
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or
part of any of the repository collections is not permitted, except that material may be duplicated by you for
your research use or educational purposes in electronic or print form. You must obtain permission for any
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not
an authorised user.

Chen, Yaxing; Zheng, Qinghua; Yan, Zheng; Liu, Dan
QShield: Protecting Outsourced Cloud Data Queries with Multi-User Access Control Based on
SGX

Published in:
IEEE Transactions on Parallel and Distributed Systems

DOI:
10.1109/TPDS.2020.3024880

Published: 01/02/2021

Document Version
Peer-reviewed accepted author manuscript, also known as Final accepted manuscript or Post-print

Please cite the original version:
Chen, Y., Zheng, Q., Yan, Z., & Liu, D. (2021). QShield: Protecting Outsourced Cloud Data Queries with Multi-
User Access Control Based on SGX. IEEE Transactions on Parallel and Distributed Systems , 32(2), 485-499.
Article 9200772. https://doi.org/10.1109/TPDS.2020.3024880

https://doi.org/10.1109/TPDS.2020.3024880
https://doi.org/10.1109/TPDS.2020.3024880

1

QShield: Protecting Outsourced Cloud Data Queries
with Multi-user Access Control Based on SGX

Yaxing Chen, Qinghua Zheng, Member, IEEE, Zheng Yan, Senior Member, IEEE, Dan Liu

Abstract—Due to the concern on cloud security, digital encryp-
tion is applied before outsourcing data to the cloud for utilization.
This introduces a challenge about how to efficiently perform
queries over ciphertexts. Crypto-based solutions currently suffer
from limited operation support, high computational complexity,
weak generality, and poor verifiability. An alternative method
that utilizes hardware-assisted Trusted Execution Environment
(TEE), i.e., Intel SGX, has emerged to offer high computational
efficiency, generality and flexibility. However, SGX based solu-
tions lack support on multi-user query control and suffer from
security compromises caused by untrustworthy TEE function
invocation, e.g., key revocation failure, incorrect query results,
and sensitive information leakage. In this paper, we leverage SGX
and propose a secure and efficient SQL-style query framework
named QShield. Notably, we propose a novel lightweight secret
sharing scheme in QShield to enable multi-user query control;
it effectively circumvents key revocation and avoids cumbersome
remote attestation for authentication. We further embed a trust-
proof mechanism into QShield to guarantee the trustworthi-
ness of TEE function invocation; it ensures the correctness
of query results and alleviates side-channel attacks. Through
formal security analysis, proof-of-concept implementation and
performance evaluation, we show that QShield can securely query
over outsourced data with high efficiency and scalable multi-user
support.

Index Terms—Secure query, Outsourced data, Secure hard-
ware, Intel SGX, Cloud computing, Multi-user query control

I. INTRODUCTION

The cloud computing paradigm, characterized by conve-
nience, elasticity and low-cost, demonstrates a great success
in the past decade [1]. Organizations typically need to deploy
their application services to remote servers that are not in
charge by themselves, which leaves these organizations no
choice but to trust the cloud in managing their data for
utilization. This security assumption that the cloud is fully

We would like to thank Wen-hai Sun, Ning Zhang and Xue-qin Liang
for their insightful comments on the manuscript. We also thank Wen-jing
Lou for her constructive suggestions and kindly comments on this research
topic. This work was sponsored by National Key Research and Development
Program of China under Grant Nos. 2018YFB1004500, 2016YFB1000903,
Innovative Research Group of the National Natural Science Foundation of
China (61721002), Innovation Research Team of Ministry of Education
(IRT 17R86), the National Science Foundation of China under Grant Nos.
61502379, 61532015, 61672410 and 61672420, Project of China Knowledge
Center for Engineering Science and Technology. This work is also supported
in part by the Academy of Finland under Grants 308087 and 314203.

Y. Chen and Q. Zheng are with the School of Computer Science
and Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi, China. Email:
cyx.xjtu@gmail.com, qhzheng@mail.xjtu.edu.cn

Z. Yan and D. Liu are with the State Key Lab on Integrated Services
Networks, School of Cyber Engineering, Xidian University, Xi’an, Shaanxi,
China. Email: 15596173220@163.com, zyan@xidian.edu.cn; Z. Yan is also
with the Department of Communications and Networking, Aalto University,
Espoo, Finland. Email: zheng.yan@aalto.fi

trusted, however, is not always valid since the cloud may
suffer from malfunctions, compromises, intrusions or attacks.
Hence, many cloud-based systems employ cryptography to
encrypt confidential data when being transmitted, processed
and/or stored. However, one of the biggest challenges caused
by cloud data encryption is how to efficiently utilize encrypted
data while not being bothered by encryption, e.g., queries
that are frequently performed in many cloud systems [2]–[4].
Typically, a data query can be represented by a SQL-style
expression and interpreted as a query plan, i.e., a directed
acyclic graph (DAG) of computational operators for execution,
such as projection, selection, aggregation, union and join.

Partially/Fully homomorphic encryption (PHE/FHE) is a
fundamental technology to solve cloud data security and
privacy problems in the literature. However, such pure crypto-
based solutions at present suffer from severe operation flexi-
bility with limited operation support and performance issues
due to high computational complexity [5]–[7]. Searchable
Encryption (SE) enables search over encrypted data. Albeit
there exist extensive investigations along this research line,
current SE implementation is still not satisfactory [8]. Notably,
building upon various crypto primitives, different SE schemes
support different search types, e.g., single keyword, multi-
keywords and range, with different index structures, and are
not compatible with each other. Besides, SE focuses on con-
ditional information retrieval, which can only be viewed as a
selection operator. As such, existing schemes inherently cannot
directly apply to (or be extended to) support generic queries.
In addition, cryptographically verifying the correctness and
integrity of cloud operations is inefficient and remains an open
problem [9].

In recent years, a hardware-assisted Trusted Execution
Environment (TEE, also called enclave), i.e., Intel Software
Guard Extensions (SGX), has been applied [8], [10]–[12] as
an alternative promising countermeasure, but presents several
limitations.
Issue I (No Effective Support on Multi-user Query Con-
trol). Multi-user query control is a fundamental function for
cloud data utilization. Using SGX to realize multi-user query
control is still an open issue. Consider the following strawman
protocol for an enclave to support query control over multiple
data users.

Strawman Protocol: Let the data owner securely provision
its data encryption key and his/her access policy to an enclave
through remote attestation (authorization). Then, a data user
remotely attests to the genuineness of the enclave; During the
process, the data user and the enclave (on behalf of the data
owner) provide each other with their own digital credentials

2

for mutual authentication; A successful mutual authentication
results in a private communication channel for later query
requests and responses. At query time, the enclave loads
encrypted data and only recovers the data for the specifically
authorized user according to an access policy (enforcement).

Such a method, however, exposes some fatal flaws: 1) Re-
mote attestation between the data user and the enclave is
a cumbersome process; the involved mutual authentication
typically needs the help of burdensome Public Key Infras-
tructure (PKI). This is time-costly. 2) The enclave needs
to maintain a crypto session key for the established private
communication channel for each data user, which incurs a
non-trivial key management overhead, especially for storage.
The above two flaws together cause poor scalability in multi-
user query control. 3) It is risky to hand out the crypto key
to the enclave to handle multi-user query control. On one
hand, a compromised TEE host can make use of the enclave
to perform unauthorized computation. A concrete example is
the recent identified key revocation problem [13], [14]. On the
other hand, the long-term crypto key within an enclave can be
extracted due to various known attacks.
Issue II (No Proper Guarantee on Trustworthy TEE Func-
tion Invocation). On the other hand, we notice that a practical
design of an SGX-based query system is to implement each
computational operator as a unique TEE interface function
so as to ensure high flexibility and generality [11], [15]. In
other words, one query often involves multiple TEE function
calls. At present, SGX remote attestation only ensures the
integrity of one TEE function at run-time, but the correctness
of query execution, more generically, the correctness of TEE
function invocation, is not guaranteed, caused by the distrust
of TEE host. The untrustworthy TEE function invocation
will inevitably introduce some non-trivial security and privacy
issues, especially after the crypto key has been delivered to an
enclave. Intuitively, malicious TEE function invocation could
incur incorrect query results. Besides, it makes an untrusted
TEE host capable of ruining access control over multiple data
users, i.e., the recovered data within an enclave for a data
user can be utilized to serve queries issued by other data
users. Further, it may open a back door for exposing sensitive
information by launching side-channel attacks [16], [17]. At
present, efficiently guaranteeing the execution (invocation)
integrity of a TEE host atop the TEE stack remains an open
problem [18].

However, it is challenging to solve the above two issues
simultaneously. First, it is not an easy task to design a key
management scheme that can control multi-user query and
at the same time avoid disclosing the full crypto key to the
enclave. Obviously, an enclave may be maliciously used by
its host. The enclave may not be as impregnable as a wall of
iron in a long run; the crypto key could be exposed if staying
in the enclave for a long term. This seems a dilemma for the
data owner, since it needs to entrust the crypto key to the
enclave for data utilization. Second, it is tough to achieve
scalable multi-user query control and efficient enforcement
on trustworthy invocation of TEE functions in the context of
fulfilling data queries by executing multiple TEE functions
since tradeoff between performance and security is a persistent

topic in system design.
Our Approach. In this paper, we propose a secure and
efficient query framework called QShield to enable scalable
multi-user utilization of outsourced data. It adopts Intel SGX
to establish hardware-assisted enclaves in the untrusted cloud
so as to protect the confidentiality and integrity of sensitive
data run inside. Besides, QShield incorporates a generic SQL-
style query model such that it is capable of handling major-
ity of common data query tasks. Furthermore, since cloud
applications in web, mobile, social or IoT scenarios often
use different data models, such as relational tables, key-value
items and data streams, QShield exploits a widely-adopted and
flexible document-oriented data model to enable compatibility
and support high generality.

In order to tackle the multi-user query control issue, we
present a novel and lightweight secret sharing scheme. The
core idea is to let the data owner assign an attested enclave
a key share ska and each authorized data user i another
individually unique key share skib. The encryption key sk can
be reconstructed and used for decryption only if the skib is
delivered to the enclave that holds ska per query. Once the
authorized data are recovered, the crypto key sk is erased in
the enclave. As such, neither data users nor the enclave have
full capability to recover the encrypted data with their own
key shares outside the scope of the current query. Moreover,
a secret existing in the enclave for a small time-interval can
greatly reduce the possibility of being exposed through side-
channel attacks; the non-trivial key leakage problem can then
be solved. Another benefit is the enclave and the data user can
effectively authenticate with each other through their unique
key shares rather than cumbersome remote attestation.

In order to overcome Issue II, we further propose a trust-
proof mechanism to enforce that the recovered data within
the enclave can only be used to serve the current query and
prove that the query result offered by the enclave is correct. To
be specific, on one hand, we leverage an endurance indicator
denoted by ω to restrict the times that the recovered data
as well as its derived intermediate results can be utilized
by the enclaved operators. On the other hand, we make the
enclave record and output the footprints of the distributed
query execution as a workflow proof for auditing. As such,
any malicious TEE function invocation during query execution
will be detected. Without capability to arbitrarily invoke TEE
functions, the specific side channel attacks launched by a TEE
host can thus be alleviated.
Contributions. In summary, the main contributions of this
paper are: 1) Building upon the off-the-shelf hardware-assisted
TEE, i.e., Intel SGX, we propose a practical secure query
framework named QShield for outsourcing data to the un-
trusted cloud. By supporting common SQL-style query expres-
sions and flexible document-oriented data model, QShield can
be easily adopted by most of cloud-based query application
scenarios. 2) Under the threats caused by the limitation of
SGX architecture, we present a secure and lightweight secret
sharing scheme to make QShield capable of realizing scalable
multi-user query control. 3) We also propose a trust-proof
mechanism to audit the correctness of query execution and
meanwhile greatly alleviate the possibility to launch side

3

channel attacks with regard to TEE function invocation. 4) We
provide formal security analysis over QShield. Furthermore,
we implement a proof-of-concept prototype and our experi-
mental evaluation confirms QShield’s efficiency and flexibility,
compared to existing crypto-based solutions.
Organization. The rest of this paper is organized as follows.
Section II reviews the literature related to our work. Section III
describes system, data and threat models of QShield and our
research assumptions. We introduce our research preliminaries
and present the design of QShield in Section IV, followed
by security analysis in Section V. We implement a proof-
of-concept QShield system in Section VI and evaluate its
performance in Section VII. Finally, we conclude the whole
paper in the last section.

