tence marker and then obtaining the next word by finding a new 6-gram that is consistent with the last 5-gram of the current
sentence. This repeats until a sentence-end marker is found and a new sentence will be started. All counts for 6-grams are
decreases whenever the 6-gram is used, resulting in all 6-grams being used exactly the same amount of times as in the original
language modeling corpus. Our reconstructed language modeling corpus has 398M tokens.

Although Swedish is semi-phonemic, there are enough deviations that normally a phoneme-based lexicon would be useful.
Thus, the choice of implementing grapheme-based models might affect the performance. Although we have not found a compari-
son between phonemic and grapheme-based lexicons for Swedish, we assume based on the already excellent results showed
later in this section (Table 5(c)) that a phoneme-based lexicon would not improve this system much further.

Table 5 (a) shows that the baseline for this data set already achieves a very low word error rate. In contrast to the Finnish and
Arabic systems, the TDNN-LSTM system outperforms the TDNN-BLSTM system. Altough we have not investigated this in detail,
we expect that the reason is the smaller amount of acoustic data in the corpus. The optimal TDNN-LSTM model had 26M parame-
ters, while the optimal TDNN-BLSTM had already 45M parameters.

Like in the Finnish task, Table 5(b) shows that the +m+-marking style performs best for Swedish, with the <w=> -style being far infe-
rior over other styles. In n-gram-based modeling the word model slightly outperforms the Morfessor and character-based models.

Even though the word error rates for n-gram-based models are already very low, Table 5(c) shows that RNN-based language
models still improve those results by a significant margin. Even more surprising is that character-based models can match the
performance of word-based models. To test the diversity between these two models, we calculate the cross word error rate
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Table 5

Evaluations for the Swedish Sprakbanken read speech data set.

TDNN TDNN-LSTM TDNN-BLSTM

6.3 6.1 6.9

(a) Comparison of different acoustic models using a word n-gram language model.

Segmentation <W> +m+ m+ +m

char 39 33 33 3.7

morf 0.001 4.1 3.1 33 33

morf 0.01 43 3.1 3.2 32

morf 0.1 45 3.0 3.2 3.2

word 3.0

(b) Rescored n-gram results for different subword markers and segmentations using a TDNN-LSTM acoustic model.
RNNLM

Segmentation n-gram shallow deep

char 33 2.8 2.5

morf 0.001 31 24 23

morf 0.01 31 2.7 25

morf 0.1 3.0 2.6 2.4

word 3.0 2.7 2.5

(c) Comparison of different language models using a TDNN-LSTM acoustic model and the +m+-subword marking style.

(cWER) (Wong and Gales, 2017). Between the 'deep’ RNN word and character model the cWER is 1.63%, showing that the major-
ity of the errors in the models are not shared. This suggests an excellent opportunity for using these to models in an ensemble or
system combination.

3.5. English

Lastly, we run the same set of experiments on an English data set. Unlike the previous languages, English has only a very lim-
ited number of inflections and surface variations for each word form, and there is a weak relation between the surface form and
the pronunciation of a word. Traditionally, phoneme-based systems have always been far superior to grapheme-based system.
However, it has been shown that for the 2018 MGB English data set that we are using, there is only an appr. 5% relative improve-
ment of phoneme-based systems over grapheme-based systems (Wang et al., 2018). Therefore, even though we do not expect
any necessary improvement of subword-based models over word-based models, we decided to create a grapheme-based system
and evaluate the performance of word, subword and character units also in this task.

In the conditions of the official 2018 MGB challenge, the segmentation of the hour-long broadcasts needs to be done automat-
ically. Unfortunately, we did not have a segmenter available and instead, we use the utterance level segment timings provided in
the reference file. We do expect a small degradation when preparing the official results using a segmentation algorithm trained
on the challenge data. In total, we used 283 hours of acoustic training data and a text corpus that consists of 646M tokens. For
development and evaluation, we use the dev17b development set.

