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1  | INTRODUC TION

Physical activity is one of the most basic human functions and a 
significant basis of health. The World Health Organization (WHO)1 
recommends that adults, including older adults, undertake at least 
2.5 hours of moderately intense aerobic activity per week. With an 
increasing number of sports enthusiasts worldwide, the number of 
indoor sports facilities and the number of workers in those facili-
ties have also increased dramatically in the past decades. However, 
unlike residential areas and other types of public spaces, such as 

schools and offices, there is relatively little published research about 
air quality and exposure to different pollutants in various indoor 
sports facilities,2,3 where a growing number of people exercise, work 
full or part time, or attend athletic events.4,5

Although many studies of athletes' exposure to ambient air 
contaminants have been published,6-10 little work is known about 
the exposure to air pollutants in different indoor sports facilities. 
Available publications have been focused on ice arenas, with the 
most investigated pollutants being carbon monoxide (CO), nitrogen 
dioxide (NO2), and particulate matter (PM10 and PM2.5, referring to 
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Abstract
The aim of this review was to investigate human exposure to relevant indoor air con-
taminants, predictors affecting the levels, and the means to reduce the harmful expo-
sure in indoor sports facilities. Our study revealed that the contaminants of primary 
concern are the following: particulate matter in indoor climbing, golf, and horse rid-
ing facilities; carbon dioxide and particulate matter in fitness centers, gymnasiums, 
and sports halls; Staphylococci on gymnasium surfaces; nitrogen dioxide and carbon 
monoxide in ice hockey arenas; carbon monoxide, nitrogen oxide(s), and particulate 
matter in motor sports arenas; and disinfection by-products in indoor chlorinated 
swimming pools. Means to reduce human exposure to indoor contaminants include 
the following: adequate mechanical ventilation with filters, suitable cleaning prac-
tices, a limited number of occupants in fitness centers and gymnasiums, the use of 
electric resurfacers instead of the engine powered resurfacers in ice hockey arenas, 
carefully regulated chlorine and temperature levels in indoor swimming pools, prop-
erly ventilated pools, and good personal hygiene. Because of the large number of 
susceptible people in these facilities, as well as all active people having an increased 
respiratory rate and airflow velocity, strict air quality requirements in indoor sports 
facilities should be maintained.
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particulate matter with an aerodynamic diameter of <10 µm and 
<2.5 µm, respectively) emitted by the ice resurfacers,3,11,12 and in-
door swimming pools, with a focus on high concentrations of dis-
infection by-products (DBPs) (eg, trihalomethanes (THMs)).13,14 In 
addition to these pollutants, also for example, ultrafine particles 
(UFPs), volatile organic compounds (VOCs), aldehydes (eg, formalde-
hyde (HCHO)), ozone (O3), and bioparticles (fungi and bacteria)) could 
be cause for health effects in some sports facilities. Besides, im-
portant comfort parameters—temperature (T) and relative humidity 
(RH)—may affect for example material emissions15-17 and occupant's 
perception of the indoor air quality (IAQ)18 and should be taken into 
account when evaluating exposure issues in sports facilities.

The general outdoor and indoor sources as well as parameters 
affecting the concentrations of all those contaminants are already 
well known (see eg, references for: CO,19,20 NO2,20-23 PM,24-28 
UFP,29-35 VOC,36-41 HCHO,20 O3,21,42 bioparticles 43). There are also 
many international reports by WHO20,21,44 as well as epidemiologi-
cal and other studies summarizing and showing a scientific evidence 
of several possible health effects of those contaminants (see eg, 
references for CO,20,44 NO2,20,45-49 PM,28,50,51 UFP,52,53 DBP,35,54-

57 VOC,36-40,58 HCHO,20,35,59 O3,42,60,61 bioparticles43,44,62-64). 
However, the knowledge of the exposure to these pollutants in dif-
ferent sports facilities is very scattered and limited.

Like other indoor places, IAQ in indoor sports facilities is af-
fected by the type of ventilation, building materials, and building 
maintenance,65-68 but what makes indoor sports facilities different 
is the higher human occupancy and the type of activity taking place 
inside.68 In addition, unlike other indoor areas, many different plastic 
and rubber materials (mats, exercise equipment, cushions, etc) are 
used in indoor sports facilities, and there is a lack of knowledge about 
their effects on IAQ and human health. Besides, cleaning products 
used in sports facilities and personal hygiene products can increase 
exposure to chemicals and influence the microbiome of the space 
(eg, favoring the presence of pathogenic microbes).69-71 Indoor exer-
cise facilities may be located in buildings not originally designed as 
sports facilities; thus, the dimensioning of ventilation relative to the 
activity in the facility may be insufficient. Chemical emissions from 
materials used in indoor sports facilities as well as the amount and 
quality of chemicals used will be further emphasized in the future 
through the Energy Performance of Building Directive 2010/31/
EU (EPBD).72 The directive requires energy savings for ventilation, 
which can increase the level of indoor air pollution (eg, chemical and 
particulate contaminants).

