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Investigating the Adoption of Hybrid Encrypted
Cloud Data Deduplication with Game Theory

Xueqin Liang, Zheng Yan, Senior Member, IEEE, Robert H. Deng, Fellow, IEEE,
and Qinghua Zheng, Member, IEEE

Abstract—Encrypted data deduplication, along with different preferences in data access control, brings the birth of hybrid encrypted
cloud data deduplication (H-DEDU for short). However, whether H-DEDU can be successfully deployed in practice has not been
seriously investigated. Obviously, the adoption of H-DEDU depends on whether it can bring economic benefits to all stakeholders. But
existing economic models of cloud storage fail to support H-DEDU due to complicated interactions among stakeholders. In this paper,
we establish a formal economic model of H-DEDU by formulating the utilities of all involved stakeholders, i.e., data holders, data
owners, and Cloud Storage Providers (CSPs). Then, we construct a multi-stage Stackelberg game, which consists of Holder
Participation Game, Owner Online Game and CSP Pricing Game, to capture the interactions among all system stakeholders. We
further analyze the conditions of the existence of a sub-game perfect Nash Equilibrium and propose a gradient-based algorithm to help
the stakeholders choose near-optimal strategies. Extensive experiments show the feasibility of the proposed algorithm in achieving the
Nash Equilibrium of the Stackelberg game. Additionally, we investigate the effects of parameters related to CSP, data owners and data
holders on H-DEDU adoption. Our study advises all stakeholders the best strategies to adopt H-DEDU.

Index Terms—Cloud Computing, Deduplication, Gradient-Based Algorithm, Multi-Stage Stackelberg Game.

F

1 INTRODUCTION

D EDUPLICATION, as an efficient way to eliminate re-
dundant data storage, has become a popular research

topic in the field of economic cloud computing. Current
storage service faces explosive growth of data volume and
additional storage costs caused by inadvertent multiple
storage and backup demands. A recent study [1] performed
by Microsoft shows that about 68% of data are duplicately
stored. Deduplication is a technology to find the existence of
a duplicate and substitute it with a pointer to a single shared
copy. A piece of data could be deduplicated at a file-level [2]
or a chunk-level [3], [4], and the latter one is popular due to
better compression performance [5].

The benefits for a Cloud Service Provider (CSP) to adopt
deduplication is noticeable. First, the CSP can greatly re-
duce its storage cost by only storing one copy for each
unique data. Second, network bandwidth is conserved by
avoiding the transmission of redundant data. Third, the data
management cost sharply drops and the CSP can provide
more storage spaces at the same price. Security and privacy
concerns require data to be stored in an encrypted form
in the cloud. However, outsourcing encrypted data to the
cloud greatly increases the difficulty of deduplication. With-
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out secure access control over deduplication, data disclosure
could happen and impose significant loss to the users.

Efforts [6] in removing duplicated encrypted data while
ensuring data security mainly fall into the following direc-
tions: message-dependent encryption [7], [8], [9], proof of
ownership [10], [11], traffic obfuscation [12], [13], and deter-
ministic information dispersal [14]. Existing deduplication
schemes can support data owners to control deduplication
[15] or the CSP works as a proxy of the owners to perform
deduplication [11], [16], [17]. Unfortunately, these two solu-
tions either require the owners to keep online or force data
users to lose direct data control. Taking the advantages of
existing deduplication schemes, a hybrid encrypted cloud
data deduplication scheme [10] (H-DEDU) can flexibly con-
trol deduplication at either the user side or the CSP side,
depending on the preference of data users. In our presen-
tation, a data owner is the first data user to upload data to
CSP and has responsibility to control deduplication later on.
Data holders refer to the users that upload duplicated data
subsequently. We classify data users into these two groups
because they play different roles in H-DEDU.

H-DEDU is theoretically feasible and safe; however,
whether it can motivate all stakeholders to adopt it remains
unstudied. For example, Google Drive provides storage
services with an optional deduplication feature. Therefore,
whether deduplication can be selected by the users of
Google Drive depends on if it can provide enough incen-
tives to them. Liu et al. [7] articulated the necessity of an
incentive mechanism in promoting the adoption of dedupli-
cation. Youn and Chang [18] recognized the absence of in-
centives in motivating the participation of data owners and
indicated a potential solution by granting discounts. Miao
et al. [19] integrated a payment-based incentive scheme
into deduplication and provided payment-based incentives
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to data users. However, this model is too simple to be
extended for applying into other scenarios [20]. As a market-
oriented and profit-driven entity, the CSP evaluates the
effectiveness of deduplication and makes an optimal deci-
sion by considering economic factors. But in order to make
deduplication applicable, its optimal decision should also
provide economic profits to other stakeholders. Therefore,
it becomes essential to investigate the adoption of H-DEDU
from the perspective of all stakeholders.

However, exploring the adoption of H-DEDU faces two
challenges. First, the literature lacks an economic model of a
cloud storage system with H-DEDU. Previous works either
only mentioned the need to consider economic factors or
were infeasible to be applied into H-DEDU. Second, it is
difficult to model the complicated interactions among all
stakeholders since their interests are interdependent.

In this article, we attempt to investigate the adoption of
H-DEDU with game theory. We first formulate the utility
function of each stakeholder as its total gains minus its total
costs and analyze their compositions. We further detail a
storage discount function for data users and specify the
influences of other entities’ strategies on a data holder’s
benefit. Under this economic structure, we model the in-
teractions in H-DEDU as a multi-stage Stackelberg game,
where the CSP plays as an absolute leader and the data
owner, as a follower of the CSP, is a leader of data holders.
The multi-stage Stackelberg game consists of three sub-
games: Holder Participation Game, Owner Online Game
and CSP Pricing Game. We solve the Stackelberg game with
a backward induction method and prove the existence of
a perfect Nash Equilibrium in each sub-game. We further
propose a gradient-based algorithm in order to help the
stakeholders choose near-optimal strategies. Extensive ex-
periments show the feasibility of the proposed algorithm in
reaching the Nash Equilibrium of the Stackelberg game (in
short Stackelberg Equilibrium). Additionally, we investigate
the effects of parameters related to CSP, data owners and
data holders and summarize meaningful and interesting
insights on H-DEDU deployment. Specifically,

1) We establish an economic model of H-DEDU by
specifying the utilities of all stakeholders.

2) We apply a multi-stage Stackelberg game to model
the interactions among all stakeholders in H-DEDU
and analyze the existence of a Nash Equilibrium by
adopting a backward induction method.

3) We design a gradient-based algorithm to search the
near-optimal strategies for all stakeholders.

4) We conduct extensive experiments to illustrate that
the results of the gradient-based searching algo-
rithm converge to reach the Stackelberg Equilib-
rium. we also test the effects of a number of param-
eters related to CSP, data owners and data holders
on the adoption of H-DEDU.

