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Abstract: The thermodynamics of black holes is discussed for the case, when the Newton constant G
is not a constant, but it is the thermodynamic variable. This gives for the first law of the Schwarzschild
black hole thermodynamics: dSBH = −AdK + dM

TBH
, where the gravitational coupling K = 1/4G, M is

the black hole mass, A is the area of horizon, and TBH is Hawking temperature. From this first law,
it follows that the dimensionless quantity M2/K is the adiabatic invariant, which, in principle, can
be quantized if to follow the Bekenstein conjecture. From the Euclidean action for the black hole it
follows that K and A serve as dynamically conjugate variables. Using the Painleve–Gullstrand metric,
which in condensed matter is known as acoustic metric, we calculate the quantum tunneling from
the black hole to the white hole. The obtained tunneling exponent suggests that the temperature and
entropy of the white hole are negative.

Keywords: black hole; white hole; quantum tunneling; negative entropy

1. Introduction

Bekenstein [1] proposed that the horizon area A is an adiabatic invariant and, thus, can be
quantized according to the Ehrenfest principle that classical adiabatic invariants may correspond to
observables with discrete spectrum. Here, we consider the black hole thermodynamics in case when
the gravitational coupling K is the variable thermodynamic quantity. The variable K modifies the
first law of the black hole thermodynamics and leads to the alternative adiabatic invariant, which is
dimensionless and, thus, in principle, can be quantized.

On the quantum level, the gravitational coupling K becomes the variable, which is dynamically
conjugate to the black hole area A. This allows us to study the black hole to white hole transition while
using the semiclassical description of the quantum tunneling and considering the trajectory in the
(K, A) phase space, which connects the black and white holes. We also consider the temperature and
entropy of the white hole, which is formed from the black hole by quantum tunneling and find that
both the temperature and entropy of the white hole are negative.

2. Modified First Law of Black Hole Thermodynamics

The Einstein–Hilbert gravitational action is

Sgrav =
1

4π

∫
d3xdt

√
−gKR , (1)

whereR is the scalar curvature, and we choose the gravitational coupling K = 1/(4G) = 1/(4l2
Planck).

In the modified gravity theories, such as the scalar-tensor and f (R) theories (see e.g., [2] and the latest
paper [3] with references therein), the effective Newton “constant” G can be space-time dependent
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and, thus, is not fundamental. Additionally, it was suggested that there is connection between the
gravitational coupling K and the fine structure constant, see Refs. [4–10]. In the chiral superfluid 3He-A
the coupling K in the effective gravity is determined by physics on microscopic (atomic) level [11],
and it depends on coordinates and temperature.

Here, we assume that the variables, which enter the Einstein action—the scalar Riemann curvature
R and the gravitational coupling constant K—are the local thermodynamic variables, which are similar
to temperature, pressure, chemical potential, number density, etc. The Riemann curvature as the
covariant quantity may serve as one of the thermodynamical characteristics of the macroscopic
matter [12]. If so, the gravitational coupling constant K in front of the scalar curvature in Einstein
action also becomes the thermodynamic quantity, see Ref. [13]. The application of this thermodynamics
to the global object, such as black hole, suggests that the variable K (actually its asymptotic value at
infinity) should enter the thermodynamic laws for the black hole. The corresponding thermodynamical
conjugate to the global K is obtained by the volume integral of the Riemann curvature.

In terms of this coupling K, the Hawking temperature of Schwarzschild black hole and its
Bekenstein entropy are:

TBH =
K

2πM
, SBH =

πM2

K
. (2)

Then, using the black hole area A = πM2/K2, the gravitational coupling K = 1/4G, the Hawking
temperature TBH = M/2AK = K/2πM, and the black hole entropy SBH = AK, one obtains:

dSBH = d(AK) = πd(M2/K) =

= −π
M2

K2 dK + 2π
M
K

dM . (3)

This suggests the following modification of the first law of black hole thermodynamics in case if
K is a thermodynamic variable:

dSBH = −AdK +
dM
TBH

. (4)

This modification is similar to the modification in terms of the moduli fields [14]. However, in our
case, the thermodynamic variable, which is conjugate to the thermodynamic variable K, is the product
of the black hole area and the black hole temperature, ATBH. On the other hand, in dynamics, K and A
are canonically conjugate, see Section 4.