II. RELATED WORK

A. Work Fully Based on Cryptography

Cryptography is a widely-adopted technology to protect
outsourced queries (search) in the cloud. Initially, Song et
al. [19] presented a special two-layered encryption construct
for each query word based on stream ciphers to realize
keyword search over encrypted documents. When a server
computes over a construct with a trapdoor, it can strip the
outer layer and assert whether the inner layer has a correct
form. However, their scheme suffers from statistical attacks.
As the number of documents scales up, it also experiences
great performance degradation on search. In order to solve
these limitations, Goh [20] proposed to build a secure index
for each document. Specifically, it utilizes Bloom filters and
pseudo-random functions to implement indexing. Chang et
al. [21] also leveraged secure indexes in their scheme, but
they try to avoid any information leakage caused by trapdoors
towards the words being queried. Curtmola et al. [22] formally
defined secure indexes with new and stronger security defi-
nitions. They proposed the first secure searchable symmetric
encryption scheme under a multi-user setting, which was then
improved by Kamara et al. [23] to support document insertion
and deletion. Search over encrypted data is also considered in
a public-key setting where anyone who possesses a public key
can update an index with new words, but only the owner of
private key can generate trapdoors to query over the index. As
a concrete example, Boneh et al. [24] leveraged identity-based
encryption to build secure keyword search. Current work along
this research line in the literature focuses on improving data
utilization, i.e., to support complex query types rather than
just keyword search. For example, Cash et al. [25] gave a
solution for searchable symmetric encryption with conjunctive
search and general boolean queries. Sun et al. [26] realized
range queries by reducing a range query to a secure multi-
keyword query. More generally, Gahi et al. [27] proposed to
utilize homomorphic encryption to implement SQL queries
over an encrypted relational database. Unfortunately, it is not
sufficiently mature yet as the underlying technique of ho-
momorphic encryption is time-consuming and cannot support
all generic computations or operations over encrypted data.
Another practical method at the time is to incorporate various
crypto primitives into a system to support more advanced

query semantics over encrypted databases. One representative
system is CryptDB [2]. Streamforce [3] and PloyStream [4]
target at real-time stream processing and extend CryptDB
to support multi-user query control. However, both systems
encrypt a piece of data multiple times so as to satisfy the
queries requested by different data users. As a result, such an
improvement introduces significant performance overhead and
causes a scalability problem.

B. Work Based on TEE

A promising way to protect outsourced queries (search) is
exploiting hardware-assisted TEE, e.g., Intel SGX. It avoids
time-consuming and cumbersome computations caused by
software-based cryptography. Besides, it is theoretically capa-
ble of implementing arbitrary query semantics. For example,
Rearguard [8] leverages SGX to enable secure keyword search.
As a concurrent work, HardIDX [10] also utilizes SGX to build
secure indexes for searchable encryption. VC3 [12] uses SGX
to build a secure version of map-reduce processing framework.
Opaque [11] and Hermetic [15] both allow a number of generic
SQL queries over encrypted data with SGX, but they dedicate
themselves to mitigating critical side channel attacks, without
any discussion on multi-user query control. TrustedDB [28]
allows data users to execute SQL queries with privacy and
under regulatory compliance constraints. It, however, adopts
server-hosted and tamper-proof cryptographic coprocessors
(SCPUs) to facilitate secure computation in critical query
processing, which deploys a much bigger trusted computing
base (TCB) than SGX-based solutions. All of the above works
mainly consider to protect data confidentiality during query
processing without any support on multi-user query control.
By contrast, EnclaveDB [29] was endowed with an ambitious
design goal by applying SGX to ensure confidentiality, in-
tegrity and freshness for both queries and data. It implements
the strawman protocol to achieve multi-party access control,
which requires to pre-embed public keys of authorized data
users into an enclave and perform remote attestation as per
data user. Thus, EnclaveDB suffers from a severe scalability
problem.

With regard to guaranteeing trustworthy TEE function in-
vocation, VC3 presents a solution to ensure the integrity of
distributed computational workflows. Its solution, however,
needs high inter-node communication overhead regarding ver-
ification messages. To solve this issue, Opaque introduces
a self-verification protocol, where a data user distributes an
encrypted query plan to all enclave instances serving for
the current query. Each enclave instances, in turn, takes
responsibility to check whether its received inputs confirm
the DAG (input edges of a corresponding node). Due to the
additional overhead introduced by real-time verification on the
authenticity of all inputs of an enclave instance, Opaque incurs
performance degradation during query execution, which can be
a big performance issue when the system workload is high.
EnclaveDB chooses to host queries and a whole query engine
in an enclave to protect the confidentiality and integrity of
queries. But the Enclave Page Cache (EPC) that hosts enclaves
is limited to 128MB in SGX (v1.0) and 256MB in SGX (v2.0).

4

Such a capacity limitation often produces a large amount
of costly coarse-grained paging and thus causes significant
performance penalty [30]. As such, EnclaveDB exacerbates
performance in view of EPC limit. Besides, EnclaveDB re-
quires to pre-define all queries and pre-compile them as a part
of enclave procedure, which causes poor flexibility and low
generality in a multi-user setting.
Our Work. QShield’s design follows Occam’s Razor princi-
ple. We try to minimize the job of enclaves (similar to Opaque-
style systems), i.e., only query operators are implemented as
enclave procedures, so as to maximize EPC utilization, but
meanwhile providing strong security guarantees for outsourced
queries. To this end, we implemented an efficient trust-proof
mechanism to ensure the integrity of queries, even if a host
program (query engine) is compromised. Moreover, we imple-
mented a lightweight secret sharing scheme to enable efficient
and scalable multi-user query control.

III. PROBLEM STATEMENTS

In this section, we introduce the system model, data model
and security model of QShield and describe our research
assumptions.

A. System Model

As illustrated in Fig. 1, QShield consists of three types of
system entities: data owner, data user and cloud Application
Service (AS). The data owner uses a symmetric key sk to
encrypt its sensitive data before outsourcing them to the cloud
AS for utilization. Multiple data users may query the data to
retrieve valuable information. The cloud AS in our system has
rich storage and computational resources; it is responsible for
storing outsourced data, establishing an enclave for the data
owner, and handling user queries. Similar to most well-known
outsourced databases, e.g., Amazon RDS and Google Cloud
SQL, the economic model existing amongst the three entities
is: the data owner pays the cloud AS for its platform resources,
including storage, computation and bandwidth; the data users
are charged by the data owner for the outsourced informational
data. At system initialization, a secret sharing scheme is set
up amongst the three entities to support multi-user query
control in QShield. Concretely, the data owner defines access
permissions for data users in the system and meanwhile
remotely attest a dedicated enclave created by a TEE host (To
be distinguishable, we use “TEE host” in this paper to refer to
the non-enclave computational part of the cloud AS). After a
successful remote attestation, the data owner securely delivers
a key share ska of sk and an access policy specification to
the enclave. It also assigns each authorized data user the other
individually unique key share skib of sk via a secure channel
by applying a secure communication protocol (as assumed).

The TEE host processes a query issued by a data user as
follows. It first forwards the token to the enclave, enabling the
enclave to recover authorized data (initial computational state)
for the current query, and then transforms the query expression
into a query plan. Afterwards, it physically invokes corre-
sponding enclaved operators with proper parameter values for
query execution. As the whole computation of the query plan
globally runs to completion, the enclave will produce several

...

Owner User 1

"select * from *"

f
ff

f

f

User n

TEE Host
Enclave

S0

S1S2

S3Storage

Cloud AS
(Untrusted)

ct

Encrypted
data
(ct)

Secret shares
()skb

1 skb
n...

Q & R
()skb

1
Q & R
()skb

n

Remote Attestation
Secret Provision

(ska)

ECall

OCall

Q:

P:

Host program

OCall

Fig. 1. System Model

intermediate results (intermediate computational states) and
reach a final query result (final computational state). In order
to defend against malicious invocation of enclaved operators,
QShield also executes the trust-proof mechanism along with
the state transition process. At last, the TEE host receives from
the enclave a cryptographically-protected query result and an
enclave-signed trust-proof, and sends them back to the data
user as query response.
Query & Query Plan. A query in QShield by design in-
corporates a SQL-style parametric query expression, crypto-
graphically protected parameter values, and a token. A query
plan is represented by a Direct Acyclic Graph (DAG). To be
specific, vertices in the DAG stand for well-designed enclaved
operators (each kind of query operators is implemented as a
unique TEE function; currently QShield supports projection,
selection, aggregation, union, sort and join) and directed edges
show the workflow between them.
Data Model. We opt for a document-oriented data model in
QShield due to its flexibility in being compatible with most
types of data models, e.g., relational tables, key-value items
and data streams, exploited by current web, mobile, social,
as well as IoT applications. Specifically, QShield employs the
notion of document D as a basic logical unit for data storage
and query, which, encoded in JavaScript Object Notation
(JSON), contains a set of attributes {A1, · · · , An|Aj :=
< namej , valuej >, j = 1, · · · , n}, where namej is a
description of the attribute Aj and valuej is the value of
attribute Aj . It also uses the notion of collection C to represent
a group of documents, each of which includes a same set of
attributes. When outsourced to the cloud, a collection of size
r can be divided into multiple parts, each stored as a data file.

B. Threat Model

We assume that the queries themselves are not sensitive -
only their answers, parameters and input datasets are. This is
a practical assumption for two reasons. First, the TEE host
has to invoke corresponding enclaved operators for execu-
tion of queries; it makes no sense to hide query semantics.
Second, since the parameters, input and output of a query

5

are cryptographically escorted to and from the enclave in
QShield, unauthorized entities, including the TEE host, have
no way to access them and thus cannot accurately infer user
interests or behaviors. We opt for a widely-adopted ”honest-
but-curious” model with regard to data users, i.e., they will
honestly execute protocol but also desire to query data beyond
their own permissions.

The cloud AS is considered to be semi-trusted. Besides the
standard SGX threat model where an attacker may control
the cloud’s software stack, including hypervisor and OS, we
consider a more powerful attacker who may also compromise
the TEE host. As such, 1) the attacker may prevent the
data owner from revoking the previously entrusted crypto key
on demand by selectively dropping network packets; 2) the
attacker may arbitrarily invoke enclave interface functions,
resulting in incorrect query results and potential knowledge
extraction or secret leakage.
Limitations. Intel SGX at present is reported to suffer from
side channel attacks, including cache timing, power anal-
ysis, branch shadowing, and the most recently discovered
foreshadow transient execution, etc. [31]–[34]. Indeed these
problems are under investigation and a variety of counter-
measures have been proposed in the literature, such as, T-
SGX [35], which makes use of hardware transaction memory
to detect malicious page fault monitoring, Raccoon [36], which
compiles programs in a way that eliminates data-dependent
branches, and Opaque [11], which implements oblivious algo-
rithms to hide memory access pattern. We remark that these
approaches are orthogonal to our work and it is interesting
to adapt their ideas to QShield in the future. DoS/DDoS
attack and enclave bugs are outside the scope of this paper’s
consideration.