In contrast to working environments and ambient air, legally bind-
ing regulations as well as other guidelines are only partially estab-
lished for indoor pollutants20,21,73,74 (see Table S1 in the Supporting 
Information (SI)), and those proposed regulations and guidelines do 
not take into account specific actual exposure and risk during sport 
activities. Professional athletes and amateurs can be at special risk 
when they are exercising in polluted environments because 1) their 
respiratory rate increases proportionally to the quantity of inhaled 
pollutants; 2) the increased airflow velocity carries gaseous pol-
lutants deeper into the respiratory tract; and 3) most of the air is 

inhaled through the mouth, bypassing the normal nasal filtration of 
large particles.3,6,68,75

Due to that the most important international comfort standards, 
ASHRAE 55 (given by the American Society of Heating, Refrigerating 
and Air Conditioning Engineers (ASHRAE))76 and ISO 7730 (given by 
the International Standards Organization (ISO))77 are mainly applica-
ble to sedentary activity, such as office work. Own comfort recom-
mendations for T and RH in sport facilities are needed and recently 
proposed by the American College of Sports Medicine (ACSM) and 
the International Fitness Association (IFA) (see Table S1 in the SI).

The aim of this study is to collect and summarize information on 
the exposure to relevant indoor air contaminants in different types 
of sports facilities, predictors affecting the occurrence and concen-
trations of those contaminants, and the means to reduce harmful 
exposure to air contaminants in sports facilities.

To make the results more comparable, we converted all carbon 
monoxide (CO) and carbon dioxide (CO2) values reported in mg/m3 
to ppm (part per million) by using the conversion calculator (avail-
able at https://www.cdc.gov/niosh/ docs/2004-101/calc.html). The 
conversion equation is based on 25°C and 101,325 Pa: X ppm = (Y 
mg/m3)∙(24.45)/(molecular weight) or Y mg/m3 = (X ppm)∙(molecular 
weight)/24.45.78

2  | MATERIAL AND METHODS

2.1 | Search strategy and eligibility criteria

Web of Science, SCOPUS, Google Scholar, and PubMed were pri-
marily used to search for literature published between 1999 and 
2020. Other electronic databases available from Aalto University 
and Queensland University of Technology were also consulted. 
The literature search was conducted from October 2019 to May 
2020. Altogether, different combinations of 76 search terms were 
used (see Table S2 in the Supporting Information (SI)). The search 
strategy included combinations of at least four terms simultane-
ously, and each combination included at least two of the follow-
ing terms each time: indoor air, sports facilities, environment, 

Practical Implications

• Elevated levels of CO2, PM10, and PM2.5 cause problems 
in fitness centers, gymnasiums, and sports halls.

• Exposure to CO and NO2 is the main problem in ice skat-
ing arenas.

• Exposure to disinfection by–products (DBPs) such as 
CHCl3 and NCl3 is the main concern for indoor swim-
ming pools.

• Air temperature and humidity should be in the thermal 
comfort range.

• Air quality guidelines are required for DBPs.

https://www.cdc.gov/niosh/docs/2004-101/calc.html
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exposure, physical exercise, and concentration. Quotation marks 
were used between search terms. Original peer-reviewed scien-
tific journal articles, literature reviews, and conference articles 
(full papers) were included. The search was then extended to the 
reference lists of relevant articles, based on their abstract and/or 
full text. The decision to examine certain articles in more detail 
was based on the article titles. From the more than 400 publica-
tions identified in the initial search, 288 were selected for inclu-
sion in the analysis. All publications reporting indoor air quality 
(IAQ) in different indoor sports facilities, the measured IAQ pa-
rameters, and information on the location of the studied facility 
(city and country) are listed in Table S3 in the SI.

2.2 | Definition of the different type of facilities

We classified the publications about different indoor sports facili-
ties into nine categories: fitness centers, gymnasiums, ice hockey/ice 
skating arenas, indoor climbing facilities, indoor golf courses, indoor 
horse riding arenas, indoor motorsport arenas, indoor swimming 
pools, and sports halls.