5) We discover some interesting insights from our
experimental results. Concretely, a wise strategy
for CSP is to set an access fee and make it cover
the H-DEDU operation costs of data owners; the
data holders with popular data are likely to accept
H-DEDU and the CSP tends to control popular
data deduplication; CSP should grant additional

discounts to sensitive data in order to promote H-
DEDU adoption.

The rest of this article is structured as follows. Section 2
provides the basic of game theory and deduplication. It
gives a brief review on deduplication incentives and the
applications of game theory. We detail the procedure of H-
DEDU in Section 3, along with its practical deployment
problems. We also describe our research assumptions in
this section, followed by the proposed economic model in
Section 4. In Section 5, we formulate a multi-stage Stackel-
berg game to model the interactions among all stakeholders
and analyze the existence of sub-game perfect equilibrium.
The experimental results are presented in Section 6 with
essential discussions on our discovery. Finally, we conclude
this article in the last section.

2 BACKGROUND AND RELATED WORK

In this section, we first present the basic of game theory
and deduplication. Then, we briefly review the state-of-art
economic incentives in deduplication and game-theoretical
approaches applied in computer sciences.

2.1 Game Theory

Game Theory [21] is a cross-discipline subject to study
the interactions and competitions among individuals. It
considers the predictive behavior and actual behavior of
individuals and studies their optimization strategies. To
describe a game, we need to know who is participating in
and making decisions (i.e., players), what decisions can they
make (i.e., strategies), and what are the possible results for
these decisions (i.e., outcomes).

A Nash Equilibrium (NE) of a strategic game is a strategy
profile with the property that no player can increase its
payoff by deviating to a different action, provided the other
players’ actions. Therefore, no player has the incentive to
change its action unilaterally in a NE state.

Stackelberg game [22], [23] is a sequential strategic game
that one player moves first and all the others react to the first
mover’s decision subsequently to minimize their costs or
maximize their utilities, after which the first mover updates
its strategy to optimize its utility. The first mover is called
the leader while the others are the followers. Obviously, the
leader has an overwhelming advantage in such a game.

The NE in a Stackelberg game model is called Stack-
elberg Equilibrium, which is achieved by finding the sub-
game perfect Nash Equilibrium (SPNE). A prevalent solu-
tion to gain the SPNE is the backward induction, which first
seeks the best responses for the followers and afterwards
solves an optimization problem for the leader.

2.2 Deduplication

Based on deduplication is controlled by CSP, data owners, or
both of them, encrypted cloud data deduplication schemes
can be classified into three categories: server-controlled
deduplication (S-DEDU), client-controlled deduplication (C-
DEDU) and hybrid deduplication (H-DEDU). C-DEDU re-
quires the data owner to keep online for providing dedupli-
cated storage services to data users. Otherwise, data users
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will suffer from service delays. S-DEDU relieves the online
requirement on data owners by allowing a CSP to work as a
proxy to control deduplication. However, the participation
of a third party increases the risk of malicious behaviors
and collusion. H-DEDU enables flexible data deduplication.
A data owner controls deduplication when it is online and
grants the control right to CSP when it is offline. Therefore,
H-DEDU holds the advantages of both S-DEDU and C-
DEDU. For the details of the above three types of dedu-
plication schemes, please refer to [24].

Deduplication rate refers to a parameter to estimate the
effectiveness of deduplication. Let n andN be the number of
data holders that accept deduplication and the total number
of users of this data. The deduplication rate with notation r
can be represented as:

r =
n

N
. (1)

2.3 Related Work

2.3.1 Incentives in Deduplication

Researchers have noticed the importance of incentives in
deduplication. Some mentioned the necessity of incentives
to promote the acceptance of deduplication [7], [18], some
applied technical approaches to guarantee the performance
of CSPs [16], and some provided incentives from an eco-
nomic perspective [19], [20], [25], [26].

Liu et al. [7] encouraged the CSP, the direct beneficiary of
deduplication, to rise storage quotas for a user whose data
is deduplicated. Armknecht et al. [16] proposed ClearBox to
restrict CSPs by allowing the users to attest to the behaviors
of CSP. ClearBox provides strong incentives to the users of
popular data, however, it keeps unpopular data out.

Youn and Chang [18] identified the selfish actions of data
holders caused by the lack of incentives in a deduplication
scheme. They analyzed the disadvantages of being the first
data user to adopt deduplication and listed some potential
compensation strategies. They stated that discounting on the
first data user’s storage-service fee could help but they did
not provide a real mechanism.

Jin et al. [25] figured out the existence of selfish data
holders that only enjoy the benefits of deduplication but
refuse to take part in data ownership verification. They
proposed a solution that all the holders share one piece of
data storage cost. However, this incentive mechanism fails
to benefit the CSPs. They believed that market competition
among CSPs would decide the best pricing strategy.

Miao et al. [19] monitored the selfish behavior of CSP
in publishing an unfair pricing strategy to data holders.
They applied a payment-based incentive into S-DEDU and
charged the users according to a deduplication rate. The
payment structure is similar to that in [25], where all the
holders with the same deduplicated data share the storage
fee paid to CSPs. However, Liang et al. [20] formally proved
that this incentive cannot guarantee the profits of CSPs. To
solve this problem, they set an upper limit to the discount,
which is related to the total number of data holders and
other system parameters. They proved their discount-based
incentive mechanism to be individual-rational, incentive-
compatible, profitable, and robust. Liang et al. [26] further

analyzed the feasibility of unified discount and individual-
ized discount based on their proposed economic structure in
C-DEDU. They also considered how to preserve the privacy
of data holders when designing an incentive mechanism.
However, the economic models in [20], [26] cannot be
directly applied into the scenario of H-DEDU due to the
difference of deduplication scheme design.

2.3.2 Applications of Game Theory
Interdisciplinary cooperation increases the application of
game theory in solving difficult problems and making opti-
mal decisions. Numerous survey papers [22], [27], [28], [29],
[30], [31] have shown the great potential of game theory in
addressing security and privacy issues in computer science.

Game-theoretical analysis offers great help in eliminat-
ing selfish behaviors and promoting scheme acceptance,
thus ensuring the long-term development of a scheme. Yu et
al. [32] employed a game-theoretical method to analyze how
vehicles optimally share resources to improve network per-
formance. In wireless multimedia social networks, Nan et
al. [33] proposed a distributed bandwidth allocation method
based on game theory to effectively avoid selfish behaviors
of players. Then, resource and reward fair allocation was
addressed with a cooperative game [34]. Researchers in [35]
proposed a game theory-based distributed task scheduling
scheme that can eliminate all entities’ selfish behaviors and
achieve social optimal.

The two-stage Stackelberg game is widely applied to
model the interactions among services or resource suppliers
and buyers [36], or among buyers [37]. Yu and Hong [36]
considered a smart grid scenario with one service provider
(i.e., energy management center) and multiple buyers (i.e.,
devices) and applied the Stackelberg game to capture their
interactions. An existing and unique Stackelberg equilib-
rium was proved to be the optimal strategy profile for all
players. Wei et al. [37] investigated how to allocate virtual
cloud computing resources by adopting the Stackelberg
game with imperfect information to capture the competition
among two buyers. Through dynamic bid prediction and
strategy update, the game finally reaches its NE, where all
players gain increased profits.