In general, the variable K is local and depends on space coordinate, but in the same way as for the
moduli fields [14] the black hole thermodynamics is determined by the asymptotic value of K at spatial
infinity. In Equation (4), K ≡ K(∞) is the global quantity, which characterizes the quantum vacuum in
full equilibrium, i.e., far from the black hole. The variable K allows for us to study the transition to the
vacuum without gravity, i.e., to the vacuum where K → ∞ and, thus, G → 0, see Section 4.

3. Adiabatic Change of K and Adiabatic Invariant

Let us change K and M adiabatically, i.e., at constant entropy. Then the equation dSBH = 0 gives

dM
dK

= ATBH =
M
2K

. (5)

This shows that M2/K = const is the adiabatic invariant for the spherical neutral black hole and,
thus, according to the Bekenstein conjecture [1], it can be quantized in quantum mechanics:

M2

K
= aN . (6)
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Here, N is integer, and a is some fundamental dimensionless parameter of order unity. If this
conjecture is correct, for the entropy of Schwartzschild black hole one has

SBH(N) = π
M2

K
= πaN . (7)

The Bekenstein idea on the role of adiabatic invariants in quantization of the black hole requires
further consideration, see some approaches to that in Refs. [15–20]. In particular, the similarity between
the energy levels of Schwarzschild black hole and the hydrogen atom has been suggested [21,22].
We leave this problem for the future. This consideration should be supported by microscopic theory,
see e.g., [23]. The so-called q-theory can be exploited, which allows us to consider dark energy, dark
matter, black holes, and the varying gravitational coupling in the frame of the same effective theory of
the quantum vacuum [13,24,25].

4. A and K as Canonically Conjugate Variables and Black-Hole—White-Hole Quantum Tunneling

Till now, we discussed the black hole thermodynamics, where the adiabatic invariant M2/K arises.
Now, we move to the dynamics of black hole, and apply the varying K approach to the consideration
of the quantum tunneling of the black hole to white hole. The quantum tunneling can be considered
in a semiclassical approximation in the same manner as Hawking radiation is discussed in terms of
semiclassical quantum tunneling [26–29]. For 3He-A, the Hawking radiation in terms of quantum
tunneling was considered in Ref. [30].

The quantum mechanical treatment of the black hole can be obtained, if one finds the relevant
canonically conjugate variables describing the black hole dynamics. Such an approach has been
suggested in Ref. [31], where the canonically conjugate variables have been determined in the Euclidean
time. Because, in Euclidean time, the action for the black hole is equal to its entropy, IE = SBH,
in the theory with varying gravitational coupling K, the proper canonically conjugate variables are
the gravitational coupling K and the black hole area A. This allows us to consider the quantum
mechanical tunneling from the black hole to the white hole, which was discussed in Refs. [32–40] and
references therein.

The process of quantum tunneling of macroscopic objects is well known in condensed matter
physics, where the collective variables are used, which describe the collective dynamics of a
macroscopic body [41,42]. In particular, in the quantum tunneling creation of quantized vortices
in superfluids [43] and superconductors [44], the dynamically conjugate variables are the area of
the vortex ring and its coordinate along the normal to the ring. This approach provides the correct
semiclassical tunneling exponent without consideration of the details of the structure of the object on
the microscopic level. In the same manner, it looks reasonable that, in case of tunneling from the black
hole to the white hole, described by the collective variables K and A, the microscopic processes are not
important. Note the difference from consideration in Section 3, where K varies in the adiabatic regime,
i.e., at fixed entropy SBH, while the area A, temperature TBH, and mass M follow the variation of K.
In the dynamic regime, which is relevant for the description of quantum tunnelling, the parameter K
varies at fixed energy (mass M), while the area A, the temperature TBH, and entropy SBH follow the
variation of K.