Fitness centers have specific characteristics, such as types of 
occupants and activities, layout, equipment, daily patterns of use, 
and even frequent operation compared to other types of sports en-
vironments, like school or university gymnasiums and competitive 
sports arenas.79,80 The term “fitness” identifies a range of activities 
conducted every day in fitness centers or gymnasiums, and these 
activities can be grouped into resistance training activities, group 
fitness activities, and functional fitness activities.81 Typical spaces 
in a fitness center are classrooms (eg, for indoor cycling), studios (eg, 
for yoga and pilates), and gymnasiums (eg, for strength training).82 A 
gymnasium is a large room with equipment for exercising the body 
and increasing strength.83 A “gymnasium” is the same as a “gym” 
and it is equipped with bars, weights, ropes, climbing walls, etc, for 
physical training.84 Gymnasiums in our study are mainly school or 
university gymnasiums. An ice hockey/ice skating arena is a hall with 
an ice rink. An ice rink (or ice skating rink) is a frozen body of water 
and/or hardened chemicals where people can ice skate or play win-
ter sports. Arena's uses include ice skating, ice hockey, bandy, rink 
bandy, ringette, broomball, speed skating, figure skating, ice stock 
sport, and curling as well as exhibitions, contests, and ice shows. The 
rinks are mechanically frozen or artificial, where a coolant produces 
cold temperatures in the surface below the water, causing the water 
to freeze.85 Indoor climbing facilities are for sport climbers who train 
and compete on an artificial climbing wall with safety points for 
hanging ropes or on a boulder wall. Indoor golf courses provide a vir-
tual golf experience. Indoor horse riding arenas are buildings that are 
specially designed for equestrian sport with or without spectators. 
The floor of the arena usually consists of mixtures of different par-
ticulate materials. Indoor motorsport arenas, also known as kart facil-
ities, are small racetracks with asphalt surfaces for the amateur and 
leisure sector. Motorsport events, like monster truck competitions, 
tractor pulls, motorcycle stunt shows, and races, are often presented 

in multipurpose arenas with capacities of 10,000-25,000 people. 
Usually, the engines of the vehicles are modified to achieve high 
power. Monster trucks, for example, run on methanol. They must 
pass a technical inspection before each show, but there is almost 
no public information about the composition of the exhaust gas.86 
A swimming pool is an artificial area of water for swimming87 and 
indoor swimming pools are located inside, under a roof and insulated 
by at least three walls.88 Indoor pools are built for the purpose of 
year-round swimming or training, and they are common in all climate 
types. A sports hall is a building or part of a building in which sports 
are played.89 It offers spaces for example for basketball, badminton, 
volleyball running, long-jumping, and high-jumping. Different com-
petition events are often organized in sports halls.

3  | RESULTS AND DISCUSSION

This section begins with a general treatise on the performance-
dependent formation of carbon dioxide in exhaled human breath 
(Subsection 3.1). Exhaled CO2 potentially affects all sports facilities 
and may result in elevated indoor levels of the gas. In Subsection 3.2, 
the different sports facilities are discussed separately with regard to 
the respective pollutants and possible exposure. All relevant refer-
ences are summarized in Table S3 in the SI.

3.1 | Carbon dioxide in exhaled human breath

Depending on their physical condition and their level of activity, hu-
mans exhale more or less carbon dioxide. The problem of high lev-
els of carbon dioxide indoors is well known in school classrooms90 
where respective guidelines73 are often exceeded within a short 
period of time. A similar situation arises in workout rooms, where a 
large number of people exercise. In exercise physiology, the meta-
bolic equivalent rate M (unit MET) corresponds to the consumption 
of 3.5 ml of oxygen per kg of body mass per minute. McArdle et al91 
provide a five-level classification of physical activity ranging from 1.6 
to 3.9 MET (light) to >10 MET (unduly heavy) for men and from 1.2 to 
2.7 MET (light) to >7.6 MET (unduly heavy) for women. Another im-
portant parameter is the basal metabolic rate (BMR), which defines 
the required energy to keep a body functioning at rest. According to 
Schofield,92 the BMR is 7.25 MJ/day for a 75 kg 30- to 60-year-old 
male and 5.58 MJ/day for a 60 kg 30- to 60-year-old female. For 
calculating the carbon dioxide exhalation rate V̇CO2

 (l/s) from M and 
BMR, Persily and de Jonge93 derived Equation (1). 