Xiong et al. [38] adopted a three-stage Stackelberg game
to model the interactions among a service provider, a con-
tent provider, and end-users. The game is solved through
backward induction and converges to a unique Stackelberg
Equilibrium, at which all players obtain their optimal bene-
fits. The interplay in a supply chain scenario with duopolies
was also formulated as a three-stage Stackelberg game in
[39]. The players are a manufacturer with a pricing strategy,
a distributor with a pricing strategy, and two retailers with
their demand strategy.

However, the Stackelberg game has never been applied
into the study of encrypted data deduplication although
it shows specific advantages in analyzing the complicated
interactions among multiple players.

3 SYSTEM MODEL

This section describes a cloud storage system with H-DEDU.
We briefly present the work flow of this system and discuss
potential deployment problems of H-DEDU. We also sum-
marize our research assumptions in this section.
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Fig. 1. System model

3.1 H-DEDU

Fig. 1 drafts the structure of a cloud storage system with H-
DEDU. There are four kinds of system entities: data holders,
data owners, CSP and Authorized Party (AP). A data owner
refers to the first user that uploads data and controls its
deduplication with responsibility, while data holders are
the users that upload duplicated data subsequently. CSP
provides cloud storage services to data owners and data
holders. To ensure data security, CSP cooperates with AP to
control deduplication when the owner grants deduplication
right to it. AP is a fully trusted party that is introduced
for verifying data ownership and controlling data access,
as well as eliminating malicious behaviors of CSPs [11]. A
simple description of H-DEDU is provided below:

• A user sends its data storage request to a CSP;
• The CSP performs duplication check on this data

and asks the user to upload this data if it has not
been stored before. If the user would like to be
online to control its data deduplication, it is regarded
as a data owner. It encrypts the data with a data-
encryption key that is encrypted with the public key
of this user. Otherwise, the user encrypts the data-
encryption key with the public key of AP to grant the
right of controlling deduplication to the CSP and AP.
If the data exists already, the CSP first challenges the
ownership of this user by executing an ownership
challenge protocol [11], [15], [40], e.g., asking the
user to response with the hash value of a randomly
selected part of this data. H-DEDU is performed only
when the user passes the ownership challenge;

• If deduplication is directly controlled by the data
owner, the CSP contacts the owner for performing H-
DEDU, e.g., by applying Attribute-Based Encryption
(ABE)-based deduplication [10]. The attribute used
for deduplication access control could be user iden-
tity. After receiving the deduplication request from
the CSP, the data owner checks the eligibility (or
attribute) of this user and only issues a data access
key to an eligible one. With the data-access key, the
user can decrypt the data-encryption key and then
access the data;

• If deduplication is controlled by the CSP, the CSP
works as a proxy to provide deduplication by apply-
ing Proxy Re-Encryption (PRE). Based on the public
and secret keys of the AP and the public key of this
user, AP generates a re-encryption key and sends
it to the CSP. With the re-encryption key, the CSP
transfers the encrypted data-encryption key to a new
one, which can be decrypted by the user’s secret key.
Then the CSP issues the newly re-encrypted data-
encryption key to this user;

• After receiving the key issued by either the data
owner or the CSP, this user can obtain raw data
through decryption. The data deduplication proce-
dure ends.

The data ownership challenge and the attribute em-
ployed in the above illustration are based on [10]. Other
kinds of proof-of-ownership methods [11], [15], [40], and
more complex attribute structures are also applicable, which
do not impact the economic analysis performed in this
article.

3.2 Practical Deployment Problems
Google Drive has provided a cloud storage service with
optional deduplication up to data users’ choice. When a data
user uploads a duplicated file, the user can choose whether
to activate deduplication. From this wide-use cloud storage
service, we can see that deduplication’s adoption relies on
data user’s willingness. Similarly, the success of H-DEDU
deployment requires the acceptance of all system entities
(i.e., stakeholders) including data users. However, whether
they are willing to adopt H-DEDU has been scarcely inves-
tigated.

The adoption of H-DEDU reduces the storage cost of
a CSP. If the CSP transfers saved costs as a data storage
discount shared among its users, it will attract more sub-
scribers and gain more profits. However, the CSP with H-
DEDU needs to choose an appropriate discount policy for
the first time when it enters into a cloud storage market.
The art of discount selection lies in the balance between the
saved costs and the given discount. With a large discount,
the CSP could attract a large number of data holders, but the
discount could exceed its saved storage costs, thus lower its
expected utility. The CSP should also consider the influence
of uncooperative data users.

A data owner can utterly determine whether to control
deduplication according to its preference. Since keeping
online is costly and impractical, the data owners may control
deduplication when they are online and grant the right
to CSPs when being offline. A trade-off between online
operation cost and offline probability needs to be considered
when investigating H-DEDU deployment in practice.

Data holders are the most passive participants in the
cloud storage system. The pricing policy and data access
policy are determined by the CSP and the data owner,
respectively. The data holders have right to select a CSP
with or without H-DEDU. Therefore, it is reasonable for the
CSP to understand that not all data holders participate in
H-DEDU during its decision-making.

In addition, all system entities’ behaviors are impacted
with each other. The pricing model decided by CSPs in-
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fluences the participation willingness of data users. The
offline probability of a data owner implies the possibility
of deduplication to be controlled by CSPs, which impedes
the acceptance of the data users that suspect the credibility
of CSPs. Furthermore, the acceptance of the data users on
H-DEDU has a direct impact on the pricing model.

In practice, the CSP first determines whether to adopt
H-DEDU and publishes its pricing strategies, then the data
owner determines its online probability, and subsequently,
the data holders take actions based on the online probability
and their individual characteristics accordingly.

3.3 Assumptions

In this subsection, we summarize our research assumptions
with justification.

We assume all stakeholders are profit-driven, which is
a common phenomenon in a practical market. Data users
are usually individuals or organizations that have data to
be stored. CSPs pursue profits from cloud storage service
provision. Therefore, we assume all stakeholders are ratio-
nal to take actions for maximizing their individual utilities.
We regard the acceptance of cloud storage as a consensus
based on previous study [41], which means all data users
are willing to choose cloud storage.

Due to the data security concern, data users encrypt data
no matter a deduplication scheme is applied or not. Since
the operation cost of data encryption cannot be avoided and
unrelated to H-DEDU deployment, we ignore it in the utility
functions of data users for simplifying our analysis.

Since the data user chooses whether to activate dedu-
plication on its own in practice, it has no incentive to
modify data fingerprint for avoiding deduplication. Thus,
we assume the data user honestly provides data fingerprints
to CSP for allowing it to calculate a data deduplication rate.