Additional research assumptions are listed below. 1) The
communication channels between the data owner and the data
users are secure. 2) The communication channels between the
data users and the cloud AS are implemented based on the
current Internet infrastructure. 3) The data owner is honest and
does not collude with the cloud AS and the data users due to
profit conflicts. 4) We do not consider the collusion between
the cloud AS and data users. First, the enclave enforces access
policy towards the data users and the other key share hold by
the enclave is still kept secret. Second, the data owner may
launch some countermeasures like exploiting a “honeypot”
mechanism to alleviate the intention of the cloud AS to make
collusion, i.e., the data owner may disguise to be a data user
to collude with the cloud AS; if successful, the cloud AS will
face a huge fine. Third, data users mostly have no interest
in sharing their purchased data with the concern of copyright
regulations and digital rights management.

IV. QSHIELD FRAMEWORK

In this section, we first give preliminary knowledge on
adopted fundamental techniques: Intel SGX and bilinear maps
[37]. Then, we introduce the core components that enable
QShield to accomplish its promising design goals, followed
by a detailed description on stand-alone QShield protocols. A
discussion about how to apply QShield in a distributed context
is provided in Appendix B.

A. Preliminaries

1) Intel SGX: Intel SGX is a promising hardware-assisted
trusted computing technology. It provides memory isolation
[38], which enables a TEE host set up a protected execution
environment, called enclave, such that code and data run
inside are resilient to attacks from privilege software, including
OS kernel and VM hypervisor. Function calls between the
untrusted TEE host and enclave are through well-designed
ECALL/OCALL interfaces. Such an architecture implies that
the invocation of enclave functions is unreliable since it is still
under control of the untrusted TEE host. Intel SGX also offers
two auxiliary functionalities: remote attestation and storage
sealing [39]. The former makes a distant entity capable of
verifying the authenticity of an enclave, checking the integrity
of desired code running inside and meanwhile establishing a
secure communication channel with the enclave. The latter
allows to securely store enclave data in an untrusted storage
outside the enclave for future recovery, in case of server
shutdown, system failure, and/or power outage. Please refer to
[40] for a more thorough technical analysis about Intel SGX.

2) Bilinear Maps: Let G1 and G2 be two multiplicative
cyclic groups of prime order p, and g be a generator of G1.
An efficiently computable bilinear map e : G1 × G1 → G2

defined over the two groups satisfies the following properties:
• Bilinearity: For all a, b ∈ Zp, there exists e(ga, gb) =
e(g, g)ab

• Non-degeneracy: e(g, g) 6= 1
• Computability: For any u, v ∈ G1, there exists an efficient

algorithm to compute e(u, v).
Decisional Bilinear Diffie-Hellman (BDH) Assumption.
The security of our secret sharing scheme is based on the
Decisional BDH assumption. Basically, let a, b, c, z be chosen
randomly from Zp, there exists no probabilistic polynomial-
time algorithm B that can distinguish the tuple (A = ga, B =
gb, C = gc, e(g, g)abc) from the tuple (A = ga, B = gb, C =
gc, e(g, g)z) with more than a negligible advantage ε, that is,

|Pr[B(A,B,C,e(g, g)abc) = 0]

− Pr[B(A,B,C, e(g, g)z) = 0]| ≤ ε,

where the probability is computed over the randomly chosen
generator g, the randomly chosen a, b, c, z in Zp, and the
random bits consumed by B.

3) Notations: We use f∗ to stand for an enclaved operator
∗, where ∗ can be a projector π, a selector σ, an aggregator φ,
an unioner ψ, a sorter χ or a joiner γ. Besides, E represents an
authenticated symmetric key encryption scheme with Enc(·)
and Dec(·) algorithms. PKE represents an indistinguishabil-
ity security under chosen plaintext attack (IND-CPA) public
key encryption scheme with KeyGen(·), Enc(·) and Dec(·)
algorithms. S stands for an existentially unforgeable signature
scheme with KeyGen(·), Sign(·) and V erify(·) algorithms.
H(·) denotes a collision resistant hash function.

B. QShield Components

In this subsection, we introduce the basic components
of QShield: the secret sharing scheme and the trust-proof
mechanism.

6

1) Secret Sharing: The secret sharing scheme in our re-
search context can be defined over a tree-based access structure
τ . Specifically, the root node of the access tree has an AND
gate: Its left child represents the enclave; Its right child has
an OR gate with n children, each representing a data user.
We notice that this construction has been widely used in
cryptography, like attribute-based encryption. Similarly, we
base the bilinear map to design a crypto primitive called E
to facilitate secret sharing in QShield.

Suppose we have two cyclic groups G1 and G2, both with
prime p. Let g be the generator of G1 and e : G1×G1 → G2

be a bilinear map over G1 and G2. The E crypto primitive
consists of following algorithms:

• {pk,msk} ← setup(1λ, n): This algorithm takes as inputs
a security parameter λ and a non-zero positive integer n.
It first defines a universe of participants U = {0, 1, ..., n},
where 0 and 1, · · · , n stand for the enclave and data users,
respectively. For each participant i ∈ U , it uniformly
chooses a number ti from Zp. It then picks up a number
y from Zp. Finally, this algorithm outputs a public key
pk : {T0 = gt0 ;T1 = gt1 , · · · , Tn = gtn ;Y = e(g, g)y}
and a master private key msk : {t0; t1, · · · , tn; y}.

• {ska; sk1
b , · · · , sknb } ← sharesGen(τ,msk): This algo-

rithm takes as inputs the predefined tree-based access struc-
ture τ and the master secret key msk. It computes key
shares for all involved participants {i|i ∈ U} as follows.
The algorithm first defines a polynomial qt(x) for each node
t in τ . Specifically, the degree dt of each polynomial is
derived from the threshold value kt of the current node, i.e.,
dt = kt − 1: Suppose that the node has an AND gate, then
kt equals to the number of the node’s children; Suppose that
the node has an OR gate or it is a leaf node, then kt equals
to 1. Besides, for the root node r, it sets qr(0) = y; for other
nodes t(t 6= r), it sets qt(0) = qparent(t)(index(t)), where
parent(t) and index(t) represent the parent node of t, the
index in all children of t’s parent node, respectively. Fur-
thermore, all other polynomial parameters are chosen from
Zp randomly. Once these polynomials have been decided,
the algorithm generates a key share for each participant i by
computing ski = g

qt=i(0)

ti . To make it easily distinguishable,
we denote the key share of enclave sk0 as ska, and the key
shares of data users {sk1, · · · , skn} as {sk1

b , · · · , sknb }.
• ctκ ← secretDist(κ, pk): This algorithm takes as inputs a

secret κ and the public key pk. It generates a corresponding
ciphertext ctκ that can be distributed amongst participants
{i|i ∈ U} and only the enclave joining together with one
of data users can recover the secret. To do so, the algorithm
first chooses a random number s from Zp and then encrypts
κ in G2 as ctκ = {κ · Y s; {Ei = T si }i∈U}.

• κ ← secretRec(ctκ, ska, sk
i|i∈{1,··· ,n}
b): This algorithm

takes as inputs the ciphertext ctκ, the key share ska of
the enclave, and the key share sk

i|i∈{1,··· ,n}
b of one of

data users. In order to reconstruct the secret κ, it performs
a bottom-up node decryption process. Ft denotes the de-
crypted value (blinding factor) of a node t. In the case where

t is a leaf node, it computes

Ft =

{
e(Ei, ska), if i = 0

e(Ei, sk
i
b), otherwise

; (1)

when t is a non-leaf node, i.e., AND gate and OR gate, it
computes

Ft =
∏

t′∈C(t)

F
∆j,C̄(t)(0)

t′ , (2)

where C(t) is a collection of child nodes of t, C̄(t) is
a corresponding index collection, i.e., C̄(t) = {k|m ∈
C(t), k = index(m)}, j = index(t′), and

∆j,C̄(t)(x) =
∏

k∈C̄(t),k 6=j

x− k
j − k

(3)

is Lagrange coefficient. After such a decryption process
finished, the algorithm can obtain the root blinding factor
e(g, g)ys, i.e., Y s, which can then be used to recover the
secret κ.

The correctness of E is proved in Appendix C.
2) Trust-proof: Formally, we define a Finite State Machine

(FSM) as a 5-tuple (Q,Σ, T,Q0, Qk) to represent the trust-
proof mechanism, which consists of a finite set of FSM states
Q, a finite set of input symbols Σ, a transition function:
T : Q × Σ → Q, an initial FSM state Q0 ∈ Q, and a final
FSM state Qk ∈ Q. Notably, a FSM state in Q incorporates
all computational states at a certain point within the enclave.
An input symbol in Σ is a triple (∗, idx, pred), where ∗ stands
for the types of enclaved operators, i.e., π (projection), σ
(selection), φ (aggregation), ψ (union), χ (sort), and γ (join),
idx is the index of a computational state in a FSM state,
and pred represents query predicates. Figure 2 depicts the
paradigm of the FSM state transition used in the trust-proof
mechanism.

When a data user issues a query to the cloud AS, he/she
computes a value ω called endurance indicator based on the
query statement, which is used to restrict the times that the
computational states within the enclave can be accessed by
enclaved operators. ω is actually the number of nodes in a
query execution plan and can be efficiently computed with an
off-the-shelf open-sourced SQL parser (a spark query parser
is used in our specific implementation) within approximate
100 milliseconds at the data user side in our experimental
environment. Then, the data user utilizes the cryptographically
protected token to securely bring the endurance indicator to
the enclave.

On the cloud side, with a valid query token, the enclave
recovers authorized data and meanwhile produces a computa-
tional state S0. At this moment, an initial FSM state is also
created, i.e., Q0 = {S0;w = ω}. Here, w is a parameter in
computational states to record the latest value of the endurance
indicator; we especially illustrate w in FSM states to reflect
its variation during query execution. Afterwards, the TEE host
successively invokes enclaved operators to physically execute
a query plan of the query. Note that, every time an enclaved
operator is successfully executed, the enclave will produce a
new computational state from old ones; notably, w in all ex-
isting computational states are reduced by 1. Correspondingly,

7

Q0 Q1 Q2 Qk

),(*, predidx),(*, predidx

Fig. 2. FSM state transition diagram

a new FSM state will be created, i.e., a FSM state transition
occurs. For example, after the first enclaved operator finishes
its work, a new computational state S1 is produced from S0,
then a new FSM state Q1 = {(S0, S1);S0 → S1;w = ω− 1}
is created (we use an unreal → here to highlight the inherent
relationship between computational states in a FSM state, the
same as below); after the second enclaved operator finishes
its work, a new computational state S2 is produced from S0

and S1, then a new FSM state Q2 = {(S0, S1, S2);S0 →
S1, S0 → S2, S1 → S2;w = ω − 2} is created; and so
on and so forth. By design, when the whole query plan
is successfully executed, a final computational state Sk is
produced from Sk−1 (at least) and meanwhile w will be
reduced to 0, such that no further accesses over relevant
computational states are allowed any more, then the final
FSM state Qk is reached, i.e., Qk = {(S0, S1, · · · , Sk);S0 →
S1, S0 → S2, · · · , Sk−1 → Sk;w = 0}. Upon the enclave is
in the final FSM state, it generates a trust-proof tp = (G, σG)
for the current query by firstly creating a directed graph G
from existing computational states S0, · · · , Sk, where a node
denotes a computational state with its ID and w, and an
edge denotes the invoked enclaved operator that produces such
a computational state transition; and secondly signing G by
executing σtp ← S.Sign(ske,sign,G).