The respiratory quotient (RQ), which often equals 0.85, defines the 
ratio of the volumetric rate at which carbon dioxide is produced to the 
rate at which oxygen is consumed. T is the temperature (K) and p is 
the air pressure (kPa). For a 75-kg male (RQ = 0.85, M = 6 MET, BMR 

(1)V̇CO2
=RQ ⋅BMR ⋅M ⋅

T

p
⋅0.000211
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= 7.25 MJ/day, T = 293 K, p = 101.3 kPa) a value of V̇CO2
 = 0.0225 l/s 

(81 l/hour) is obtained (see Persily and de Jonge93 for more BMRs of 
males and females). Alternatively, V̇CO2

 can be calculated from the al-
veolar minute ventilation (AMV) and the carbon dioxide concentration 
in the exhaled breath, which is 3-4%.91 In the range between 0 Watt 
(W) and 200 W, Hollmann94 found a linear relationship between the 
exercising power and AMV.

3.2 | Exposure to indoor air contaminants in 
different sports facilities

Reported indoor air parameters in different sports environments 
from published studies are summarized in Table 1. More detailed 
information about the studies is available in Table S3 in SI. In the fol-
lowing subsections, each type of facility is discussed in detail.

3.2.1 | Fitness centers

We found sixteen studies reporting the indoor air quality parame-
ters in fitness centers. The most often studied parameters were par-
ticles (62% of the studies), CO2 (31% of the studies), and temperature 
(31% of the studies). Concentrations of PM10 and respirable dust in 
fitness centers as well as other sports environments are presented 
in Figure 1.

In fitness centers, the levels of particles were highly influenced 
by the level of occupancy, the type (intense) of indoor activity, and 
the type of ventilation.68,95 The highest particulate matter concen-
trations exceeding mean target values for the 24 hours (50 μg/m3 
for PM10 and 25 μg/m3 for PM2.5)74 and for the annual mean (40 µg/
m3 for PM10 and 25 µg/m3 for PM2.5)28 were found especially during 
classes with elevated numbers of occupants, revealing a relation be-
tween PM concentration and the resuspension of dust caused by the 
physical activity practitioners.68

Concentrations of PM10 and PM2.5 were much lower in the 
centers with mechanical ventilation, including filtration of outdoor 
air, than those with natural ventilation via open windows.79,96 For 
example, Slezakova et al79 found that fitness centers with natural 
ventilation exhibited two times higher PM, with PM1 accounting for 
93-96% of PM4, and twice to three times higher than the median 
concentration of ultrafine particles (UFPs) at fitness centers without 
controlled ventilation systems. Those facilities with natural ventila-
tion (windows open often) that were also situated directly on the 
street with windows facing busy roads had indoor PM levels that 
may have resulted from infiltrations of ambient emissions. Almeida 
et al95 reported a PM10 average concentration of 15 ± 15 µg/m3 in 
fitness centers having mechanical ventilation and filtration of air be-
fore supplied in the building.

Slezakova et al79 reported that maxima of PM temporal varia-
tions were typically higher in rooms or studios for group classes than 
in large workout areas (a joint space with free weights, bodybuild-
ing machines, and cardiovascular equipment) and occurred during 

TA B L E  1   Reported indoor air parameters in different sports 
environments

Sports environment/facility Reported indoor air parameters

Fitness centers Particulate matter (TSP, 
PM0.3-PM10)

Ultrafine particles (UFPs)

Chemical composition of 
particles

TVOC, VVOCs, and VOCs

CO, CO2, NO2, O3

Microbial contaminations

Climatic parameters (T, RH, 
AER)

Gymnasiums Particulate matter (PM1-PM10)

Ultrafine particles

Elemental concentrations

Black carbon

TVOC, VOCs

Microbial contaminations

Climatic parameters (T, RH, 
AER)

Ice hockey/ice skating arenas Particulate matter (PM1-PM10)

Microbial contaminations

CO, CO2, NO, NO2, SO2

Climatic parameters (T, RH, 
AER)

Indoor climbing facilities Particulate matter (PM1-PM10)

Particle number concentration

MgCO3 from chalk dust

NO

Indoor golf courses Particulate matter (PM10)

Asbestos

CO, CO2, NO2, O3, Rn

TVOC

Microbial contaminations

Indoor horse riding arenas Particulate matter (PM1-PM20)

Endotoxins

Indoor motorsport arenas Particulate matter (TSP, PM2.5, 
PM10)

VOCs

CO, CO2, NOx

Indoor swimming pools VVOCs and VOCs (especially 
halogenated compounds)