Based on [41], collusion will worsen the reputation of
CSPs. Therefore, AP and CSP do not collude due to different
business incentives and interests.

We assume a CSP will back up its data timely to prevent
irreversible data loss. And cloud data backup is beyond the
focus of this article work.

We assume CSP regularly pays a service fee to AP. AP
always charges the CSP a reasonable fee that can be afforded
by the CSP; otherwise, AP will lose subscribers and incomes.
The utility of AP is only directly related to the CSP and will
not be affected by other factors. Therefore, we consider a
simple game model with three types of players, which are
the data holders, the data owners, and the CSPs.

4 ECONOMIC MODEL

This section constructs the utility functions of all players.
Our analysis is based on a simple scenario: a piece of data di
held by a number of data users stores at CSP k. To avoid any
misinterpretation, oi denotes the data owner that is the first
data user to upload data di and control its deduplication.
H = {hij |j = 1, 2, . . . , N} denotes the data holders of di. N
is the total number of data holders.

Gao et al. [41] designed the utility functions of a cloud
storage system with reputation and trust, which cannot be
directly applied in this article. Miao et al. [19] presented the

TABLE 1
Notations

Notations Descriptions
uHi

j The utility of data holder hij ;
uOi The utility of data owner oi;
uCk The utility of CSP k;
b The cloud storage benefit for a data user;
sf The storage-service fee paid by a data user;
sc The storage cost of CSP;
α The discount of storage-service fee;
pi The online probability of data owner oi;
RF The data request fee;
oc The H-DEDU operation cost of the data owner;
OC The H-DEDU operation cost of CSP;
r The deduplication rate;
N The total number of data holders;
c The confidence of a data holder on CSP security.

utility functions of a cloud storage system with deduplica-
tion. However, they failed to provide incentive compatibility
to CSPs [20]. Therefore, we proposed new utility functions
for a cloud storage system with H-DEDU. The utility of each
entity amounts to its total gains minus its total costs. For
easy presentation, Table 1 describes all the notations used in
the rest of this article.

4.1 Utility of Data Holder
Cloud storage enables data users to access their data at any
time and any where, which greatly saves their local storage
spaces. We quantify the benefit that a data holder hij benefits
from the cloud storage as b. Data holder hij should also
pay a storage-service fee to CSPs, which is denoted as sf .
Therefore, the utility of data holder hij is presented as:

uHi
j = b− sf. (2)

It is essential to state that it is difficult to quantify
and calculate the benefit of cloud storage. Nevertheless, we
define it with b through the inspiration of [41] and default
it to be larger than sf , which has been already proved by
existing CSPs (like Google Drive, iCloud, etc).

If H-DEDU is applied, only when oi is online and con-
trols deduplication, can hij obtain the total cloud storage
benefit. Otherwise, deduplication is controlled at the server-
side and something unexpected (like collusion between
malicious data users and CSP) would happen because of
the loss of direct control. The increase of deduplication rate
subsequently introduces malicious behavior of data users.
Their malicious behavior decreases the cloud storage ben-
efits of honest data users. Hence, the cloud storage benefit
of a data holder when H-DEDU is applied is related to the
data owner’s online probability and the deduplication rate.
We express it as f(pi, r)b. To motivate data users to accept
H-DEDU, CSP k gives a discount on storage-service fee to
its users. Based on our previous work [20], [26], the discount
should be determined based on its upper limit α and current
data deduplication rate r, represented as g(α, r). Hence, the
utility of hij that adopts cloud storage with H-DEDU is:

uHi
j = f(pi, r)b− sf + g(α, r)sf. (3)

Where, f(pi, r) and g(α, r) are defined below:

f(pi, r) = pi + (1− pi)(1− rc) = 1 + (pi − 1)rc, c > 2 (4)
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g(α, r) = α(1− e−r). (5)

4.2 Utility of Data Owner
Since being a data owner has some disadvantage, as an-
alyzed in [18], the data owner should be motivated to
firstly upload data to the cloud. Apart from the discount
on storage-service fee, we also propose to let the data
owner charge an access fee (denoted as AF ) from the CSP.
Therefore, the data owner can obtain more benefits than
data holders to incent first data uploading. On the other
hand, the operation cost of the data owner to perform
deduplication for data holders can also be compensated by
the access fee. Obviously, AF should be discounted by the
deduplication rate r. The storage-service fee of oi is the same
as its holders. However, keeping online takes oi a cost oc
and online probability pi directly impacts this cost. Hence,
we formulate the utility of oi with online probability pi as:

uOi = b− sf + g(α, r)sf + rAF − pioc (6)

4.3 Utility of CSP
In a cloud storage system without H-DEDU, CSP k needs
to store one copy of data at a cost sc for every user u ∈
H∪{oi}. Therefore, the storage-service fee charged from its
users should rationally compensate for this cost. Namely,

sf > sc. (7)

The utility function of a CSP without H-DEDU is

uCk =
∑

u∈H∪{oi}

(sf − sc). (8)

According to the previous discussion in Section 4.1
and Section 4.2, we can summarize the utility of CSP k
for providing cloud storage services with H-DEDU. If the
deduplication rate is r, the total storage-service fee that
CSP k obtains from the data users that accept H-DEDU is
rNsf − rNg(α, r)sf , which is at a cost of storing one copy
of data. The access fee that k pays to the data owner is rAF .
The operation cost for conducting H-DEDU is OC , which
contains the service fee paid to AP. Hence, we conclude the
utility of CSP k for performing H-DEDU as

uCk = rNsf − rNg(α, r)sf − sc− rAF −OC. (9)

5 GAME FORMULATION AND ANALYSIS

In this article, we model the interactions among the CSP,
the data owner and the data holders as a multi-stage Stack-
elberg game. As the direct beneficiary of H-DEDU, CSP
takes an unquestionably leading role in deciding whether
to adopt H-DEDU and all data users play as its followers.
Among all the users, the data owner is the leader since it
is the first user to upload data. In a nutshell, CSP selects
its pricing strategy in Stage I, based on which the owner
decides its online probability in Stage II. In Stage III, the data
holders together determine the deduplication rate. In this
section, we mathematically formulate the problems needed
to be solved in the above three stages by constructing three
sub-games (namely Holder Participation Game, Owner On-
line Game and CSP Pricing Game). Then, we discover the
sub-game perfect Nash Equilibrium by applying backward
induction.