In the case of Hawking radiation, the tunneling of particle from inside to outside the horizon is
obtained by evaluating the action of the particle [26,28,30,45,46]. The tunneling rate is determined
by imaginary part of the action and can be obtained while using the path in the complex plane.
The calculation of the tunneling exponent demonstrates that it is proportional to the change of the
black hole entropy after radiation of a particle, p ∝ e∆SBH , see Refs. [26,45,46]. The same result can also
be obtained using the conjugate variables K and A in the Euclidean action, and the path

∫
A(K)dK at

fixed M with real K. The direct connection between the Hawking radiation and black hole tunneling
will be discussed in Section 5.
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As in the case of the semiclassical consideration of the Hawking radiation in terms of the quantum
tunneling [26,28,30], we shall use the Painleve–Gullstrand coordinate system [47,48] with the metric:

ds2 = −dt2(1− v2)− 2dt dr · v + dr2 . (8)

Here, the vector vi(r) = g0i(r) is the velocity of the free-falling observer, which crosses the horizon.
In condensed matter the analog of this metric is the so-called acoustic metric [49]. In superfluids,
the velocity vi is played by superfluid velocity. The analogs of the black hole and white hole horizons
described by this metric can be also reproduced in the Dirac and Weyl topological semimetals, where
the horizon takes place on the boundary between different types of Dirac or Weyl materials [50–53].

For the Schwartzschild black hole, one has

v(r) = ∓r̂
√

rH

r
= ∓r̂

√
M

2rK
, (9)

where rH is the radius of the horizon; the minus sign corresponds to the black hole and the plus sign
describes the white hole [32]. Note that, in the theory with the variable gravitational coupling, the sign
changes at the singularity K = ∞ (or at G = 0), when the black hole shrinks to a point and then
expands as a white hole. In terms of variable K, the point K = ∞ serves as the branch point, where the
velocity of the freely falling observer changes sign.

It is important that the vector v, which is normal to the surface of the horizon, is the velocity
of the free falling observer, who crosses the horizon. For the observer, who crosses the black hole
horizon from outside, and for the observer, who crosses the white hole horizon from inside, these two
directions are opposite. For these two observers the area of the horizons has different sign. This means
that, at the branch point of the trajectory, the horizon area A changes sign: it crosses zero at K = ∞ and
becomes negative on the white-hole side of the process, A→ −A. This could also mean that, due to
connection between the area and entropy, the white hole may have negative entropy, which we discuss
in Section 5.

The quantum tunneling exponent is usually determined by the imaginary part of the action on
the trajectory, which transforms the black hole to white hole. In terms of Euclidean action, one has:

p ∝ exp (−IBH→WH) , IBH→WH =
∫

C
A(K′)dK′ . (10)

Here, the semiclassical trajectory C is at M = const, and thus A(K′) = ±πM2/(K′)2. Along this
trajectory the variable K′ changes from K to the branch point at K′ = ∞, and then from K′ = ∞ to
K′ = K along the other branch, where the area A(K′) < 0. The integral gives the tunneling exponent
of the transition to the white hole

IBH→WH = 2πM2
∫ ∞

K

dK′

K′2
= 2π

M2

K
, (11)

and the transition probability is:

p ∝ exp
(
−2πM2/K

)
= exp (−2SBH) . (12)

5. White Hole Entropy and Temperature

The result (12) can be also obtained using the Hawking radiation from the black hole, where the
tunneling exponent is proportional to e∆SBH , see Refs. [26,45,46]. Let us consider the process, in which
the particle escapes the black hole by quantum tunneling and then it tunnels to the white hole through
the white hole horizon. This process occurs at the fixed total mass M. The tunneling exponent for this
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process to occur is e(∆SBH+∆SWH). The summation of all the processes of the tunneling of matter from
the black hole to the formed white hole finally gives Equation (12):

p ∝ e∑(∆SBH+∆SWH) = e2 ∑ ∆SBH = exp (−2SBH) . (13)

Here, we took into account the (anti)symmetry in the dynamics of black and white holes in the process
of quantum tunneling, ∑ ∆SBH = ∑ ∆SWH.