The verification on the trust-proof tp = (G, σG) by the data
user is straightforward: it checks the integrity and genuineness
of tp by running S.V erify(pke,sign, tp, σtp); if successful, it
then checks whether w is 0 and the directed graph G confirms
the query plan (DAG) of the query by graph matching.

C. QShield Protocols

In this subsection, we describe QShield protocols in details,
which include System Setup, Data Upload, Data Query, and
Policy Update. Figure 3 depicts an overview of QShield
protocols.
System Setup. The data owner first selects a security parame-
ter λ and defines the scale n of data users, i.e., the maximum
number of data users allowed in the system. Then, it executes
{pk,msk} ← E .setup(1λ, n) to initialize the secret sharing
subsystem and subsequently executes {ska; sk1b , · · · , sknb } ←
E .sharesGen(τ,msk) to produce key shares for involved
participants. It also creates a 256-bits symmetric key κ for
data encryption and generates a corresponding cipher ctκ
by running E .secretDist(κ, pk). Afterwards, the data owner
creates an access policy specification pol, designating query
privileges of each data user over the outsourced data. The pol
is a list denoted by {(uid, cids)j |j = 0, · · · , n}, where uid
and cids of an entry j represents the ID of a data user and all
IDs (initialized as NULL) of collections that are authorized
to the data user, respectively. Notice that, msk, κ, ska, and
skib are securely stored by the data owner; pk and ctκ are
published as system parameters.

On the cloud side, the TEE host creates a dedicated enclave
for the data owner. It subsequently performs a predefined TEE
function to let the enclave itself generate a 256-bits public
key pair, i.e., (pke,msg, ske,msg) ← PKE.KeyGen(1λ), and
a 256-bits signature key pair, i.e., (vke,sign, ske,sign) ←
S.KeyGen(1λ). pke,msg and vke,sign are output as public
system parameters.

Next, the data owner verifies whether the enclave is cor-
rectly deployed and executed on a genuine SGX-enabled CPU
platform through remote attestation. During this process, it
also establishes a secure communication channel with the
enclave by negotiating a symmetric secret key skcomm. Once
the attestation is successful, the data owner could make use
of skcomm to escort its ska and pol to the enclave. Notably,
the data owner runs ct ← E.Enc(skcomm, (ska, pol)) and the
enclave in turn runs (ska, pol) ← E.Dec(skcomm, ct).
Data Upload. When a new collection msg is ready for
utilization, the data owner executes ctmsg ← E.Enc(κ,msg)
to obtain its ciphertext ctmsg , and then performs H(ctmsg)
to create a unique ID cid for it, and further uploads a tuple
(cid, ctmsg) to the cloud AS. Next, the data owner updates
its access policy for all data users towards the newly added
collection. This operation correspondingly triggers the Policy
Update protocol.
Data Query. In this protocol, an authorized data user i issues
a SQL-style query over the collections shared by the data
owner. To this end, the data user parameterizes the query,
producing a parametric expression exp, and encrypts each
parameter value v with the enclave’s public key pke,msg ,
i.e., ctv ← PKE.Enc(pke,msg, v). All encrypted parameter
values constitute params. He/she also generates a token tk by
encrypting a triple (skib, ω, c) using pke,msg , where skib is the
data user’s key share, ω is a positive integer calculated based
on exp, and c is a freshness factor that is a monotonically
increasing number. Formally, the query is denoted by a triple
(exp, params, tk).

Upon the cloud AS (TEE host) receives the query from the
data user, it performs the following three steps: unlock, query,
and response.

unlock: The TEE host enables the enclave to recover
the collections allowed to be accessed by the data user.
Specifically, the TEE host first forwards relevant encrypted
collections [(cid, ctmsg)] along with the token tk to the
enclave, within which the enclave executes (skib, ω, c) ←
PKE.Dec(ske,msg, tk). Then, the enclave checks whether
or not the current query has been previously handled by
comparing c with a c′ (initialized as an infinitesimal number).
If c is smaller than c′, the enclave will deny to serve the current
request; otherwise, it updates c′ with c. The enclave also
iteratively computes H(ctmsg) and compares it with the corre-
sponding cid so as to verify the integrity of input collections.
Once passing the freshness check and integrity verification,
the enclave is able to execute secretRec(ctκ, ska, sk

i
b) to

recover the encryption key κ. and further iteratively execute
E.Dec(κ, ·) on [(cid, ctmsg)] to obtain the underlying collec-
tions [(cid,msg)] (κ is erased when decryption is finished).
Next, the enclave filters out from [(cid,msg)] the unauthorized
collections according to the access policy specification pol. By

8

Initialize secret sharing system:

) ,1(} ,{ nsetup.mskpk 

) ,1(} , , ;{ 1 nsetup.sksksk n
bba



Generate key cipher:
 }1 ,0{

) ,(pkretDistsec.ct  

Create access policy specification:
} , ,0) ,{(nj|cidsuidpol j 

Create an enclave and generate key pairs:

Remote attestation: commsk
)) ,(,(polskskEnc.Ect acomm ct

)1() ,(KeyGen.PKEskpk msg,emsg,e 

)1() ,(KeyGen.Sskvk sign,esign,e 

Outsource data to the cloud:
) ,(msgEnc.Ectmsg 

)(msgctHcid 

) ,(msgctcid
Store ciphers.

Run Policy Update.

Issue a query:

)} ,({ vpkEnc.PKEctparams msg,ev 

)) , ,(,(cskpkEnc.PKEtk i
bmsg,e 

)(tk,paramsexp,) ,() , ,(tkskDec.PKEcsk msg,e
i
b 

Unlock:

cidc and check
) , ,(i

ba skskctcReretsec.  

)]) ,[(,()] ,[(msgctcidDec.Emsgcid 

)] ,[(on enforce msgcidpol
Query:

expf* )DAG(
()*f

Response:

)),((sdb.SskHEnc.Eres k
i
b

proof- trustgeneratetp

)(tp,res
Verify the proof and obtain result:

)),((resskHEec.E i
b

Subscribe QShield service. Select a unique key share and
generate a unique user ID:

))((i
bskHHuid 

i
bsk

Store key share.

) ,(polskEct comm

ct) ,(ctskDec.Epol comm

Update access policy:

) ,() ,(ctskDec.Epolsk comma 

Remote attestation:

) ,(
) ,(

) ,() ,(

) , ,(
 and check



[(
on enforce

HEnc.Eres
tp

)1(

) ,(

)])

System Setup <Data Owner TEE Host> : Data Query <TEE Host Data Users> :

Data Upload <Data owner TEE Host> : Policy Update <Data Users Data Owner TEE Host> :

Update access policy:

statement query zeparameteri) ,(vexp

Fig. 3. An overview of the QShield protocols. Codes in square brackets are run by enclaves.

design, the unlock process is encapsulated as a TEE function,
thus its unique workflow as stated above can be enforced.

query: The TEE host invokes enclaved operators to perform
operations over the authorized collections [(cid,msg)]. First
of all, The TEE host transforms the query expression exp
into a query plan. A running example for such transformation
is shown in Appendix A. In accordance with the query
plan, the TEE host begins to schedule enclaved operators f∗
for operation. As this process proceeds, several intermediate
results, i.e., computational states S0, · · · , Sk, are produced.
Correspondingly, the enclave goes through a series of FSM
states Q0, · · · , Qk.

response: The TEE host responds the data user with regard
to the query. After the enclave reaches the final FSM state
Qk, it can construct a response for the current query, which
includes two parts: query result and trust-proof. Specifically,
the enclave first hashes the data user’s key share skib to produce
a symmetric key, and encrypts the workload field (denoted
by sdb) in Sk with the key to generate a query result res,
i.e., res ← E.Enc(H(skib), Sk.sdb); it then makes use of all
computational states, i.e., S0, · · · , Sk, to create a trust-proof
tp for the query as described in Section IV-B2; at last, the
enclave returns res along with tp to the TEE host for query
response. By design, the response process is encapsulated as
a TEE function, thus its unique workflow as stated above can
be enforced.

When the data user gets the response, he/she can obtain the
query result by executing E.Dec(H(skib), res), and audit it
by verifying the trust-proof tp.
Policy Update. This protocol handles all events related to pol-
icy update, including user add/remove and access permission
modification. When a new data user j (1 ≤ j ≤ n) joins in
the system, the data owner first selects a unique key share
skjb and securely sends it to the data user. (When j > n,
E scheme can be extended to offer an auxiliary interface
for the data owner to compute a new unique token.) Then,
it defines a set of collections that can be accessed by the
data user and hashes the skjb twice to generate a unique
ID uid for the data user, i.e., uid ← H(H(skjb)). At last,
the data owner updates the access policy specification pol
in the enclave with a new item (uid, cids) through their

previously established secure channel. Notably, the data owner
runs ct ← E.Enc(skcomm, pol) and the enclave in turn
runs pol ← E.Dec(skcomm, ct). As for the remaining two
circumstances, i.e., user revocation and access permission
modification, the data owner only needs to either delete or alter
the corresponding item in pol for the specific data user through
the secure channel. Besides, when the data owner decides to
alter the cloud AS, it can just terminate to pay for the current
service, without worrying that the key share left in the enclave
will cause the full decryption key leakage. The key revocation
issue is effectively circumvented.

Remark: One potential issue here is that, given an untrusted
cloud platform including the TEE host, the update command
may not be received by an enclave. Intuitively, it can be
solved by just requiring a response for each update from
the enclave; the data owner can continue to send the update
command until it receives a response. This is an effective way
to protect from network failure. However, when the TEE host
is compromised, such a method cannot guarantee on-demand
policy update promise for the data owner. An exciting way
is to enhance the Policy Update protocol by exploiting the
“heartbeat” idea proposed in our previous work [13]. It is
able to force the enclave to be unavailable if the enclave does
not receive a valid heartbeat from the data owner after the
defined time window; we can attach the policy specification pol
to heartbeats such that the update command can be delivered
timely and affirmatively to the enclave.

V. SECURITY ANALYSIS

In this section, we formally analyze a number of security
and trust properties of QShield, i.e., confidentiality of crypto
key and outsourced data, scalable multi-user query control
and trusted query execution. Through workflow and dataflow
analysis, we reduce each property to several primitives with
provable security.

A. Confidentiality of crypto key and outsourced data

This property is guaranteed by both the SGX TEE and E
scheme.

At System Setup, the data owner generates an encryp-
tion key κ and key shares ska, skib(i = 1, · · · , n) (using

9

E .sharesGen(·)). Through remote attestation, it establishes a
secure communication channel with the enclave, under which
ska is escorted (using E.enc(·) and E.dec(·)). In this paper,
we do not discuss how the data owner establishes secure
communication channels with data users, instead, we assume
skib(i = 1, · · · , n) are securely delivered to authorized data
users. At Data Upload, data are encrypted with κ (using
E.Enc(·)) before being outsourced to the cloud AS. At this
moment, since the enclave and data users just have their
own key shares, no entities are able to recover outsourced
data. At Data Query, a cryptographically protected token
securely brings skib to the enclave (using PKE.Enc(·) and
PKE.Dec(·)). Within the enclave, κ is reconstructed with
skib and ska (using E .secretRec(·)) to decrypt the loaded
ciphertexts [(cid, ctmsg)] (using E.Dec(·)); after that, κ is
erased. In subsequent operations, the recovered plaintexts
never leave the enclave; the query result sent back to the
data user is also cryptographically protected (using E.Enc(·)
and E.dec(·)). Here, please notice that, we use H(skib) as the
encryption key. Since H(·) is a one-way function, one cannot
utilize the public uid, i.e., H(H(skib)), to infer such a key. In
other words, only the data user can decrypt the query result.
Besides, the trust-proof involves no sensitive information.