5.1 Game Formulation

5.1.1 Holder Participation Game (HPG)
Given the discount α set by the CSP and the online proba-
bility pi of data owner oi, data holders cooperate with each
other and choose the strategies to maximize their utilities.
We denote the game as GH = {H, {rj}hi

j∈H, {uH
i
j}hi

j∈H},
where H is the data holder set, {rj}hi

j∈H is the strategy set
and {uHi

j}hi
j∈H is the utility set. Each data holder hij ∈ H

chooses the best strategy rj to maximize its utility. Under
the same cloud storage environment, the best strategy of
all holders should be quite similar, thus we simply denote
it as r. So, the holder participation sub-game is to find the
solution for the following optimization problem:

max
0≤r≤1

uHi
j(r;α, pi). (10)

5.1.2 Owner Online Game (OOG)
Based on the NE in GH and the given CSP pricing strategy
α, the data owner oi decides its best strategy pi ∈ [0, 1] to
maximize its utility. Therefore, the data owner tries to find
the solution of the following problem:

max
0≤pi≤1

uOi(pi;α). (11)

5.1.3 CSP Pricing Game (CPG)
Knowing the best strategies of all data holders and the
owner, CSP k decides its best strategy α ∈ [0, 1] to optimize
its pricing strategy. The best strategy of CSP is the solution
of the following problem:

max
0≤α≤1

uCk(α). (12)

5.2 Equilibrium Analysis

All the sub-games specified above form a multi-stage Stack-
elberg game with complete information. We employ the
backward induction method to find its equilibrium, which is
the state that CSP achieves its maximum payoff when both
the data owner and the data holders play the best-response
strategies.

5.2.1 Equilibrium Analysis of HPG
We first provide the Nash Equilibrium definition of HPG as
follows.

Definition 1. The Nash Equilibrium of GH is r∗, if for any
hij ∈ H,

uHi
j(r
∗;α, pi) ≥ uHi

j(r;α, pi) (13)

is satisfied for all r ∈ [0, 1].

Theorem 1. The Nash Equilibrium of HPG GH =
{H, {rj}hi

j∈H, {uH
i
j}hi

j∈H} exists.

Proof 1. We first calculate the first-order and second-order
partial derivatives of (3) with (4) and (5):

∂uHi
j

∂r
= c(pi − 1)rc−1b+ αsfe−r, (14)

∂2uHi
j

∂r2
= c(c− 1)(pi − 1)rc−2b− αsfe−r. (15)
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Since c > 2 and pi ∈ [0, 1], then c(c− 1)(pi − 1) ≤ 0.

∂2uHi
j

∂r2
< 0. (16)

Therefore, uHi
j is strictly concave with respect to r.

Considering the strategy space of r is a non-empty
convex and a compact subset of the Euclidean space, the
existence of NE is proved.

Let
∂uHi

j

∂r = 0, we have

c(1− pi)rc−1b = αsfe−r. (17)

r = ln c(1− pi)b+ ln rc−1 − lnαsf. (18)

Let r∗ be the best response of data holders, then r∗ is the
solution of (18) and

r∗ − ln r∗c−1 = ln c(1− pi)b− lnαsf. (19)

5.2.2 Equilibrium Analysis of OOG
In Stage II, data owner oi chooses the optimal strategy based
on the sub-game perfect equilibrium achieved in HPG. The
utility function of oi is formulated as (20) when taking (5)
and r∗ into consideration.

uOi = b− sf + α(1− e−r
∗
)sf + r∗AF − pioc. (20)

Below is the definition of Nash Equilibrium of OOG.
Definition 2. The Nash Equilibrium of OOG is p∗i , if for data

owner oi,
uOi(p

∗
i ;α) ≥ uOi(pi;α) (21)

is satisfied for all pi ∈ [0, 1].

Theorem 2. The NE in the OOG exists when

(c− r∗ − 1)2 + 1− c > 0 (22)

Proof 2. The first-order and second-order partial derivatives
of (20) are listed as follows:

∂uOi
∂pi

= (αe−r
∗
sf +AF )

∂r∗

∂pi
− oc, (23)

∂2uOi
∂pi2

= −αe−r
∗
(
∂r∗

∂pi
)2sf + (αe−r

∗
sf +AF )

∂2r∗

∂pi2
.

(24)
According to (19), we can calculate ∂r∗

∂pi
and ∂2r∗

∂pi2
.

∂r∗

∂pi
=

r∗

(pi − 1)(r∗ − c+ 1)
> 0. (25)

∂2r∗

∂pi2
= r∗(pi − 1)−2

(c− r∗ − 1)−2 + 1− c
(r∗ − c+ 1)3

. (26)

When (22) holds, as c > 1 and r∗ > 0, r∗ − c + 1 < 0,
then we can easily conclude that

∂2r∗

∂pi2
< 0, (27)

∂2uOi
∂p2i

< 0. (28)

Furthermore, with the property that the strategy space
of data owner, pi ∈ [0, 1] is a non-empty convex and a

compact subset of the Euclidean space, we complete the
proof of the existence of NE.

Let ∂uOi

∂pi
= 0, we have

(αe−r
∗
sf +AF )

r∗

(pi − 1)(r∗ − c+ 1)
− oc = 0. (29)

If p∗i denotes the best response of the data owner, then

p∗i = 1 +
r∗(αe−r

∗
sf +AF )

(r∗ − c+ 1)oc
(30)

5.2.3 Equilibrium Analysis of CPG
With the optimal deduplication rate r∗ of data holders and
the optimal online probability p∗i of the data owner, the
CSP determines its best strategy by solving the optimization
problem (12). The strategy of CSP is the pricing strategy, or
discount decision α ∈ [0, 1], to be precise. Considering the
expressions of r∗ and p∗i and Theorem 2, we reformulate
(12) as follows:

maximize
α

uCk(α)

subject to α ∈ [0, 1] (31)
p∗i = arg min

pi
uOi (32)

(c− r∗ − 1)2 + 1− c > 0 (33)

r∗ − ln r∗c−1 = ln c(1− pi)b− lnαsf (34)

The constraint (31) represents the strategy space of CSP.
The constraint (32) imposes that p∗i is the best response of
the data owner when the pricing strategy of CSP is fixed.
The constraint (33) is added according to Theorem 2. The
constraint (34) is to indicate that r∗ is the best response of
data holders when pi and α are determined.
Theorem 3. The NE of the CPG exists when the following

equation is satisfied:

Nsf − αNsf −AF > 0. (35)

Proof 3. Taking (5) into (9), we obtain

uCk(α) = (1−α+αe−r
∗
)r∗Nsf−sc−r∗AF−OC. (36)

Likewise, we calculate the first-order and second-order
partial derivatives of (36) and present them in (37) and
(38), respectively.

∂uCk
∂α

=
∂r∗

∂α
(Nsf − αNsf −AF )− r∗Nsf, (37)

∂2uCk
∂α2

=
∂2r∗

∂α2
(Nsf −αNsf −AF )− 2

∂r∗

∂α
Nsf. (38)

By calculating the first-order partial derivative and the
second-order partial derivative of (19) with respect to α,
we can conclude ∂r∗

∂α and ∂2r∗

∂α2 .

∂r∗

∂α
=

r∗

α(c− 1− r∗)
. (39)

∂2r∗

∂α2
= r∗α−2

(c− 1− r∗)2 + r(c− 1)

(r∗ − c+ 1)3
. (40)

According to c > 2 and r∗ ∈ [0, 1], we can easily obtain

∂r∗

∂α
> 0, (41)
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∂2r∗

∂α2
< 0. (42)

Based on (35), (41) and (42),

∂2uCk
∂α2

< 0. (43)

Therefore, the existence of NE in CPG is proved.