To validate the findings of Wang et al. (2018), we train both a grapheme and phoneme-based TDNN acoustic model for English, and
compare three different word language models. Table 6 shows that in our setup the results are similar. For a simple n-gram language
model, we have only a 4.3% relative WER degradation for a grapheme-based model and for the most advanced model a 6.7% relative
reduction. The reason why the difference between these models is so small is not entirely evident, but we suspect that the modeling
power of the acoustic models in combination with the lattice-free MMI criterion is able to compensate for the loose grapheme-pho-
neme relationship. However, this would require further research to be validated. As the results are very close, we are strengthened in
the belief that it is possible to make competitive models for English without the use of a hand-crafted phoneme lexicon.

Table 7 (a) shows that here the TDNN (with 18M parameters) outperforms all other architectures. Given that we had the least
amount of training data for this language this is not surprising and we expect that with more data to train the recurrent architec-
tures properly they would be able to cover the wider pronunciation variation even better.

Table 7 (b) shows that for n-gram modeling the Morfessor-based models slightly outperform the word model. This is a sur-
prising result, as previous attempts to make subword models for English have not had great success. Like the most other

Table 6
Grapheme vs. Phonemes for English using
word-based language models.

Grapheme  Phoneme

n-gram small 214 20.5
n-gramrescore  18.9 17.9
RNN ‘deep’ 17.7 16.6
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Table 7

Evaluations for the English MGB dev17b broadcast data set.

TDNN TDNN-LSTM TDNN-BLSTM

214 21.6 24.2

(a) Comparison of different acoustic models using a word n-gram language model.

Segmentation <W> +m+ m+ +m

char 20.6 20.0 20.0 20.4

morf 0.001 194 18.7 18.8 18.9

morf0.01 19.6 18.8 18.8 18.8

morf 0.1 19.7 18.8 189 18.8

word 18.9

(b) Rescored n-gram results for different subword markers and segmentations using a TDNN acoustic model.
RNNLM

Segmentation n-gram shallow deep

char 20.0 18.6 18.1

morf 0.001 18.7 17.9 17.8

morf 0.01 18.8 18.1 17.5

morf 0.1 18.8 174 173

word 189 183 17.7

(c) Comparison of different language models using a TDNN acoustic model and the +m+-subword marking style.

languages, the +m+-style marker performs best and is chosen for further experiments. After rescoring with an RNN-based LM we
see that the subword models still outperform the word models. Table 7(c) also shows that whereas for n-gram models there is
still a 1.1% absolute gap between word and character-based models, the gap is only 0.4% when using the deep RNNLMs.

To analyze the consistency of the English results, we have split out the test-set into the genres given by the creators of the
MGB-challenge. Table 8 shows that for all categories, except the ‘advice’ genre, the Morfessor subword models outperform the
word-based models. This division shows that subword models are not only applicable to very specialistic datasets, but that
accross domains subwords are having benefits (or are as good as) word models.

3.6. Discussion

Looking for the common patterns in the results between languages, we first notice that the Swedish results are much better
than any other tasks. A natural explanation is that it consists of read speech in a controlled environment, which is in contrast
with all other data sets that have been taken from TV-broadcasts with both spontaneous speech and background noises.

Among different type of acoustic models, only those languages that had lots of data available ( > 1000 hours) seem to be able
to take advantage of TDNN-BLSTM models. If there are less data, the TDNN-BLSTMs do not achieve the same performance as
TDNN or TDNN-LSTM models. Note that the number of parameters was (coarsly) optimized for each single acoustic model such
that reducing or increasing the number of parameters did not improve the results.

The differences between word and Morfessor-based subword models follow a common pattern, where the subword models
outperform the corresponding word-based models. The only exception to this are the n-gram models for Swedish which are
slightly worse or equal to the word-based result. For RNN-based language models, the subword units show more significant
improvements, and the difference between the best subword and word model is more substantial than for the n-gram models.

For Finnish and Arabic it has been shown before that subword models can outperform word-based models. Our results vali-
date that this is still the case in a modern WFST-based HMM/DNN speech recognizer, especially when RNN-based language mod-
els are used. For Swedish and English this is, as far as we are aware, the first time that Morfessor-subword models outperform a
word-based model on a large vocabulary system trained on a large language modeling corpus. While the single best result for
English, 17.3% WER, is worse than the best result for a phoneme-based system (16.6%, see Table 6), the system combination of
various grapheme-based models improve the results significantly. This will be discussed in Section 4.