Elemental halogens

Endotoxins

Microbial contaminations

Climatic parameters (T, RH)

(Continues)
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high-intensity cardio activities. The highest maximum PM1 was 
noted during a cycling class. Ramos et al75 found that estimated in-
haled doses of PM10 were higher in aerobics classes than in holistic 
classes (classes focusing on relaxation, reducing tension and breath-
ing techniques, such pilates, yoga, and tai chi). PM10 concentrations 
in aerobics classes were, on average, two times higher than in ho-
listic classes. Almeida et al95 demonstrated that in aerobic classes, 
the alveolar minute ventilation increased and, consequently, levels 
of inhaled chemical elements were higher during this activity then 
in holistic classes. Slezakova et al79 concluded that cardio activities 
(more demanding classes) caused ~2 higher inhalation doses, being 
20% higher for females, than other types of activity.

Cleaning can also affect the PM10 concentrations.68,97 For exam-
ple, in a study by Ramos et al,68 increased PM10 levels by six to eight 
times were monitored for floor cleaning activities. In some cases, 
increased median PM concentrations were found during non-occu-
pied periods (during the night when empty).96 That finding could be 
explained by the formation of new aerosols caused by oxidation of 
volatile organic compounds98 emitted from late-afternoon cleaning 
or the effect of outdoor emissions accumulating due to the motion-
less conditions preventing mixing.99

Slezakova et al96 monitored higher (by two times) indoor con-
centrations of ultrafine particles during occupied periods with larger 
temporal variations noted in general fitness areas than in classrooms 
and studios.96 They also found that women exhibited 1.2 times 
higher UFPs intake than men, suggesting the need for gender-spe-
cific studies about UFP exposure in indoor sports environments. 
This finding was possible due to larger limitation of expiratory 
flow in female subjects and increased efforts to breath during in-
tense physical exercise. Occupants in indoor sports facilities may be 

exposed to wet or dry aerosols (eg, metal and oxide nanoparticles) 
from nano-enhanced products, such as health and fitness products, 
which are likely to lead to inhalation exposure.100 Those nanoparti-
cles interact with other components, such as semi-volatile organic 
compounds (SVOCs), in indoor air,33 possibly causing mixed aggre-
gates exposure.100

Especially in fitness centers, elevated human occupancy pro-
motes the increase of CO2 concentrations. People are the dominant 
source of indoor CO2, and its production rate depends primar-
ily on the number of people in the room and on their metabolic 
level68,75,101 (see Section 3.1). Ramos et al75 found that in fitness 
centers, CO2 was the gas most inhaled by physical exercise practi-
tioners, and even high concentrations of CO2 during physical exer-
cise did not affect psychomotor performance. Ramos et al68,75 also 
concluded that in a fitness center, the type of activity and physical 
intensity determined the CO2 concentration; the CO2 concentration 
was lower in a yoga class compared to a high-energy fitness class 
(body attack). The high levels of CO2 concentrations indicated in-
sufficient ventilation in those spaces. Slezakova et al79 reported that 
CO2 levels correlated well with relative humidity (rs 0.534-0.625) 
and occupancy due to human exhalation and perspiration during ex-
ercising. They also found that the concentration of CO2 was higher 
typically during periods of high frequent occupancy around midday 
(at ~12:00-13:00) and in early evening hours (at ~20:00-21:00). The 

Sports environment/facility Reported indoor air parameters

Sports halls Particulate matter (PM2.5, PM10)

Black carbon

CO, CO2, NO, NO2, SO2, O3

Microbial contaminations

Climatic parameters (T, RH, 
AER)

Abbreviations: AER, air exchange rate; CO, carbon monoxide; CO2, 
carbon dioxide; MgCO3, magnesium carbonate; NO, nitrogen oxide; 
NO2, nitrogen dioxide; O3, ozone; PM1.0, particulate matter (PM) with 
diameters that are 1.0 micrometers and smaller; PM2.5, particulate 
matter (PM) with diameters that are 2.5 micrometers and smaller; 
PM10, particulate matter (PM) with diameters that are 10 micrometers 
and smaller; PM20, particulate matter (PM) with diameters that are 20 
micrometers and smaller; PM0.1-PM10, particulate matter (PM) with 
diameters between 0.1 and 10 micrometers; PM0.3-PM10, particulate 
matter (PM) with diameters between 0.3 and 10 micrometers; 
PM1-PM20, particulate matter (PM) with diameters between 1 and 20 
micrometers; RH, relative humidity; Rn, radon; SO2, sulfur dioxide; 
T, temperature; TSP, total suspended particles; TVOC, total volatile 
organic compounds; UFP, ultrafine particulate matter, particulate 
matter of nanoscale size (<0.1 μm or 100 nm in diameter); VOC, volatile 
organic compounds; VVOCs, very volatile organic compounds.