5.3 Algorithm to Decide Optimal Strategies

We apply a low-complexity gradient-based searching al-
gorithm to find the optimal strategy of all players, which
is shown in Algorithm 1. The algorithm first inputs the
initial values of discount α ∈ [0, 1] and online probabil-
ity pi ∈ [0, 1]. In each iteration, according to the given
pricing strategy of CSP and the online probability of the
data owner, the data holders calculate their best response
based on (19). The owner’s best response to the sub-game in
Stage II, which is calculated according to (30), also needs to
renew when the optimal strategy of data holders is updated.
Taking the optimal strategies of all followers (i.e., the data
holders and the data owner) into Stage I, the CSP derives its
optimal discount by applying the gradient-based algorithm.
Then the game goes to another iteration and terminates until
‖α[t]−α[t−1]‖

1

‖α[t−1]‖
1

< ε. The optimal strategies of all players are

the strategies gained when the game ends.

Algorithm 1 The algorithm to decide optimal strategies
Input:

α ∈ [0, 1], pi ∈ [0, 1], iteration t ← 1, CSP step size µ,
accuracy threshold ε;

Output:
Optimal strategies of data holders, data owner and CSP:
r∗[t], p∗[t]i and α∗[t];

1: repeat
2: For data holders, they all together decide the dedupli-

cation rate r[t] according to

r[t] − ln r[t]
c−1
← ln c(1− p[t−1]i )b− lnα[t−1]sf ;

3: Data owner oi updates its online probability based on

p
[t]
i ← 1 +

r[t](α[t−1]e−r
[t]

sf +AF )

(r[t] − c+ 1)oc
;

4: CSP k updates its pricing strategy α[t] according to
the gradient assisted searching algorithm:

α[t] ← α[t−1] + µ
∂uCk(r[t], p

[t]
i )

∂α
;

5: t← t+ 1;

6: until
‖α[t]−α[t−1]‖

1

‖α[t−1]‖
1

< ε;

7: r∗[t] ← r[t];
8: p
∗[t]
i ← p

[t]
i ;

9: α∗[t] ← α[t].

Furthermore, when the initialization state is constant,
the output of Algorithm 1 is determined. Therefore, the
execution of Algorithm 1 helps the multi-stage Stackelberg
game converge to a unique stable state.

TABLE 2
Parameter Settings

b = 2 OC = 2 sf = 1
sc = 0.5 c = 3 AF = 3
µ = 0.0001 oc = 2 ε = 0.01

6 EXPERIMENTAL EVALUATION

We implemented the multi-stage Stackelberg game and
evaluated the adoption of H-DEDU in a cloud storage
system with five experiments. Experiment 1 evaluated the
effectiveness of Algorithm 1 in helping the proposed game
model converge to the Stackelberg Equilibrium. Then, we
analyzed whether the step size in Algorithm 1 has signifi-
cant influences on the experimental results in Experiment
2. We investigated the impact of the system parameters
related to CSPs, data owners and data holders in Experi-
ment 3 and Experiment 4, respectively. Experiment 5 was
conducted based on a real-world dataset by employing the
same evaluation metrics as Experiment 1. In this section,
we report the above experimental results. In addition, we
summarize our findings from the experiments and suggest
future work.

6.1 Experimental Settings
This subsection first introduces the real-world dataset used
in our experimental test. Next, it specifies the experimental
settings about players and system parameters. Finally, it
presents our evaluation metrics.

Since the information of data holders and stored data
is confidential, CSPs in the real world rarely disclose such
information to the public. In this article, we applied relevant
real-world data to simulate duplicated cloud data storage.
We employed Debian packages in the section contrib of
Debian Popularity Contest [42] to construct a data storage
system. Debian Popularity Contest is a project that tracks
the usage of the Debian packages, including a list of pack-
ages and the installation times of each package. Different
packages are installed by different numbers of users. Some
packages are installed by several users and some popular
packages are used by tens of thousands of users. This makes
the dataset gained from the Debian packages hold very
similar properties to a practical cloud storage dataset. Thus,
it has been applied by many researchers to simulate cloud
data storage status [7], [20], [26]. Specifically, each Debian
package represents one piece of data and the number of
installation requests can represent the number of data users.
We recorded the status of Debian packages on June 19th,
2018 and formulated a dataset with 434 unique data and
309052 data holders to perform our experiments.

In our experiments, we set one CSP to provide cloud
storage services with H-DEDU for simplification and an-
alyze the acceptance of H-DEDU without considering the
competition among CSPs.

Table 2 shows the default parameter settings in our
experiments. We also varied them individually to evaluate
their effects on the adoption of H-DEDU. Based on the prof-
itability requirement of players in a cloud storage system,
(2) and (8) should be positive. That is,

b > sf > sc (44)
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Fig. 2. The results of Experiment 1

should be satisfied. The access fee AF is set to be larger
than the operation cost oc of the data owner to ensure that
the owner will not decrease its profit by adopting H-DEDU.
Note that the utility of the owner would be negative without
charging the access fee. Hence,

b− sf − oc < 0. (45)

We applied the following evaluation metrics to demon-
strate the performance of our research result: the utility and
strategies of all stakeholders; the number of iterations to
reach the NE state for evaluating the performance of Algo-
rithm 1. In the following figures, the experimental results
of the utility and deduplication rate related to data holders
are shown with (magenta) solid lines (with triangles). The
(blue) dashed lines (with circles) and the (black) dotted
lines (with five-pointed stars) illustrate the utility and online
probability of the data owner as well as the utility and
discount of CSP, respectively. The iteration numbers are
drawn with the (green) stem.

6.2 Experimental Results
6.2.1 Experiment 1
We conducted Experiment 1 to illustrate how Algorithm 1
helps the multi-stage Stackelberg game converge to a stable
state. Experiment 1 evaluates our game model in a simple
scenario: one CSP, one data owner and 100 data holders. The
reason to set 100 data holders is because the holder numbers
of most data in our real-world dataset are within 100.
The CSP publishes its initial discount and the data owner
initializes its online probability and then all the data holders
update their strategies based on Algorithm 1. Specifically, in
order to respond to the strategies of the CSP and the data
owner at iteration t− 1, the data holders calculate their best
response at iteration t according to Line 2 of Algorithm 1.
With the new response r[t] from the data holders, the owner
updates its online probability in accordance with α[t−1] (i.e.,
Line 3 of Algorithm 1). Then, the CSP renews its pricing
strategy α[t] accordingly by applying the gradient-based
algorithm with r[t] and p

[t]
i as input. After that, the dedu-

plication rate is updated and the CSP and the data owner
renew their countermeasures. The experimental results are
plotted in Fig. 2.