Table 8
Word error rates for different English categories using the RNN ‘deep’ language model.
category
Total  advice  childrens comedy  documentary drama  events
% of total 143 113 231 353 6.1 10.0
char 18.1 145 16.9 25.7 145 149 22.1
morf 0.1 174 14.5 16.0 244 13.8 14.6 215

word 17.7 144 16.1 250 14.1 14.8 220
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Table 9
Amount of data used for the different languages.

Finnish ~ Arabic ~ Swedish  English

Speech (training) 1500h 1020h  354h 283h
Speech (evaluation) 5.4h 8.4h 8.7h 5.7h

Text (training tokens) 143M 121M 398M 646M
Unique tokens 4.3M 1.3M 3.5M 0.8M

When comparing the character-based results to the word-based results we see an improvement over word-based models only for
Finnish (14.6% vs 13.8%). In Arabic and Swedish the RNN-based character models match the corresponding word-models (16.5% and
2.5% resp.) and for English there is a small degradation (17.7% vs 18.1%). These results are still impressive, as they were made with
much smaller RNN models (because of the reduced size of the in- and ouput layers) that took less time to train, especially when the
time needed to cluster the vocabulary of a word-based model is taken into account. Another thing to note about the character-based
models is that they had the largest relative improvement between n-gram and RNN-based models, as well as the most significant rela-
tive improvement between “shallow” and "deep" RNN models. This indicates that further refinement of the RNN-based language mod-
els might lead to even better results, possibly outperforming word-based models for all languages.

The Morfessor-based subword models did outperform the character models for all languages, indicating that the subword units
learned by Morfessor are very suitable for the ASR task. Among the tested lexicon sizes (see Table 2), the number of units optimal for
the present tasks varied per language, with the extremes of 10k units for Finnish and 100k units for English. The variation may sound
large, but as illustrated by Fig. 2, the actual change in segmentation granularity is not drastic. Similar variation in the best-performing
lexicon sizes have been observed also earlier (e.g. Enarvi et al., 2017). Moreover, the differences in word error rates were small, and we
expect that for any language a subword lexicon with a size between 10k and 100k will work reasonably well and provide accuracy that
is close to the selected ones.

4. System combination between different units

Introducing different sizes of subword units gives a possibility to make a variety of models to evaluate. Not only can these
models be evaluated separately, but it is also possible to combine these results using system combination. The most common
technique is to use Minimum Bayes Risk (MBR) decoding (Goel and Byrne, 2000; Xu et al., 2010). Instead of optimizing the sen-
tence-error-rate, which is done in ordinary Maximum a Posterori (MAP) decoding, MBR decodes the utterance in such way that
minimizes the word error rate directly. This is very powerful in combination with lattice combination, as for each word location
the language model likelihood can be averaged between the lattices.

To make system combination work between systems trained on different units, the lattices need to be first converted to the
same vocabulary. This can be done with a simple FST-based transformation that is created by first reconstructing all the words in
the subword lattice and mapping these subwords to their actual words. Once all lattices are using the same vocabulary, they can
be combined into a new lattice that contains all word-paths from the different systems. Afterwards, a standard MBR-decoder is
used to get the optimal word sequence.

For all languages evaluated in this paper, we have run system combination experiments in two dimensions. First, we run sys-
tem combination separately for each language model unit, combining over the three different acoustic models we trained earlier.
This shows the improvement for the typical setup where the system combination is used over multiple acoustic models. The sec-
ond experiment we did was to combine the RNN-deep models for all different units: characters, Morfessor subwords, and words.
In addition to doing this for a single acoustic model, we also combined all these units across the two best and all acoustic models.