As in the case of quantum tunneling in the Hawking radiation process, the probability in
Equation (12) has the thermodynamic meaning as thermodynamic fluctuation e∆S [54]. In our
case, the total change of the entropy in the process of the tunneling from black to white hole is
∆S = SWH − SBH. According to Equation (13), this change is equal to −2SBH. As a result, one obtains
that the entropy of the white hole is equal with the opposite sign to the entropy of the black hole with
the same mass

SWH(M) = −SBH(M) . (14)

This means that the white hole, which is obtained by quantum tunneling from the black hole and, thus,
has the same mass M as the black hole, has the negative temperature TWH = −TBH and the negative
area AWH = −ABH, which together produce the negative entropy SWH = −SBH.

The negative temperature is a well defined quantity in condensed matter. It typically takes place
in the subsystem of nuclear spins, where the energy is restricted from above. Different thermodynamic
phase transitions occurring at T < 0 have been experimentally observed in magnetic systems, see
e.g., Ref. [55]. The negative temperature states are unstable both before and after the magnetic phase
transition. In principle, the state with T < 0 is hotter than the state T > 0, since the heat flows from
the negative- to the positive-temperature system. If the black hole and white hole are in some contact,
then the heat will escape from the white hole and be absorbed by the black hole.

The transition from positive to negative T occurs on the path A(K)dK via the point K = ∞, where
T(K) = ∞. The transition via infinite temperature is the analytic route to the thermodynamically
unstable states with negative T, see e.g., Refs. [56,57], where the transition to anti-spacetime [58–60]
has been considered. In spin systems, the T < 0 state is typically obtained by reversing the magnetic
field, which looks like crossing T = 0.

In the black hole physics, the negative temperature has been discussed for the inner horizon of the
Kerr and charged black holes, see Ref. [61] and the references therein. The entropy of the inner horizon
has been considered as positive. However, the arguments in Ref. [61] do not exclude the possibility
of the opposite situation, when the temperature of the inner horizon is positive, while the entropy is
negative: the equation T+S+ + T−S− = 0 remains valid.

The discussed transition from the black hole to the white hole with the same mass M is not the
thermodynamic transition. It is the quantum process of tunneling between the two quantum states.
It is one of many routes of the black hole evaporation, including the formation of small white hole on
the late stage of the decay [32–40]. The uniqueness of this route together with hidden information and
(anti)symmetry between the black and white holes, is the possible origin of the negative entropy of the
white hole.

6. Discussion

We considered the dynamics and thermodynamics of the black hole in the case of the varying
gravitational coupling K. The gravitational coupling K serves as the thermodynamic variable, which is
thermodynamic conjugate to ABHTBH, where ABH and TBH are correspondingly the area of the black
hole horizon and Hawking temperature. The corresponding first law of the black hole is modified,
see Equation (4). The corresponding adiabatic invariant is the entropy SBH = KABH, and it is this
invariant that should be quantized, if the Bekenstein conjecture is correct. This is in agreement with
observation of Ted Jacobson [62], that it is the entropy that does not change under renormalization of
K, rather than the area. This suggests the alternative quantization scheme for the black hole. While K
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and ABH are dimensionful and cannot be quantized, the entropy is dimensionless and, thus, can be
quantized in terms of some fundamental numbers.

On the quantum level, the dynamically conjugate variables of the black hole physics are K and ABH.
This allows us to consider the transition from the black hole to the white hole as quantum tunneling in
the semiclassical approximation, which is valid when the action is large. The classical trajectory of the
black hole crosses the branch point at K = ∞, and then continues along the other branch, where the
area A(K) < 0, which corresponds to the white hole. The obtained tunneling exponent exp(−2SBH)

demonstrates that the transition can be considered as thermodynamic fluctuation, if the entropy of
the white hole (with the same mass M as the black hole) is negative, SWH = −SBH. The latter also
suggests that this white hole has negative temperature TWH = −TBH.
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