Fig. 2d to Fig. 2f show the strategy variations of all play-
ers. The strategies of the owner and the holders fluctuate
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Fig. 3. The influence of step size on the number of iterations

as the iteration goes by. However, the fluctuation ranges
shrink and the curves converge to relatively stable states.
The online probability is increased due to the compensation
made by discounts and access fees. It decreases mainly
because a previous discount is not enough to make up
its operation cost, which meanwhile causes the decline of
deduplication rate in the next iteration. The discount value
witnesses an increasing trend in Fig. 2f. It increases quickly
in the first three iterations, then the increase rate gradually
reduces to 0 and an equilibrium strategy is reached.

Fig. 2a to Fig. 2c show the utilities of all players. Once the
utility of a data user decreases, no matter it is a holder or an
owner, the deduplication rate or online probability becomes
lower in the next iteration. Before reaching the NE, even if
a player obtains a high utility at an iteration, the utilities
of other players are at a lower level compared with those
at the NE. Such a state is not stable since the players with
low utilities have incentives to change their strategies. By
applying the parameter settings in Table 2, the game finally
reaches the NE at the 31st iteration.

6.2.2 Experiment 2
We changed the value of the step size µ and varied it from
0.00005 to 0.0002 in Experiment 2. All the other parameters
in Table 2 except µ were kept the same. The experimental
execution goes exactly the same as that in Experiment 1.
We found that the step size affects the time to reach con-
vergence as shown in Fig. 3. CSP iterates for a long time
in Algorithm 1 to find the best response with a small step
size. Nevertheless, the outputs of the fine-grained search
algorithm based on a gradient with a smaller step size are
theoretically closer to the optimal results.

6.2.3 Experiment 3
We investigated the impact of CSP-related parameters on
the evaluation metrics in this experiment. Besides the vari-
ation of a specified parameter in each sub-experiment, the
other parameters remain the same as in Table 2. The game
procedure has no difference from that in Experiment 1.

We first evaluated the influence of OC by varying it
from 0 to 10 with a step 1. We found that OC only has
an influence on the utility of CSP, which decreases with
OC increase. The calculation of deduplication rate in Al-
gorithm 1 is built on (19), which has no relationship with
OC . Likewise, the online probability calculation is built on
(30) that is also not influenced by OC . Furthermore, OC
does not exist in (3) and (6); therefore, the utilities of all data
users remain stable when OC changes. In addition, even
though the utility function of CSP is directly related to OC ,
the computation of α only depends on the first-order partial
derivative of uCk with respect to α, which is irrelevant
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Fig. 4. The influence of access fee AF

to OC according to (37). All the steps in Algorithm 1 are
indifferent to the value of OC , therefore, OC does not affect
the convergence speed and the number of iterations.

Fig. 4 plots the influence of access fee AF on the evalu-
ation metrics. From Fig. 4a, we observe that the number of
iterations needed to reach NE is around 30 with a slightly
increasing trend when the access fee increases. The reason
of this trend lies in that AF has a negative correlation to
∂uCk

∂α (as shown in (37)), which positively affects the time
to reach the optimal strategy of CSP. Fig. 4d and Fig. 4g
show that when the CSP pays more access fees to the
data owner, the CSP will decrease its discount. However,
this discount reduction shrinks the utility of data holders,
therefore, makes more and more data holders reluctant to
adopt H-DEDU, so that the curves in Fig. 4b and Fig. 4e
are decaying with the increase of AF . A low deduplication
rate reduces data storage frequency; hence, the data owner
degrades its online probability to save its operation cost.
In spite of the proportion of access fee that the owner can
obtain from CSP decreases, the extra access fee and saved
operation cost ensures the non-falling profit of the data
owner, as shown in Fig. 4c.

Additionally, we investigated how the storage-service
fee sf influences the experimental results. As a self-
determined parameter, the CSP can set sf as any value
between its storage cost and the cloud storage benefit of
data users according to (44). In our experiment, we chose
the value of sf from 0.5 to 1.5 with a step 0.1, kept all
the other parameters as the same as those in Table 2. The
experimental results are shown in Fig. 5. Fig. 5a illustrates
that the convergence speed of Algorithm 1 decreases with
the rise of sf . Fig. 5b shows that the increased storage-
service fee reversely influences the utility of data holders.
The increase of the deduplication rate in Fig. 5e relies on an
increasing discount, as plotted in Fig. 5g. It’s worth noting
that the sharp increase of the discount in Fig. 5g is caused
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Fig. 5. The influence of storage-service fee sf

by the shrink of iteration times. The curve in Fig. 5g has
an increasing fashion, which means the CSP can improve
its revenue by raising sf when the market competition
among CSPs is not considered. The response of the data
owner to the increased storage-service fee is to reduce its
online probability to save the operation cost. Fortunately, the
increasing deduplication rate provides it with more access
fees. Therefore, even if the owner needs to pay more storage-
service fees, the reduced operation cost and the increased
access fee guarantee its profitable utility as shown in Fig. 5c.
As the followers, the data holders are the only ones to gain
less profits, shown in Fig. 5b.

6.2.4 Experiment 4
The fourth experiment evaluates the impact of the parame-
ters related to data users on evaluation metrics, as shown in
Fig. 6 to Fig. 9.

We set the number of holders N from 50 to 150 with
a step 10 and remained the other parameter settings in
Experiment 1. Fig. 6a shows the reduction in the number
of iterations needed to reach NE when N increases. Fig. 6b
to Fig. 6d illustrate that the number of data holders poses
a positive impact on the utilities of all players. With more
and more data holders flooding into the CSP, the CSP can
save more and more storage spaces even if with the same
deduplication rate. This allows the CSP to offer a higher
discount to attract more users, as shown in Fig. 6e and
Fig. 6g. Fig. 6f illustrates that the willingness of an owner
to be online decreases with the rise of parameter N .

Let r̄ be the upper limit of the best response of data
holders. According to (33) and c > 2, we have

r∗ < c− 1−
√
c− 1. (46)

Therefore,

r̄ =

{
c− 1−

√
c− 1, c < 5

2 +
√
5
2

1. otherwise
(47)
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Fig. 6. The influence of data holder number N
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Fig. 7. The influence of parameter c

Fig. 7 depicts the evaluation metrics when the value of
parameter c is changed from 2.7 to 3.6, while others were
kept the same as in Experiment 1, where 3.6 is no larger
than 5

2 +
√
5
2 . The number of iterations to reach NE has

little relationship with c and it is around 30, as illustrated
in Fig. 7a. The reason is that the algorithm to calculate the
optimal strategy of CSP is irrelevant to the value of c. The
first-order derivative of (47) is larger than 0; hence, r̄ and
c are positively correlated. The corresponding r∗ increases
when changing c from 2.7 to 3.6. The reason is: the larger the
parameter c, the more confidence the holders have on the
CSP security and they are more likely to accept H-DEDU,
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Fig. 8. The influence of cloud storage benefit b

which is experimentally proved in Fig. 7e. The inherent
incentive in c lowers the required discount to reach NE.
Therefore, a rational CSP cuts down its discount as shown in
Fig. 7g. With a high deduplication rate and a low discount,
the only possible way for the owner to increase its utility is
to maintain its online probability as high as possible. Fig. 7c
and Fig. 7f together demonstrate this fact. Fig. 7b to Fig. 7d
illustrate that all players’ utilities at the NE are raised when
increasing the value of c.