Table 10 (a) shows the system combination results for the Finnish models. The rightmost column, which shows the results of
combinations across acoustic models, indicates that for any unit a significant gain can be made by combining the different AMs.
The sharpest decrease in WER is obtained for the morf 0.01 models, for which the best non-combined result 14.1% is reduced to
12.7% with system combination.

The last rows of Table 10(a) shows the results of system combination over different units. The first result, which combines the
5 TDNN+BLSTM systems improves the best individual result of 13.1% to 12.8%. A combination over multiple acoustic models
enhances the result even further to 11.4%. Note that the TDNN model performs best when using RNNLMs, in contrast to TDNN
+BLSTM for n-gram-based models (Table 3(a)).

For Arabic, the results in Table 10(b) show a similar improvement through system combination. The best cross-AM combina-
tion improved the best individual result of 15.6% to 14.9% and combination with multiple units gives the best result of 14.6%.
These results are in line with the improvements we obtained in Smit et al. (2017a) where the combination of all our systems
improved the best individual result of 15.9% to 14.8%. The main reason for obtaining better results than Smit et al. (2017a) is the
use of better (deeper) RNNLMs.

For Swedish, the best WER for an individual system was already very low 2.2%. However, the system combination over differ-
ent acoustic models reduced this to 2.1% and the combination over both acoustic models and language units to 2.0% WER.

Lastly, the English results are more extensive, as we combined the systems also with the phoneme-based acoustic word
model. The best individual result with the phoneme-based model is 16.6% and with the grapheme-based model 17.3% WER.
Already when three different grapheme-based acoustic models are combined, the error rate matches or surpasses that of the sin-
gle phoneme-based system in for all units, except for the character-based model. Combining all systems gives the best WER of
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Table 10

Each of the rows "char, morf, word” contain WER results of one LM trained as the RNN ‘deep’
LM introduced in the chapter III. The four columns are the three AMs and a combination of the
corresponding systems (AM comb). The number in parenthesis is the number of systems com-
bined. The LM/AM Comb rows are system combinations of all these LM units, as well as a selec-
tion of different AMs. The colored background indicates which of the AMs (columns) are

combined.
Unit TDNN TDNN+LSTM TDNN+BLSTM AM comb
char 134 136 138 123(3)
morf 0.001 12.8 133 131 11.9(3)
morf 0.01 141 14.5 14.2 12.7 (3)
morf 0.1 13.8 143 14.0 124 (3)
word 14.6 15.0 14.6 13.3(3)
12.8(5)
LM/AM 12.4(5)
Comb 11.8(10)
11.4(15)
(a) Finnish
Unit TDNN TDNN+LSTM TDNN+BLSTM AM comb
char 189 17.8 16.5 15.9(3)
morf 0.001 17.7 16.7 15.7 149 (3)
morf 0.01 17.7 16.6 15.6 14.9 (3)
morf 0.1 184 171 16.2 15.4(3)
word 18.7 17.6 16.5 15.7 (3)
15.5(5)
LM/AM 14.7 (10)
Comb 14.6 (15)
(b) Arabic
Unit TDNN TDNN+LSTM TDNN+BLSTM AM comb
char 24 25 3.2 2.2(3)
morf 0.001 2.2 23 3.1 2.1(3)
morf 0.01 24 25 3.1 22(3)
morf 0.1 2.3 24 2.9 2.1(3)
word 24 25 3.1 22(3)
22(5)
LM/AM 2.0(10)
Comb 2.0 (15)
(c) Swedish
Unit Phone TDNN TDNN TDNN+LSTM TDNN+BLSTM AM comb
char 18.1 18.7 21.2 16.9(3)
morf 0.001 17.8 183 21.0 16.6 (3)
morf 0.01 17.5 179 20.7 164 (3)
morf 0.1 17.3 17.8 20.6 16.2 (3)
word 16.6 17.7 18.2 209 16.5(3)
17.2(5)
LM/AM 16.3 (10)
Comb 16.2(15)
15.9(16)

(d) English. The AM comb column combination is only over grapheme models.