TA B L E  1   (Continued)

F I G U R E  1   Concentrations of PM10 and respirable dust in 
different sports environments. Fitness center: eleven facilities, 
range of PM10 during the morning program68; gymnasium: one 
facility, different types of activity, range of PM10;97 indoor 
climbing facility: nine facilities, range of PM10 during periods of 
high activity143; indoor riding arena: one facility, range of total 
suspended particles (TSP)150; equestrian center: one facility 
(sixteen measurements), eight-hour time-weighted average (TWA) 
of respirable dust152; go-kart facility: eight facilities (spectators 
area), range of PM10 maximum values during activity158; indoor golf: 
sixty-four facilities, range of PM10 during activity148; ice skating 
arena: four facilities, range of PM10 concentrations during activities, 
including resurfacing129,136; sports hall: three facilities, range of 
PM10 concentrations during activities211
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lowest concentrations were monitored in the early morning and 
early afternoon (at ~08:00-09:00  and ~15:00-16:00). Temporal 
maximum values of CO2 exceeded the recommended level of 
1000 ppm (1800 mg/m3) given by the American National Standard 
Institute (ANSI) and American Society of Heating, Refrigerating and 
Air Conditioning Engineers (ASHRAE).102

Andrade et al103 measured CO2 concentrations in three fitness 
centers in Florianopolis, Brazil, and concluded that all three fitness 
centers recorded CO2 concentrations significantly above (P <.01) 
the recommended maximum level of 750 ppm (350 ppm above 
the outdoor level of 400 ppm) given by the European Committee 
for Standardization.104 The mean CO2 concentration levels in their 
study varied between 1000 and 3752 ppm (median 914-3526 ppm). 
They noticed that the mean CO2 concentrations were higher in the 
evening than in the morning or afternoon.

In the fitness center study, Ramos et al75 revealed that except for 
CO, all other measured pollutants (TVOC (total volatile organic com-
pounds), CO2, PM10, and PM2.5) given limits105 were sometimes ex-
ceeded. CO never exceeded the limit of 10 mg/m3 (= 8.73 ppm).20,105 
TVOC exceeded the limit of 0.6 mg/m3 (=600 µg/m3)105 both in aer-
obic and holistic classes.75 High TVOC levels were also reported by 
Slezakova et al.79 In their study of four health facilities, TVOCs highly 
exceeded the limit of 600 µg/m3 in all spaces, even when unoccu-
pied, indicating possible risks for the respective occupants. TVOC 
levels (both medians and range) were higher in the larger workout 
areas (a joint space with free weights, bodybuilding machines, and 
cardiovascular equipment) rather than in rooms or studios for group 
classes. In fitness centers, the high concentration of VOC may orig-
inate from alcohol-based hand disinfectant distributed throughout 
the facilities.68 In addition, humans (exhaled breath, perspiration), 
personal-care products (perfumes, hair sprays, hand disinfec-
tants),68,79,106-108 and reactions between the ozone and human skin 
(secondary oxidation reactions)109,110 can also be relevant sources of 
VOCs. In recently opened fitness centers, the high VOC and formal-
dehyde concentrations are probably associated with emissions from 
new building material, furniture, and equipment.68,111 It is suggested 
to use a system composed by an activated carbon filter calcined 
with a copper oxide catalyst to remove VOCs from indoor envi-
ronments controlled by a heating, ventilating, and air conditioning 
(HVAC) system.112 Furthermore, care should be taken with the use 
of alcohol-based hand disinfectant or other types of cleaning prod-
ucts in environments used for physical exercise and sporting events 
because they are recognized as risk factors for respiratory health.68

Several studies have reported frequent or occasional daytime 
temperatures over the recommended values of 20-27˚C113-115 mak-
ing the sport environment uncomfortable and fatiguing. For example, 
Onchang and Panyakapo116 reported the temperature and humidity 
range of 20.9-36.6˚C and 49.7%-99.8%, respectively, in three fitness 
centers. In two of those centers, the mean temperature value was 
over 30˚C. Lower levels of RH in fitness centers were observed when 
non-occupied.79 During exercise, breathing and perspiration gener-
ate a substantial amount of water vapor, which impacts RH.117 The 
number of occupants is a predictor of room temperature; occupants 

generate heat,117 as they are a source of internal heat, and body tem-
perature is typically much higher than room temperature.118