Due to the fact that E is an authenticated symmetric key
encryption scheme, PKE is an indistinguishability security
under chosen plaintext attack (IND-CPA) public key encryp-
tion scheme, and data run within enclave are kept secret,
the confidentiality of the crypto key and outsourced data are
realized as long as the secret sharing E scheme is secure.

We state informally that the proposed secret sharing scheme
is secure if 1) for any involved participant with a valid secret
share, it cannot individually recover the full crypto key; and
more generally, 2) for any combination of data users with
valid secret shares, they are also unable to recover the full
crypto key. We define a Selective-Participant (SP) model of
security in Figure 4 for E scheme. The advantage of an
adversary A in this game is Pr[b′ = b] − 1

2 . Our SP attack
game is similar to the models in [41]–[43], with the exception
that the adversary in the game is only allowed to query
for key shares of a specific set of participants, i.e., the set
does not simultaneously involve the enclave and data users.
It is provable that the security of E scheme in the Selective-
Participant model reduces to the hardness of the Decisional
BDH assumption. Please refer to Appendix D for detailed
formal proofs.

B. Scalable multi-user query control

QShield exploits a straightforward model of access control
list (ACL) to realize multi-user query control. In the access
policy pol defined by the data owner, each item (uid, cids)
specifies the data (collections with IDs cids) that can be
accessed by the data user with ID uid.
Authentication & Authorization. With remote attestation, the
data owner verifies the authenticity of the enclave in the cloud
and meanwhile establishes a secure communication channel
between them. It is also assumed to have authenticated secure
communication channels with data users. In order to authorize
query permissions to data users, the data owner assigns each

Fig. 4. The Selective-Participant (SP) model of E scheme security.

of them a unique secret share skib, and in order to make
such an authorization effective, the data owner hands out a
special secret share ska along with the access policy pol to
the enclave. The entrusted ska and skib in turn ensure the
enclave and the data user to authenticate with each other. The
reasons are two-folds. First, the secret sharing scheme, proved
to be secure under Selective-Participant model in Section V-A,
guarantees that only valid secret shares can correctly recover
the crypto key and the probability of forging a valid secret
share is negligible; the authenticity of the two entities with
valid secret shares can thus be guaranteed. Second, recall that
the uid is generated by hashing the skib twice, so the specific
data user with skib can be correctly identified in pol. As such,
QShield has no need to rely on cumbersome remote attestation
or expensive Public Key Infrastructure (PKI) for authentication
between the enclave and data users.
Enforcement on Query Control. We remark that the query
control is correctly enforced in QShield if the following
statements hold: 1) The probability that a query issued by
a valid data user can compute over unauthorized data is
negligible. 2) The probability that a query issued by an illegal
entity can compute over outsourced data is negligible.

Next, we show that such query control is guaranteed by the
adopted SGX and the secret sharing scheme E .

By design, a query issued by a valid data user involves
a specific cryptographical token tk

PKE←−−− (skib, ω, c). In the
unlock step at Date Query, the enclave holding the key share
ska handles the token so as to recover the encryption key κ,
then to decrypt loaded ciphertexts [(cid, ctmsg)], and further
to enforce the query control policy pol on behalf of the data
owner. These operations in unlock are encapsulated into one
TEE function, so its correctness and integrity in the run time
can be guaranteed by remote attestation. Besides, since they
are serialized, i.e., the input of the latter operation is the output
of the former one, and the initial operation of κ recovery is
correct as proved in Appendix C, the unlock function will
definitely output authorized data abiding by the pol (Statement
1 is satisfied). According to the security guarantee of the
secret sharing scheme, an illegal entity cannot forge a valid
crypto share used for constructing the token. The underlying
authentication & authorization mechanism then guarantees that
the invalid data user will not be recognized by the enclave and
thus has no query privilege on outsourced data. Furthermore,
we use a freshness factor c to block up launching replay attacks

10

TABLE I
COMPUTATIONAL COMPLEXITY ANALYSIS ON E SCHEME

Algorithm Overhead Complexity

E.setup(·) (n + 1) · EX O(n)

E.sharesGen(·) n · EX O(n)

E.secretDist(·) n · EX O(n)

E.secretRec(·) 2 · BP + 3 · EXP O(1)

Notes:EX = Exponentiation operation;BP = Bilinear map operation.

where an illegal entity, e.g., untrusted TEE host, implicitly
impersonates a valid data user by leveraging the token in
previous issued quires. (Statement 2 is satisfied.)

The above analysis justifies that our secret sharing scheme
combined with the SGX TEE can effectively realize multi-user
query control in QShield. Now we claim that the query control
mechanism is also scalable over a large number of data users.
Support on Scalable Data Users. As the total number of data
users n scales, the work in performing mutual authentication,
i.e., crypto key reconstruction by the O(1) secretRec(·)
algorithm as shown in Table I, does not depend on n. Besides,
the enclave only needs to hold one specific secret share ska,
which is also independent of n. To enable authorization,
the enclave requires to perform lookups on a policy list
with n items. Since each item in the list only takes a few
bytes of storage space, it will not become a bottleneck of
query control mechanism on modern commodity servers as
n increases. Through hash indexing, the O(n)-complexity of
lookup operations can be reduced to O(1), being independent
of n. To briefly summarize, the scalable data users do not
increase the complexity of the authentication & authorization
in query control. Moreover, the enforcement on query control
and policy update, as analyzed above, does not rely on the
number of data users, either. Hence, support on scalable data
users is achieved in QShield.

C. Trusted query execution

For each query issued by a valid data user, the untrusted
TEE host takes the responsibility to explain and execute
it. Through following analysis, we show that QShield can
guarantee the trustworthiness of query execution under such an
hostile environment. We use two statements to clearly define
the trustworthiness: 1) The probability that a data user receives
an incorrect query result for a valid query is negligible; and
2) The probability that the TEE host performs operations over
the underlying data beyond the scope of a valid query is
negligible.
Query Execution Workflow & Dataflow. In view of the con-
trol plane of a query execution, the TEE host first transforms
the query into a query plan and then accordingly invokes
TEE interfaces to physically execute it, which include the
unlock, computational operators f∗, and the response. With
regard to the data plane, the enclave, with encrypted message
[(cid, ctmsg)] as input, produces an initial computational state
S0 under the function of unlock, and then produces several
computational states S1, · · · , Sk under functions of f∗, and at
last outputs a triple (res, tp, σtp) by the response.

The SGX’s remote attestation ensures that the TEE inter-
faces, i.e., unlock, f∗, and response, are correctly executed at

runtime, and its memory isolation ensures the integrity of those
computational states S0, · · · , Sk. Thus, the two statements
with regard to the trustworthiness of query execution hold, as
long as the TEE host honestly invokes relevant TEE interfaces.
We justify that such honest behavior of the TEE host is
enforced by the trust-proof mechanism.

The enforcement is implemented in two ways. First, recall
that a valid query token involves an endurance indicator ω,
which is computed based on the query itself and set up by
the data user. When a successful invocation of an enclaved
operator drives a FSM state transition, w (initialized as ω)
in all existing computational states will be reduced by 1;
upon reaching the final FSM state, w will be reduced to 0,
indicating that the computational states cannot be accessed any
more. Suppose the host TEE invokes some (even one) enclaved
operators beyond the scope of the query, the enclave will be
unable to construct a valid trust proof, because the desired final
FSM state cannot be reached due to insufficient w (consumed
by the undesired invocations). Second, an enclaved operator
in essential produces a new computational state from the
previously existing ones. Such a computational state transition
is recorded by the enclave as an execution trace of the enclaved
operator, the correctness of which, as mentioned above, is
guaranteed by SGX’s remote attestation. When the query
execution finishes, i.e., reaching a final FSM state, all the
recorded computational state transitions inherently constitute a
trustworthy execution trace tp for the current query as a proof.
The enclave also generates a signature for the trust-proof
to ensure its genuineness. The verifiability of the response
triple, i.e., (res, tp, σtp), ensures that malicious TEE function
invocation can be detected by the data user.
Verification on Response Triple. The trust-proof tp reflects
how the query result res is derived from the original messages.
It is straightforward and effective to judge whether or not
such an execution trace affiliates to the issued query by graph
matching. The existentially unforgeable signature scheme S
adopted in QShield guarantees that the TEE host has negligible
possibility to fabricate an acceptable execution trace with valid
enclave signature for an incorrect query result.

VI. IMPLEMENTATION

A prototype of QShield was implemented by integrating it
into Opaque [11], an SGX-enabled distributed data analytics
platform built on top of Spark SQL. The QShield prototype ex-
ploits relational tables as a down-to-earth data model. QShield
source code has been released in Github 1.

Following the design philosophy of the Opaque system,
we implemented the QShield operators by extending Catalyst
APIs of Spark and enabled these operators (in java) to call cor-
responding enclave implementations (in c/c++) through Java
Native Interface (JNI) to accomplish their specific execution
logic. As such, QShield can utilize the off-the-shelf Spark SQL
engine to support SQL-like queries. Moreover, we applied
Advanced Encryption Standard (AES) in Galois/Counter Mode
(GCM) to ensure data confidentiality and integrity outside the
enclave.

1QShield project homepage: https://github.com/fishermano/qshield.git

11

On the other hand, we developed the unique functionalities
proclaimed by QShield, i.e., multi-user query control and
trustworthy TEE function invocation. First, we implemented
the secret sharing scheme E as an enclave-safe library. This
is not a trivial task due to the following reasons: 1) the
SGX SDK at the time of this paper’s writing does not
provide sufficient fundamental libraries to support powerful
pairing-based computations; 2) the migration of the Stanford
Pairing-Based Cryptography (PBC) library requires to rewrite
three non-decoupled I/O functional interfaces that operate on
a non-enclave-safe C File* type, i.e., out str, snprint and
out info; 3) the above migration requires to safely implement
rand and mem cpy functions invoked by the native PBC
library, which, however are not supported by the customized
C version of SGX SDK. Second, we re-implemented Opaque
operators in QShield to make themselves record their own
execution trace, so as to facilitate the assembling of a trust-
proof. Third, we implemented two special QShield functions
named ACPolicyApplied and ResRespond. The former enforces
access control policies over input data before query execution,
corresponding to the unlock step in Data Query as described
in Section IV-C; the later constructs a final query response to a
data user after query execution, corresponding to the response
step in Data Query. Notably, all computational states produced
by QShield operators during query execution are protected
with AES[GCM] encryption, i.e., these data are stored outside
enclaves in the form of encryption. Fourth, we encapsulated
the QShield core functionalities into a RESTful ready-to-use
service, which offers luxuriant and light-weighted web URIs
to be easily used by the data user to access the QShield system.

VII. PERFORMANCE EVALUATION

In this section, we first describe the experimental settings
of QShield evaluation. Then, we demonstrate that QShield
outperforms CryptDB [2], a representative pure-crypto-based
SQL query system, with a significant performance improve-
ment. In addition, we quantify QShield’s overhead by com-
paring it with the Opaque, a baseline system. Finally, we give
a comprehensive evaluation on the achieved multi-user query
control and the execution integrity (trustworthy TEE function
invocation), and show that both underlying mechanisms have
excellent performance in terms of computation, storage, and
communication.