15.9%, a 8.0% relative improvement over the best single grapheme-based system and a 4.2% relative improvement over the pho-
neme-based system. Note that this comparison only indicates the power of combining diverse models, in larger extent across
acoustic models and in smaller extent across different units. It also would be possible—and probably effective—to do system com-
binations across different acoustic models for phoneme-based models. However, for a phoneme-based system it is much more
difficult to train models with different kind of units to be used for system combinations From the perspective of low-resource lan-
guages that do not have manually created lexicon resources, it is encouraging that even for a language with as irregular pronunci-
ations as English, a normal phoneme-based system can be matched by multiple grapheme-based systems.
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Table 11

Comparison of different type of subword language models with
10% language modeling data. The last two columns show the deep
RNNLM result for the full data and its relative difference to the
deep RNNLM result with 10% data.

RNNLM 100%  rel. diff

Segmentation n-gram  shallow deep deep to 10%

char 18.5 15.9 15.4 138 -10.4%

morf 0.001 174 154 154 13.1 -14.9%

morf 0.01 17.5 16.0 15.7 14.2 -9.5%

morf 0.1 17.6 15.3 15.1 14.0 -7.3%

word 19.6 18.0 17.5 14.6 -16.6%
(a) Finnish

RNNLM 100%  rel. diff

Segmentation  n-gram  shallow deep  deep to 10%

char 193 17.7 17.5 16.5 —5.7%
morf 0.001 18.1 171 17.0 15.7 —7.7%
morf 0.01 18.1 171 17.0 15.6 —8.2%
morf 0.1 185 17.2 17.0 16.2 —4.7%
word 194 194 183 16.5 -9.8%
(b) Arabic
RNNLM 100% rel. diff

Segmentation  n-gram  shallow deep  deep to 10%

char 6.0 4.2 3.7 25 —32.4%

morf 0.001 53 34 3.1 23 —25.8%

morf 0.01 5.3 3.8 35 25 —28.6%

morf 0.1 5.4 3.6 34 2.4 —29.4%

word 6.0 4.7 44 25 —43.2%
(c) Swedish

RNNLM 100%  rel. diff

Segmentation  n-gram  shallow deep  deep to 10%

char 215 19.8 19.1 18.1 —5.2%

morf 0.001 20.6 184 18.2 17.8 —2.2%

morf 0.01 204 19.0 18.7 175 —6.4%

morf 0.1 204 18.6 18.5 17.3 —6.5%

word 220 19.3 18.8 17.7 —5.9%
(d) English

To further optimize the recognition accuracy we could also try system combination over different phoneme-based acoustic models
as we did for grapheme-based models. However, with the current experiments we can already conclude that our grapheme-based sys-
tems are able to capture the different pronunciations of graphemes with surprising accuracy. To our knowledge, it has not been shown
before that the difference between grapheme and phoneme-based systems can be this small for the English language.

5. Under-resourced scenario

As explained in Section 2.4, one of the strengths of subword models, including character models, is that the language model
training data contains more examples of each unit and therefore can be more effectively used in language model training com-
pared to the word models. To demonstrate this, we trained all systems with only 10% of the available language modeling data
and compared the impact on the performance for different language modeling units. This effectively simulates an under-
resourced scenario where less language modeling data is available.

In this study we reduced only the amount of language modeling data and kept the acoustic models identical to the previous
experiments. Naturally, the acoustic model will also learn some (grapheme-based) language patterns through the sequence-

Table 12

Comparison to previously published results.

Language  Ours  Prev Reference Differences to ours

Finnish 114 284 Kurimo et al. (2017) GMM-HMM acoustic model. Similar LM with vocabulary adaptation
Arabic 14.6 16.2 Manohar et al. (2017) Uses sMBR in acoustic model. Word-based 4-gram LM.

Swedish 2.0 15.97  Kaldi Sprakbanken recipe  Cross-entropy acoustic model. Word-based 4-gram LM.
English 15.9 17.9 Wang et al. (2018) Also mix of grapheme + phoneme. Word-based RNN LM.
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based training criterion, but we do not expect this to affect the experiment: The language modeling data does not contain the
acoustic model training utterances, and the number of word types and tokens in the acoustic modeling data is limited. In the
Finnish experiment, where we have the largest acoustic modeling training set, there are still only 9M tokens and 400k unique
words present in the acoustic training data. Even if this data were counted into the amount of language modeling data, the total
amount of data used would still be less than 20% of the original text data.