All recommended T and RH values for sports facilities are sum-
marized in Table S1 in the SI. The means to maintain comfort pa-
rameters within recommended levels include the proper use of air 
conditioning systems, room insulating, and sun or heat reduction.79 
It should also be noted that women generally prefer a warmer ther-
mal environment.119 Zhai et al120 found a positive effect on the com-
fort of practitioners during exercise caused by the movement of air 
in the environment and suggested that fitness centers must operate 
with high air movement in the environment to improve comfort and 
efficiency. Inherently, localized air speed is able to be focused on the 
exercising clientele and, thus, solve the problem of cold discomfort 
among the non-exercising staff.

Ramos et al121 studied indoor air microbiological contamination 
in three fitness centers in Lisbon, Portugal. They found that Gram-
negative catalase-positive cocci were the dominant bacteria in indoor 
air samples of the studied centers. Cladosporium sp; Penicillium sp; 
Chrysosporium sp; Acremonium sp; and Chrysonilia sp were the most 
prevalent fungal species identified at night, while Chrysosporium sp; 
Chrysonilia sp; Neoscytalidium hialinum; Sepedonium sp; and Penicillium 
sp were more prevalent in the morning. They concluded that to en-
sure a healthier space for indoor physical activity, a well-designed 
sanitation and maintenance program for fitness centers is needed. 
Markley et al122 reported that fitness centers’ gymnasiums can serve 
as reservoirs for exposure to Staphylococci, leading to infection in 
the community. They also highlight the need for further research to 
better define the relationship of exposure to surface colonization 
with Staphylococcus aureus in fitness centers and subsequent de-
velopment of clinical illness. However, there are also contradictory 
findings, for example, Ryan and others'123 findings support the evi-
dence indicating that community transmission is more likely to orig-
inate from skin-to-skin contact than from skin-to-surface contact, 
suggesting that aggressive surface disinfection programs may not be 
warranted in certain gymnasium environments.

3.2.2 | Gymnasiums

We found 21 studies reporting indoor air quality in 65 gymnasiums. 
The majority of the gymnasiums (74%) located in the context of the 
school or university. The most commonly studied contaminant was 
particulate matter, reported in the 67% of the studies. High particu-
late matter concentrations in school gymnasiums were found during 
classes with elevated numbers of occupants and particle resuspen-
sion.2,97,124 For example, Alves et al2 found that during human oc-
cupation, PM10 concentrations in a gymnasium ranged from 154 µg/
m3 to 198 µg/m3, and on the weekend (without occupation) the PM10 
concentration was 17 µg/m3. Gymnasiums are often equipped with 
climbing walls (se also Section 3.2.4) and the high particle levels were 
mainly due to the use of climbing chalk and constant resuspension. 
Castro et al97 reported that the air quality in the gymnasium in their 
study was strongly influenced by the number of gymnasts training 
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and the use of magnesia alba (MgCO3). Average PM10 concentrations 
of over 440 µg/m3 were reached due to the use of climbing chalk and 
the constant resuspension. The type of activity also affects the level 
of inhaled pollutants. Žitnik et al117 concluded that an exercising per-
son in the gymnasium would receive about six times higher levels of 
PM10 inside than she/he would have received at rest outside. This 
conclusion was based on their finding that the intensity of breathing 
in the observed exercise was about three times faster than that in a 
resting condition, and the exercise-induced PM10 concentration was 
about two times greater indoors than outdoors.

Although there are some studies reporting low CO2 concentra-
tions in gymnasium, even at times of elevated human occupation,2 a 
recent study by Andrade et al125 concluded that inefficient ventila-
tion in gymnasiums is a significant problem, with high concentrations 
of CO2 leading to impaired indoor air quality and high health risks to 
occupants, including increased risk of infections (eg, influenza and 
tuberculosis).

Viegas et al126 studied the prevalence of fungi in gymnasium, 
specifically containing swimming pools, and found the most com-
monly isolated fungi as follows: Cladosporium sp (37%); Penicillium sp 
(19%); Aspergillus sp (10%); Mucor sp (7%); Phoma sp; and Chrysonilia 
sp (3%). For yeasts, three different genera were identified, namely 
Rhodotorula sp (70%), Trichosporon mucoides, and Cryptococcus uni-
guttulattus (10%). Montgomery et al127 found that significant expo-
sure to Staphylococcus aureus (MRSA) exists in gymnasiums.