A. Experimental Settings

We performed experimental evaluation on an SGX-enabled
platform that owns an Intel Kaby Lake i7-7700 processor (4
cores @ 3.60GHz) with 16GiB of RAM and runs Ubuntu
16.04 operating system.

We chose a pairing curve of type A for the secret sharing
scheme in QShield and setup a 128-bit security parameter for
underlying crypto primitives, e.g., AES[GCM]. All experimen-
tal tests were repeated 20 times to eliminate system errors.
In the tests, the prototyped QShield adopted a 128-bit AES
to protect data outside enclaves during query processing. As
well-known, SGX Memory Encryption Engine (MEE) uses a
128-bit AES key. Thus, our implemented QShield provides

a 128-bit security level. Similarly, Opaque also has a 128-
bit security level. CryptDB is a hybrid cryptosystem and its
weakest link is a 128-bit AES primitive, so it offers the same
level of security as QShield and Opaque.

To evaluate data query efficiency, we use CryptDB and
Opaque as benchmarks. CryptDB is a cryptography-based
milestone system that elaborately assembles crypto primitives
to protect the confidentiality of query data; Opaque utilizes
hardware-assisted TEE to improve query efficiency while
achieving the same security goal as CryptDB. We recompiled
both CryptDB and Opaque on the above platform and tested
operation time of three queries (denoted by Q1, Q2, Q3,
respectively) over Big Data Benchmark 2, which is a popular
benchmark for big data SQL engines. Concretely, Q1 is a
filter operation, Q2 only contains an aggregation operation,
and Q3 is composed of filter, aggregation and join. To test
the execution time of the trust-proof mechanism, we run a
simplified version of QShield over Big Data Benchmark and
compared QShield’s execution time with the case that strips
off the trust-proof functionality.

To test the execution time of the secret sharing scheme,
we run the unlock function in an enclave with different sizes
of input data, ranging from 10-bytes to 1M-bytes, to simu-
late various data being processed. Herein, we used a native
AES[GCM] algorithm realized by SGX as a baseline, which
by comparison lacks access control related computations.

B. Query Efficiency

Figure 5 shows an overall performance of QShield, com-
pared with Opaque and CryptDB with regard to different
types of queries and different sized databases: tiny database
(totally 11197 rows in 2 tables), medium database (totally
25994 rows in 2 tables), big database (totally 51988 rows in 2
tables). We can observe that: 1) QShield achieves comparable
performance with Opaque with regard to all tested query
types, which implies that the introduced secret sharing and
trust-proof mechanisms incur minimum overhead. The reason
why QShield runs a litter faster than Opaque is that we
optimized the underlying structure of the computational states
in implementation. 2) Given Q1 and Q3, CryptDB has a fiercer
performance degradation than QShield as the size of database
scales up. Notably, when fueled with a big database, QShield’s
computational performance greatly outperforms CryptDB’s.
Due to limited operations supported by the adopted homo-
morphic encryption primitive of CryptDB, CryptDB currently
cannot support Q2, which involves a substring() function.
More generally, CryptDB has no flexible support on arbitrary
self-defined functions. Nevertheless, QShield has no such
limitation.

C. Evaluation on Multi-user Query Control

Table II shows the main overhead of computation, storage
and communication introduced by supporting multi-user query
control in QShield (secreting sharing) and EnclaveDB (straw-
man). We can observe that the proposed secret sharing scheme

2Big data benchmark: https://amplab.cs.berkeley.edu/ benchmark/

12

Q1 Q2 Q3
0

1

2

3

4

5

6

Lo
ga

rit
hm

ic
…

Ti
m

e…
(m

s)

253
725 719

254
580 638

248
579 630

191

N/A

2151

(a)…Tiny…Dataset
Opaque
QShield…with…Trust-proof
QShield…without…Trust-proof
CryptDB

Q1 Q2 Q3
Benchmark…Query…Type

0

1

2

3

4

5

6

300

1110 1738

293
918

1608

287
916

1591
443

N/A

5543

(b)…Medium…Dataset
Opaque
QShield…with…Trust-proof
QShield…without…Trust-proof
CryptDB

Q1 Q2 Q3
0

1

2

3

4

5

6

341

2037
4664

334

1706
4502

324

1703
4477

795

N/A

16329

(c)…Big…Dataset
Opaque
QShield…with…Trust-proof
QShield…without…Trust-proof
CryptDB

Fig. 5. Query efficiency of QShield. Logarithmic time is used to show the difference in order of magnitudes. Those number labels indicate corresponding
execution time in (a) (b) (c). N/A is abbreviated for Not Applicable.

10 10K 100K 200K 400K 600K 800K 1M

Data…Size…(Bytes)

0.0

0.5

1.0

1.5

2.0

2.5

Ex
ec

ut
io

n…
Ti

m
e…

(m
s)

1.12 1.16
1.24 1.26 1.11

1.19
1.1

1.08QShield
Baseline

Fig. 6. The performance of the implemented unlock function. Those number
labels indicate the performance gap between tested systems.

incurs no computational cost to data users and greatly reduces
the number of remote attestations (from n+1 to 1), compared
with EnclaveDB’s solution. However, it imports an additional
cost for key reconstruction to an enclave as per query. In order
to depict how such an overhead impacts query performance,
we measured the execution time of the implemented unlock
function, which, as an access policy enforcement point for
multi-user query control, invokes E .secretRec(·) to enforce
authentication and authorize access. Figure 6 shows the per-
formance of the unlock function. We observe that the overhead
of key reconstruction is very small (about 1.1 ms). Thus, the
key reconstruction operation does not ruin query efficiency.

Given storage cost at different parties, our solution is also
the lowest. Notably, QShield requires an enclave to just hold
one key element for controlling multi-user access while En-
claveDB requests an enclave to store at least n crypto session
keys (i.e., n × 128 bits), which results in a non-negligible
burden to the enclave in view of EPC limit. Meanwhile,
the corresponding storage overhead for key management in
QShield is constant, but it is linearly proportional to the user
scale n in EnclaveDB.

With regard to communication overhead, QShield totally
requires n + 1 point-to-point unicast communications for the
distribution of secret shares to an enclave and n data users.
EnclaveDB, however, needs (n−1)!+n point-to-point unicast
communications to mutually exchange data users’ public keys.

To sum up, QShield achieves scalable multi-user query
control with superior performance in computation, storage and
communication.

D. Evaluation on Execution Integrity

Table III shows the main overhead of computation, storage
and communication introduced by supporting execution in-
tegrity in QShield (trust-proof) and Opaque (self-verification).
Given that m̂ � 1, |ω| = 32 and |SDAG| = 128, the trust-
proof mechanism in QShield has a lower communication cost
and a lower storage cost at the side of enclave than Opaque,
while the storage cost at the data user side is a bit higher,
but at the same level of cost. By Referring to Figure 5, we
can conclude that the trust-proof mechanism in QShield raises
almost no influence on the overall performance of queries.
Since Opaque’s prototype at present does not implement the
self-verification protocol proposed in [14], it is hard to perform
a tested comparison of computational efficiency with QShield.
Instead, we implemented a DAG tool that supports the DAG
matching (MDAG) operation in Opaque and the DAG updating
(UDAG) operation in QShield. Figure 7 demonstrates that
QShield has a significant performance improvement regarding
to query execution at the enclave.

VIII. CONCLUSION

In this paper, we proposed a secure and efficient SQL-
style query framework called QShield for outsourced data in
the cloud. It utilizes the off-the-shelf hardware-assisted TEE,
i.e., Intel SGX, to protect the confidentiality and integrity
of sensitive data being queried. In order to make QShield
capable of enforcing query control over multiple data users in a
scalable way, we proposed a novel secret sharing scheme, with
which cumbersome authentication through remote attestation
per data user is avoided. Meanwhile, it greatly alleviates
attacks listed in our threat model. Moreover, we introduced a
trust-proof mechanism in QShield to guarantee the correctness
of query results and further reduce the possibility to extract
sensitive information from TEE. We implemented a prototype
of QShield and demonstrated that it is feasible in practice.
With comprehensive evaluation in terms of both security
and execution performance, we show that QShield achieves
fundamental security properties, i.e., confidentiality of crypto
key and outsourced data, scalable multi-user query control and
trusted query execution, while raising no significant perfor-
mance degradation.

One limitation of QShield is it adopts a coarse-grained ACL
model; though being efficient, it makes QShield unsuitable
for complex query control policies. Furthermore, we assume

13

TABLE II
ANALYSIS ON MULTI-USER QUERY CONTROL

Systems

Metrics Computational Overhead Storage Overhead Communication

OverheadData Owner Data User Enclave Data Owner Data User Enclave

EnclaveDB 1·(RA+CO) 1·(RA+CO) (n + 1) · RA n·|PK|+1·|BI| n · |PK| + 1 · (|SK| + |BI|) n·|CK| ((n − 1)! + n) · |PK|

QShield 1·(RA+CO) - 1·RA+N ·KR 1·|EK|+1·|BI| 1 · |KS| 1 · |KS| (n + 1) · |KS|

Notes: RA = Remotation attestation operation; CO = Enclave compilation operation; KR = Key reconstruction operation; |PK| = Public key size; |SK| = Private
key size; |BI| = Enclave binary size; |CK| = Session key size; |EK| = Symmetric encryption key size; |KS| = Key share size; PK, SK,EK,KS have the same
length; n is the user scale of the system; N is the total number of queries issued by data users.

TABLE III
ANALYSIS ON EXECUTION INTEGRITY

Systems

Metrics Computational Overhead Storage Overhead Communication

OverheadData User Enclave Data User Enclave

Opaque 1 · GDAG m · MDAG 1 · |DAG| m̂ · |DAG| m̂ · |DAG|

QShield 1 · GDAG + 1 · MDAG m · UDAG 1 · |DAG| + 1 · |ω| 1 · |DAG| + 1 · |ω| 1 · (|ω| + |DAG| + |SDAG|)

Notes: GDAG = DAG generation operation; MDAG = DAG matching operation; UDAG = DAG updating operation; |DAG| = DAG size; |ω| = Endurance
indicator size; |SDAG| = DAG signature size; m is the number of DAG nodes; m̂ is the number of workers.

0.0 0.1 0.2 0.3

Execution…Time…(ms)

Q1

(m=5)

Q2

(m=9)

Q3

(m=19)

B
en

ch
m

ar
k…

Q
ue

ry
…

Ty
pe

0.015

0.023

0.05

0.025

0.09

0.322

UDAG
MDAG

Fig. 7. The performance of DAG matching and updating. m is the number
of DAG nodes.

parametric query expressions are not sensitive. Possibly, they
could be analyzed to track user behaviors through side-channel
attacks. How to defend this security threat is left for future
work.