For Finnish (Table 11(a)), the results are between 7 and 17% worse than with the full language modeling data. As hypothe-
sized, the results of the subword models degrade less than those of the word-based models. The character model is now outper-
forming both the word model as well as two of the Morfessor subword models.

Table 11 (b) shows a similar pattern for the Arabic data set. The character model outperforms the word-based model even for
the n-gram model.

In Swedish, as shown in Table 11(c), the relative degradations seem larger than for the other tasks. This may be caused by the
nature of errors when the WER is much closer to zero, compared to the other tasks. In the under-resourced case, the character
model outperforms the word-based model and comes close to the performance of the Morfessor-based subword models.

Unlike in the other languages, for English the performance of the subword models stays close to the word models both in the
10% and in the full 100% data. On the other hand, the amount of language modeling data for English was the largest (see Table 9),
with the 10% system still containing 65M training tokens.

For all languages, there is a clear degradation in results when the amount of language modeling data is reduced. As expected,
the subword models are more robustly handling the data sparsity in all languages. The only exception to this, English, can be
explained by the fact that the original vocabulary is much smaller and the language modeling data much more substantial than
for the other languages. When comparing the character-based models to the Morfessor subword models, only in Finnish their
performance matches to two out of three Morfessor models, with the best Morfessor model still outperforming the character
based model (15.1% vs 15.4%). In other languages, the character models still stay behind.

6. Conclusion

We set out to implement and evaluate the use of subword units in state-of-the-art speech recognition, including advanced
neural network based acoustic and language models. To do this, we have evaluated word and subword systems for four distinct
languages from different language families.

For all four datasets, we improved over previously published results. Table 12 compares our results to the best results pub-
lished elsewhere. Note that for Swedish, we could not find any paper referencing this dataset, but instead we have compared to
the generally available ‘sprakbanken’ recipe of the Kaldi toolkit. For Finnish, we have omitted results that were published in our
own work (Smit et al., 2017c; 2017b) using mainly the same techniques. For Arabic, the ‘previous’ best published result is from
MGB-3 challenge (Ali et al., 2017; the MGB-2 dataset), in which our submission (Smit et al., 2017a) using the techinques pre-
sented here reached the top scores.

Our primary evaluation shows that models based on subwords derived by Morfessor consistently outperform word-based
models on all tested languages. The optimal size of the subword lexicon varied across languages, from less than 10,000 in Finnish
to a bit over 100,000 in English, but in no situation did subword models perform worse than the same model with word units.
Although this effect is already present when using n-gram language models, it is even stronger for RNN-based language models,
which have a better capability of capturing longer contexts.

With accurate RNN language models, using single characters as subword units also yields surprisingly good results. A charac-
ter-based model outperformed the word-based model for Finnish, produced a similar performance for Arabic and Swedish, and
underperformed the word-based model only for English.

As using different subword units provides with a variety of different models, we combined these systems using MBR-based
system combination. Although it was already effective to combine acoustic models from three different architectures, using mod-
els with different language modeling units was also a success, with combination systems reducing the WER of the single best sys-
tem with over 10% relative.

Although it was not the original intent of this paper, we did obtain interesting results regarding the use of grapheme models
for English. Not only was a simple direct word-based comparison between grapheme and phoneme models only showing a 6%
edge for phoneme-based models, by doing system combination the results of the grapheme-based system could match and sur-
pass the phoneme-based result, without having the need for a hand-crafted pronuciation lexicon. Furthermore, a combination
with all the grapheme and phoneme-based systems that we trained resulted in a 15.9% WER for the MGB dev17b test set, which
is by far the best result published on this data set.

Lastly, the evaluation with smaller language modeling data sets showed another strength of the subwords, where the degra-
dation was significantly smaller than that of the word units. This confirms the hypothesis that using subword units reduces data
sparsity and increases model robustness.
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