Furthermore, we investigated the impact of cloud stor-
age benefit b by increasing it from 1.5 to 6 and summarized
the results in Fig. 8. The number of iterations to reach NE
fluctuates around 30, as plotted in Fig. 8a. The utilities of all
data users are directly related to b. The data owner obtains
more revenues to compensate its operation costs with the
rise of b; therefore, its online probability is increased with
the increase of b. The expression of f(pi, r)b in (4) shows
that the deduplication rate adversely influences the cloud
storage benefit b of the data holders. Therefore, a rational
data holder decreases the deduplication rate to relieve the
influence for a high profit. Fig. 8b and Fig. 8c verify the
above statements. The value of b has no direct impact on
CSP, but the drop of deduplication rate causes the decrease
of the saved storage costs. Therefore, a rational CSP will
degrade its discount on the storage-service fee to maintain
its profits, as shown in Fig. 8g. Fig. 8b, Fig. 8c together with
Fig. 8d demonstrate that the CSP is the only player whose
utility goes down when the value of b goes up.

At last, we tested how the evaluation metrics are in-
fluenced by the operation cost oc of the data owner and
summarized the results in Fig. 9. Fig. 9a illustrates that
the number of iterations linearly drops with the augment
of oc. Intuitively, a higher operation cost of data owner
means a lower utility, which is proved by Fig. 9c. A direct
strategy to increase the utility of a data owner is to arise
its online probability as shown in Fig. 9f; however, the
expensive operation cost still cannot be totally compensated.
The rise of the online probability motivates the participation
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Fig. 9. The influence of owner operation cost oc

willingness of data holders; therefore, the deduplication rate
grows and the CSP can save more storage spaces as well as
grant more discounts, as shown in Fig. 9e and Fig. 9g. The
utility curves of the data holders and CSP in Fig. 9b and
Fig. 9d demonstrate that the increase of oc has no negative
impact on them and the data owner whose utility is directly
related to the value of the operation cost is the only player
being evidently impacted.

6.2.5 Experiment 5

In Experiment 5, we considered a complicated scenario by
employing the real-world dataset where multiple pieces of
data exist. But, we found a fast convergence problem if
applying the parameter settings in Table 2. The reason is that
the numbers of some data’s holders are much more than 100,
which decreases the number of iterations to reach NE (refer
to Fig. 6a) and negatively affects the accuracy of optimal
strategy calculation based on the result of Experiment 4. To
overcome this problem, we linked the step size µ to the
number of data holders N in Algorithm 1. Concretely, we
modified µ in Algorithm 1 as 0.01/N . The experimental
results were plotted in Fig. 10 by employing the same
evaluation metrics as Experiment 1. We can observe that the
variation trends of all evaluation metrics in Experiment 5
are quite similar to those in Experiment 1 (shown in Fig. 2).
This also provides a strong support on the validity of our
simulation results achieved in Experiment 1-4.

6.3 Insights and Future Work

In this subsection, we summarize insights derived from the
above experimental results and indicate some future work.

The increase of access fee drives a drop of the discounts,
which suppresses the willingness of the data owner to be
online and reduces the participation enthusiasm of data
holders in H-DEDU. Without the competition among CSPs,
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Fig. 10. The results of Experiment 5

a high storage-service fee encourages the rise of the dedu-
plication rate, which implies an increasing acceptance of H-
DEDU. On the other hand, the increase of storage-service
fee encourages the data owner to grant the deduplication
control right to CSP.

When a data belongs to numerous data holders, the CSP
is likely to control deduplication. Data holders prefer to
store popular data at CSPs with H-DEDU and the CSPs can
grant large discount on the popular data. The parameter c
reflects the security confidence of data holders in CSPs. The
larger c is, the more positive influence the deduplication rate
has on a data holder’s utility. A large c also means that the
data holders care little about its data sharing with others.
An insight from this finding is that a CSP can provide a
large discount to privacy-related data for encouraging the
adoption of H-DEDU. When a data user can obtain a large
benefit from cloud storage, no matter it is a holder or a
owner would try to prevent any adverse behavior. Specifi-
cally, an owner will keep online as long as possible to control
its data and the data holders reduce the deduplication rate
to prevent possible malicious behaviors caused by H-DEDU.

Overall, H-DEDU is more likely to be accepted by three
kinds of data users: the ones that hold popular data, the
ones that have high confidence on CSP security, and the
ones that benefit a lot from the convenience of cloud storage
services. We have some suggestions for all players based
on the experimental results. We advise a CSP to set the
access fee that just covers the H-DEDU operation cost of
data owners and build a good reputation to increase the
users’ confidence on its security. We advise data users to
choose a CSP on which they have more confidence and store
popular data at the CSP. A wise choice for the data owner
is to grant the deduplication control right to CSPs when the
storage-service fee is high.

Although our analysis is based on the H-DEDU in [10],
our methodology is applicable to any kinds of hybrid dedu-
plication schemes, where deduplication is controlled by a
data owner when the owner is online or the CSP when the
data owner is offline.

Our analysis is based on the existence of one CSP that
takes absolute control over the economic market. When
multiple CSPs exist in the cloud storage system, they will
determine a low storage-service fee to attract users. Accord-
ing to (7), the storage-service fee must be able to compensate
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for its storage cost. The competition capability of CSPs is
highly related to the storage-service fees set by them. We
indeed investigated the impact of storage-service fee change
on CSP’s profit and subsequently its competition capability.
In the future, we will further consider the scenario with
multiple CSPs that compete with each other in a global
market.

Our discussion is based on homogeneous data holders.
However, a practical market is more complicated than this.
One potential research extension is to take the internal
difference among data holders into consideration.

7 CONCLUSION

In this article, we established the economic model of the
cloud storage system with H-DEDU. Based on the eco-
nomic model, we formulated the multi-stage Stackelberg
game to capture the interactions among data holders, data
owners, and CSPs for the purpose of investigating H-DEDU
adoption and practical deployment conditions. We applied
the backward induction method to discover the sub-game
perfect Nash Equilibrium in each stage of the Stackelberg
game. We further proposed a gradient-based searching algo-
rithm to calculate the near-optimal strategies for all players.
Extensive experimental results illustrated the convergence
of the formulated game to the Stackelberg Equilibrium.
Meanwhile, we also investigated the effects of a number of
system parameters on the utilities and strategies of system
players at the NE state. Through game-theoretical investi-
gation, we found that H-DEDU is intended to be accepted
by the users that hold popular data and have confidence on
CSP security.
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