REFERENCES

[1] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski,
G. Lee, D. A. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, “A view
of cloud computing,” Commun. ACM, vol. 53, no. 4, pp. 50–58, 2010.
[Online]. Available: http://doi.acm.org/10.1145/1721654.1721672

[2] R. A. Popa, C. M. S. Redfield, N. Zeldovich, and H. Balakrishnan,
“Cryptdb: Protecting confidentiality with encrypted query processing,” in
Proceedings of the Twenty-Third ACM Symposium on Operating Systems
Principles, ser. SOSP ’11. New York, NY, USA: ACM, 2011, pp. 85–
100. [Online]. Available: http://doi.acm.org/10.1145/2043556.2043566

[3] T. T. A. Dinh and A. Datta, “Streamforce: Outsourcing access control
enforcement for stream data to the clouds,” in Proceedings of the
4th ACM Conference on Data and Application Security and Privacy,
ser. CODASPY ’14. New York, NY, USA: ACM, 2014, pp. 13–24.
[Online]. Available: http://doi.acm.org/10.1145/2557547.2557556

[4] C. Thoma, A. J. Lee, and A. Labrinidis, “Polystream: Cryptographically
enforced access controls for outsourced data stream processing,”
in Proceedings of the 21st ACM on Symposium on Access
Control Models and Technologies, ser. SACMAT ’16. New
York, NY, USA: ACM, 2016, pp. 227–238. [Online]. Available:
http://doi.acm.org/10.1145/2914642.2914660

[5] W. Ding, R. Hu, Z. Yan, X. Qian, R. H. Deng, L. T. Yang, and
M. Dong, “An extended framework of privacy-preserving computation
with flexible access control,” IEEE Transactions on Network and Service
Management, pp. 1–1, 2019.

[6] W. Ding, Z. Yan, X. Qian, and R. H. Deng, “Computing maximum
and minimum with privacy preservation and flexible access control,”
in 2019 IEEE Global Communications Conference (GLOBECOM), Dec
2019, pp. 1–7.

[7] W. DING, Z. Yan, and R. H. Deng, “Privacy-preserving data processing
with flexible access control,” IEEE Transactions on Dependable and
Secure Computing, vol. 17, no. 2, pp. 363–376, March 2020.

[8] W. Sun, R. Zhang, W. Lou, and Y. T. Hou, “Rearguard: Secure keyword
search using trusted hardware,” in IEEE INFOCOM 2018 - IEEE
Conference on Computer Communications, April 2018, pp. 801–809.

[9] R. Gennaro, “Verifiable outsourced computation: A survey,” in the ACM
Symposium, 2017.

[10] B. Fuhry, R. Bahmani, F. Brasser, F. Hahn, F. Kerschbaum, and A.-R.
Sadeghi, “Hardidx: Practical and secure index with sgx,” in Data and
Applications Security and Privacy XXXI. Cham: Springer International
Publishing, 2017, pp. 386–408.

[11] W. Zheng, A. Dave, J. G. Beekman, R. A. Popa, J. E.
Gonzalez, and I. Stoica, “Opaque: An oblivious and encrypted
distributed analytics platform,” in 14th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 17).
Boston, MA: USENIX Association, 2017, pp. 283–298. [On-
line]. Available: https://www.usenix.org/conference/nsdi17/technical-
sessions/presentation/zheng

[12] F. Schuster, M. Costa, C. Fournet, C. Gkantsidis, M. Peinado, G. Mainar-
Ruiz, and M. Russinovich, “Vc3: Trustworthy data analytics in the cloud
using sgx,” in 2015 IEEE Symposium on Security and Privacy (SP), May
2015, pp. 38–54.

[13] Y. Chen, W. Sun, N. Zhang, Q. Zheng, W. Lou, and Y. T. Hou, “A
secure remote monitoring framework supporting efficient fine-grained
access control and data processing in iot,” in Security and Privacy in
Communication Networks. Cham: Springer International Publishing,
2018, pp. 3–21.

[14] ——, “Towards efficient fine-grained access control and trustworthy data
processing for remote monitoring services in iot,” IEEE Transactions on
Information Forensics and Security, vol. 14, no. 7, pp. 1830–1842, 2018.

[15] M. Xu, A. Papadimitriou, A. Haeberlen, and A. Feld-
man, “Hermetic: Privacy-preserving distributed analytics without
(most) side channels.” unpublished, 2019. [Online]. Available:
http://www.cis.upenn.edu/ ahae/papers/hermetic-tr.pdf

[16] Y. Swami, “Intel sgx remote attestation is not sufficient.” unpublished,
2018. [Online]. Available: https://eprint.iacr.org/2017/736.pdf

[17] A. Biondo, M. Conti, L. Davi, T. Frassetto, and A. reza Sadeghi, “The
guard’s dilemma: Efficient code-reuse attacks against intel SGX,” in
27th USENIX Security Symposium (USENIX Security 18). Baltimore,
MD: USENIX Association, 2018, pp. 1213–1227. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity18/presentation/biondo

[18] C. Tan, L. Yu, J. B. Leners, and M. Walfish, “The efficient server audit
problem, deduplicated re-execution, and the web,” in Proceedings of
the 26th Symposium on Operating Systems Principles, ser. SOSP ’17.
New York, NY, USA: Association for Computing Machinery, 2017, p.
546–564. [Online]. Available: https://doi.org/10.1145/3132747.3132760

14

[19] X. Dawn, D. Song, and A. Perrig, “Practical techniques for searches on
encrypted data,” in Proceeding 2000 IEEE Symposium on Security and
Privacy (SP), May 2000, pp. 44–55.

[20] E.-J. Goh, “Secure indexes,” Cryptology ePrint Archive, Report
2003/216, 2003, https://eprint.iacr.org/2003/216.

[21] Y.-C. Chang and M. Mitzenmacher, “Privacy preserving keyword
searches on remote encrypted data,” in Applied Cryptography and
Network Security, J. Ioannidis, A. Keromytis, and M. Yung, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2005, pp. 442–455.

[22] R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky, “Searchable
symmetric encryption: Improved definitions and efficient constructions,”
Journal of Computer Security, vol. 19, pp. 895–934, 01 2011.

[23] S. Kamara, C. Papamanthou, and T. Roeder, “Dynamic searchable
symmetric encryption,” in Proceedings of the 2012 ACM Conference
on Computer and Communications Security, ser. CCS ’12. New
York, NY, USA: ACM, 2012, pp. 965–976. [Online]. Available:
http://doi.acm.org/10.1145/2382196.2382298

[24] D. Boneh, G. Di Crescenzo, R. Ostrovsky, and G. Persiano, “Public
key encryption with keyword search,” in Advances in Cryptology -
EUROCRYPT 2004, C. Cachin and J. L. Camenisch, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2004, pp. 506–522.

[25] D. Cash, S. Jarecki, C. Jutla, H. Krawczyk, M.-C. Roşu, and M. Steiner,
“Highly-scalable searchable symmetric encryption with support for
boolean queries,” in Advances in Cryptology – CRYPTO 2013, R. Canetti
and J. A. Garay, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2013, pp. 353–373.

[26] W. Sun, N. Zhang, W. Lou, and Y. T. Hou, “When gene meets cloud:
Enabling scalable and efficient range query on encrypted genomic
data,” in IEEE INFOCOM 2017 - IEEE Conference on Computer
Communications, May 2017, pp. 1–9.

[27] Y. Gahi, M. Guennoun, and K. Elkhatib, “A secure database system
using homomorphic encryption schemes,” Computer Science, pp. 54–
58, 2011.

[28] S. Bajaj and R. Sion, “Trusteddb: A trusted hardware-based database
with privacy and data confidentiality,” IEEE Transactions on Knowledge
and Data Engineering, vol. 26, no. 3, pp. 752–765, March 2014.

[29] C. Priebe, K. Vaswani, and M. Costa, “Enclavedb: A secure database
using sgx,” in Proceeding 2018 IEEE Symposium on Security and
Privacy (SP), San Francisco, CA, USA, 2018, pp. 264–278.

[30] T. Kim, J. Park, J. Woo, S. Jeon, and J. Huh, “Shieldstore: Shielded in-
memory key-value storage with sgx,” in Proceedings of the Fourteenth
EuroSys Conference 2019 (EuroSys ’19), Dresden, Germany, 03 2019.
[Online]. Available: https://doi.org/10.1145/3302424.3303951

[31] J. Götzfried, M. Eckert, S. Schinzel, and T. Müller, “Cache attacks on
intel sgx,” in Proceedings of the 10th European Workshop on Systems
Security, ser. EuroSec’17. New York, NY, USA: ACM, 2017, pp. 2:1–
2:6. [Online]. Available: http://doi.acm.org/10.1145/3065913.3065915

[32] W. Wang, G. Chen, X. Pan, Y. Zhang, X. Wang, V. Bindschaedler,
H. Tang, and C. A. Gunter, “Leaky cauldron on the dark land:
Understanding memory side-channel hazards in sgx,” in Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS ’17. New York, NY, USA: ACM, 2017, pp. 2421–
2434. [Online]. Available: http://doi.acm.org/10.1145/3133956.3134038

[33] S. Lee, M. Shih, P. Gera, T. Kim, H. Kim, and M. Peinado,
“Inferring fine-grained control flow inside SGX enclaves with branch
shadowing,” CoRR, vol. abs/1611.06952, 2016. [Online]. Available:
http://arxiv.org/abs/1611.06952

[34] J. V. Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci,
F. Piessens, M. Silberstein, T. F. Wenisch, Y. Yarom, and
R. Strackx, “Foreshadow: Extracting the keys to the intel SGX
kingdom with transient out-of-order execution,” in 27th USENIX
Security Symposium (USENIX Security 18). Baltimore, MD:
USENIX Association, 2018, p. 991–1008. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity18/presentation/bulck

[35] M.-W. Shih, S. Lee, T. Kim, and M. Peinado, “T-sgx: Eradicating
controlled-channel attacks against enclave programs,” in Network and
Distributed System Security Symposium, 01 2017.

[36] A. Rane, C. Lin, and M. Tiwari, “Raccoon: Closing digital side-channels
through obfuscated execution,” in Proceedings of the 24th USENIX
Conference on Security Symposium, ser. SEC’15. Berkeley, CA,
USA: USENIX Association, 2015, pp. 431–446. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2831143.2831171

[37] B. Dan and F. Franklin, “Identity-based encryption from the weil
pairing,” in Advances in Cryptology — CRYPTO 2001, J. Kilian, Ed.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2001, pp. 213–229.

[38] F. McKeen, I. Alexandrovich, A. Berenzon, C. V. Rozas, H. Shafi,
V. Shanbhogue, and U. R. Savagaonkar, “Innovative instructions

and software model for isolated execution,” in Proceedings of
the 2Nd International Workshop on Hardware and Architectural
Support for Security and Privacy, ser. HASP ’13. New York,
NY, USA: ACM, 2013, pp. 10:1–10:1. [Online]. Available:
http://doi.acm.org/10.1145/2487726.2488368

[39] I. Anati, S. Gueron, S. P. Johnson, and V. R. Scarlata, “Innovative
technology for cpu based attestation and sealing,” Workshop on
Hardware and Architectural Support for Security and Privacy, 2013.
[Online]. Available: https://software.intel.com/en-us/articles/innovative-
technology-for-cpu-based-attestation-and-sealing

[40] V. Costan and S. Devadas, “Intel sgx explained,” Cryptology
ePrint Archive, Report 2016/086, 2016. [Online]. Available:
https://eprint.iacr.org/2016/086

[41] H. Li and L. . Pang, “Provably secure secret sharing scheme based
on bilinear maps,” Journal on Communications, vol. 29, pp. 45–50, 10
2008.

[42] V. Goyal, O. Pandey, A. Sahai, and B. Waters, “Attribute-based encryp-
tion for fine-grained access control of encrypted data,” in In Proc. of
ACMCCS’06, 2006, pp. 89–98.

[43] R. D’Souza, D. Jao, I. Mironov, and O. Pandey, “Publicly verifiable
secret sharing for cloud-based key management,” in Progress in Cryp-
tology – INDOCRYPT 2011, D. J. Bernstein and S. Chatterjee, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 290–309.

Yaxing Chen received the B.Eng. degree in Soft-
ware Engineering from Northwestern Polytechnical
University in 2012. He has been a Ph.D. candidate
in the Department of Computer Science at Xi’an
Jiaotong University since 2014. He was a visiting
student at Virginia Tech from 2016 to 2018. His
research interests lie on data security and privacy,
cloud computing, with focus on data access control
and trusted computing.

Qinghua Zheng received the Ph.D. degree in Sys-
tem Engineering from Xi’an Jiaotong University. He
is the winner of the National Funds for Distinguished
Young Scientists and Distinguished Professor for the
“Changjiang River Scholar Project” in China. He is
also among the first batch of leading scientists for
the “Ten-Thousand Talents Project”, the candidate
for the “New Century National Hundered Thousand-
and-Ten thousand Talents Project” in China. He
is currently the leader of the Innovation Team of
National Natural Science Foundation of China, the

Innovative Team under Ministry of Education, and the Shaanxi Key Scientific
and Technological Innovation Team. His major research fields include intel-
ligent e-learning, big data mining and application, and software reliability.

Zheng Yan received the B.Eng. degree in electrical
engineering and the M.Eng. degree in computer
science and engineering from the Xi’an Jiaotong
University in 1994 and 1997, respectively, the sec-
ond M.Eng. degree in information security from the
National University of Singapore in 2000, and the
licentiate of science and the doctor of science in
technology in electrical engineering from Helsinki
University of Technology. She is currently a profes-
sor at the Xidian University and a visiting professor
at the Aalto University. Her research interests are

in trust, security, privacy, and security-related data analytics. Prof. Yan
serves as a general or program chair for 30+ international conferences
and workshops. She is a steering committee co-chair of IEEE Blockchain
international conference. She is also an area editor or an associate editor of
many reputable journals, e.g., IEEE Internet of Things Journal, Information
Sciences, Information Fusion, JNCA, IEEE Access, SCN, etc.

Dan Liu received her B.Eng. degree in communica-
tion engineering from Jilin University in 2017. She is
currently pursuing the master’s degree with the State
Key Laboratory on Integrated Services Networks,
Xidian University. Her research interests are in data
analytics, data access control and edge computing.

15

APPENDIX A
QUERY TRANSFORMATION EXAMPLE

A running example for query transformation is illustrated
in Figure 8, where a query is executed over two collections
C1[A1, A3, A5], C2[A2, A3, A4] and has one query parameter
a. The query first filters out from C1 the documents that the
value of A1 is less equal than a. Then, it performs projection of
C1 and C2 on A3 and [A3, A4], respectively, and subsequently
joins the two collections under the condition of C1[A3] =
C2[A3]. At the end, the query computes the sum of C2[A4].

][],,[FROM])[SUM(4322531141 A,A,ACA,AACAC

aACACAC ][AND][][WHERE 113231

Query
Expression

Query
Plan

1S

)N (E 11)N (E 15

)N (E 22

)N (E 23)N (E 34

],[311 A AC

],[432 A AC

][][3231 AC AC ])[SUM(41 AC

a][11  AC

f f

f
f f

2S
0S

3S

4S 5S

Fig. 8. A running example for query transformation

APPENDIX B
EXTENSIONS TO DISTRIBUTED MODE

With data becoming available in large quantities and system
requiring high throughputs, a common practice for the cloud
AS is exploiting distributed computation, where tasks are pro-
cessed across multiple server nodes in the cloud. We remark
that QShield can be extended to support such a scenario. To
this end, we introduce the notions of broker and worker in
QShield: A broker is a dedicated enclave created for the data
owner; A worker is a general enclave serving all data users,
which implements one of query operators fπ , fσ , fφ, fγ . As
illustrated in Fig. 8, we have E1(N1), E2(N2), E3(N2), E4(N3),
E5(N1), where Ex(Ny) represents the xth worker in the yth

server node.
Compared with the stand-alone mode, QShield protocols in

the distributed mode have following changes:
• Interactions with the enclave in all original protocols are

replaced by with the broker.
• At System Setup, the broker, on behalf of the data owner,

validates the intactness of codes of the workers and the
credibility of their hosting SGX-enabled platforms through
remote attestation, and meanwhile builds interconnected
secure channels with all workers by negotiating a common
communication key.

• At Data Query, after the broker creates an initial computa-
tional state S0 for the current query, the TEE host based on
the query plan successively schedules distributed workers
for operation, instead of invoking enclaved operators imple-
mented by a single enclave instance. Notably, once a worker
completes its task, it will generate a new computational
state Sj (j = 1, · · · , k) and inform the broker to record
its execution trace. The last worker also forwards the final
computational state, i.e., query result, to the broker, where
the query response then is constructed. All communications

between the broker and workers during above process are
made through the established secure channels.
Obviously, the secret sharing scheme can be correctly

executed. However, since the consistency of the endurance
indicator w in all computational states cannot be guaranteed
by the original trust-proof protocol in such a distributed mode,
i.e., w in some computational states may not be set as 0
when the whole query execution ends, a TEE host could
make use of the computational states to perform malicious
computation. A straightforward solution is to let the broker
check such inconsistency (it can be easily deduced by the
collected computational state transitions) after it receives all
computational state transitions of works to construct the trust-
proof. Suppose a desired inconsistency is broken, the broker
denies to generate a valid trust-proof.

APPENDIX C
PROOF OF THE CORRECTNESS OF E SCHEME

The secret sharing scheme E is correct if Statement C.1
holds. Given that the algorithms {pk,msk} ← setup(1λ, n),
{ska; sk1

b , · · · , sknb } ← sharesGen(τ,msk) and ctκ ←
secretDist(κ, pk) of E are correctly executed.
Statement C.1: With the secret ciphertext ctκ, the enclave
key share ska and one of user key shares skib, the algorithm
secretRec(ctκ, ska, sk

i
b) can compute a valid secret κ.

Proof C.1: According to Equation (1), the secretRec(·)
algorithm first decrypts a corresponding leaf node in ctκ
with the enclave key share ska and the user key share skib,
respectively. Here, Ft denotes the decrypted value of a node
t.

Ft =

{
e(Ei, ska), if i = 0

e(Ei, sk
i
b), otherwise

= e(Ei, sk
i), for all i ∈ {0, 1, · · · , n}

= e(gti·s, g
qt=i(0)

ti)

= e(g, g)qt=i(0)·s.

With Equations (2) and (3), it can successively decrypt the
OR node and the root node, i.e.,

Ft =
∏

t′∈C(t)

F
∆j,C̄(t)(0)

t′

=
∏

t′∈C(t)

(e(g, g)qt′ (0)·s)∆j,C̄(t)(0)

=
∏

t′∈C(t)

(e(g, g)qparent(t′)(index(t′))·s)∆j,C̄(t)(0)

=
∏

t′∈C(t)

e(g, g)qt(j)·s·∆j,C̄(t)(0)

= e(g, g)
s·

∑
t′∈C(t)

qt(j)·∆j,C̄(t)(0)

= e(g, g)s·qt(0).

Once the root node is decrypted, that is, the blinding factor
Y s = e(g, g)y·s is correctly recovered, the algorithm is then
definitely able to obtain κ from ctκ = κ · Y s.

16

APPENDIX D
PROOF OF THE SECURITY OF E SCHEME

Definition 1 (Security of E Scheme): The secret sharing E
scheme is secure in the Selective-Participant model of security
if all polynomial-time adversaries have at most a negligible
advantage in the above game.
Theorem D.1: If an adversary can break the E scheme
in the Selective-Participant model, then a simulator can be
constructed to play the Decisional BDH game with a non-
negligible advantage.
Proof D.1: Provided that there exists a polynomial-time
adversary A who can break the E scheme in the Selective-
Participant model with advantage ε. We build a simulator S
that can play the Decisional BDH game with advantage ε

2 .
What follows is a description of the simulation process.

First of all, the challenger sets two cyclic groups G1 and
G2 with an efficient bilinear map e : G1 × G1 → G2; g
is the generator of G1. The challenger flips a fair binary
coin u outside of A’s view: If u = 0, the challenger sets
(A,B,C,Z) = (ga, gb, gc, e(g, g)a·b·c); If u = 1, it sets
(A,B,C,Z) = (ga, gb, gc, e(g, g)z); a, b, c, z are random
numbers.
Init. The simulator S executes A, accepting the challenge set
of participants, i.e., U = {i|i = 0, 1, · · · , n}.
Setup. For all i ∈ U , the simulator S chooses a random
ti from Zp and sets Ti = gti . The simulator then sets the
parameter Y = e(A,B) = e(g, g)a·b. At last, it gives the
public parameters, i.e, Ti and Y , to A.
Phase 1. The adversary A makes requests for the key shares
corresponding to the participant set V that satisfies V ∩ U =
{0} or V ∩ U ⊆ {1, · · · , n}. To generate key shares for
participants in V , the simulator S needs to assign a polynomial
Qt of degree dt for each node t in the access structure τ .

Here, we define a procedure, denoted by poly(τt, λt), to set
up the polynomials for the nodes of an access sub-tree τt. λt is
an integer from Zp. The procedure first defines a polynomial qt
of degree dt for the root node t. Specifically, it sets qt(0) = λt
and then fixes qt by randomly sets rest of the points. Next,
it makes a recursive call with τt′ and qt(index(t′)) as inputs,
i.e., poly(τt′ , qt(index(t′))), to set polynomials for each child
node t′ of t. Notice that in this way, qt(0) = qt(index(t′))
for each child node t′ of t.

By running poly(τr, a), The simulator S first sets up a
polynomial qt for each node t of τ . Then, it defines the final
polynomial Qt = b · qt for each node t of τ . Notice that, this
sets y = Qr(0) = a · b. The key share corresponding to each
leaf node is given using its polynomial as follows:

ski = g
Qt(0)

ti = g
b·qt(0)

ti = B
qt(0)
ti .

Hence, S is able to construct key shares for all participants
in V . Moreover, the distribution of these key shares is identical
to that in the original scheme.
Challenge. The adversary A submits two challenge messages
m0 and m1 to the simulator S . S flips a fair binary coin v
and returns an encryption of mv , i.e.,

ctmv
= {mv · Z; {Ei = Cti}i∈V }.

If u = 0, then Z = e(g, g)a·b·c. If let s equals to c, then
Y s = (e(g, g)y)c = e(g, g)a·b·c, and Ei = T si = gti·c = Cti .
Therefore, ctmv is a valid random encryption of message mv .

Otherwise, i.e., u = 1, we have Z = e(g, g)z . Since z is
a random number, mv · Z = mv · e(g, g)z will be a random
element of G2 from A’s view and it contains no information
about mv .
Phase 2. The simulator S acts exactly as it did in Phase 1.
Guess. The adversary A submits a guess v′ of v. If v′ = v,
the simulator S will output u′ = 0, indicating that it receives
a valid BDH-tuple; otherwise, S outputs u′ = 1, indicating
that it receives a random 4-tuple.

When u = 1, A gains no information about v. Thus, we
have Pr[v 6= v′|u = 1] = 1

2 . Furthermore, when v 6= v′, S
guesses u′ = 1. As a result, we have Pr[u′ = u|u = 1] = 1

2 .
When u = 0, A obtains a valid ciphertext of mv . The

advantage of A to break the ciphertext is ε by definition.
Hence, we have Pr[v = v′|u = 0] = 1

2 + ε. Furthermore,
when v = v′, S guesses u′ = 0. As a result, we have
Pr[u′ = u|u = 0] = 1

2 + ε.
In conclusion, the overall advantage of the simulator S in

the Decisional BDH game is

1

2
Pr[u′ = u|u = 0] +

1

2
Pr[u′ = u|u = 0]− 1

2

=
1

2
· (1

2
+ ε) +

1

2
· 1

2
− 1

2

=
ε

2
.