Elevated temperature in a gymnasium makes the sports environ-
ment uncomfortable and fatiguing and can led to occupants, espe-
cially children, suffering serious illness.2 For example, in the study 
by Alves et al,2 the relative humidity values in the gymnasium during 
the occupancy periods were within the comfort limits, but frequent 
daytime temperatures, over 30°C, exceeded the recommended val-
ues of 18-27°C113-115,128 (see Table S1 in the SI).

Considering the cleaning done in the different sports facilities 
used for physical exercise and athletic events, it is recommended 
the use of powerful vacuum cleaners with multi-stage HEPA filtra-
tion systems and graduated filters. Other measures to prevent likely 
health outcomes are a regular renewal of tatami (a type of mat used 
as a flooring material) and foam cubes (in gymnastics foam pits), the 
use of liquid chalk instead of the common magnesia alba, and the 
installation of indoor multi-stage filtration systems.97

3.2.3 | Ice rinks/ice arenas used for 
skating or hockey

Indoor air quality in enclosed ice skating arenas became a public 
concern in the 1990s and 2000s due to the use of propane- or gaso-
line-powered ice resurfacers and edgers.129 According to the United 
States Environmental Protection Agency,48 a primary source of in-
door air concerns is the release of combustion pollutants, such as 
carbon monoxide (CO), nitrogen dioxide (NO2), and particulate mat-
ter (PM), into the indoor air from the exhaust of fuel-fired ice resur-
facers. In several studies, the highest CO levels were recorded in the 

ice rink with gasoline-fueled resurfacers, and the highest NO2 levels 
in the ice rink were recorded where propane-fueled ice resurfacers 
were used.129 Later, it was tested and suggested that an electric re-
surfacer is the best solution to abate indoor air pollution in ice are-
nas,12 and during the last few years, new ice resurfacers that meet 
the most stringent US EPA standards (given by the United States 
Environmental Protection Agency (US EPA)) has been reported to 
reduce hydrocarbon, nitrous oxide, and carbon monoxide emissions 
by about 70%, 80%, and 60%, respectively.48 Concentrations of CO, 
NO, and NO2 in ice skating rinks as well as other sports environ-
ments are presented in Figure 2.

We found 31 studies reporting air contaminants in ice skating 
rink or arenas (see Table S3 in the SI), and in 48% of those studies, 
the CO concentrations were measured. For example, Guo et al129 
reported the average CO concentration ranged from 2.78 ppm to 
5.89 ppm (3190 μg/m3 to 6749 μg/m3) in Hong Kong ice arenas. 
Cox et al130 measured average concentrations of CO for all activi-
ties ranging from 0 ppm to 60 ppm and reported that elevated CO 
exposure measured while using the resurfacer may have residual 
CO from prior edging activities (activities using the ice resurfacer). 
Minimal CO exposure was recorded when resurfacing occurred 
without edging. The maximum CO concentrations observed were 
during edging (202 ppm) and exceeded recommended levels for 
short-term exposure (ie, TLV Excursion = 125 ppm and NIOSH 
Ceiling = 200 ppm)130,131 (see Figure 2). Macnow et al132 found 
that electric resurfacers decreased the risk of CO exposure, while 
internal combustion engine resurfacers caused high levels of 
CO and were responsible for an increase in carboxyhemoglobin 
(COHb) blood levels. They concluded that youth hockey players 
in ice arenas with internal combustion engine resurfacers have an 
increase in carboxyhemoglobin (COHb) during games and have 
elevated baseline COHb levels compared with players at arenas 
with electric resurfacers. Carboxyhemoglobin (COHb) prevents 
O2 from binding to hemoglobin. It follows that less O2 is released 
from the hemoglobin to the muscular myoglobin. This in turn 
causes serious health risks because the heart must work harder 
and beat faster.6 Salonen et al12 examined four cases of CO poi-
soning among 325 hockey players and skaters, both children and 
adults. The symptoms observed were headache, dizziness, fatigue, 
and nausea. In order to avoid harmful exposure, it is suggested to 
monitor indoor CO levels, ensure that resurfacing equipment is 
properly maintained, and institute procedures that minimize work-
er`s exposure (eg, replacing gasoline-powered edgers with electric 
edgers).130

The concentration of NO2 was reported in 39% of the ice arena 
studies. In Finland, Salonen et al12 studied thirty-one enclosed ice 
arenas, with propane (65%), gasoline (29%), and electric (6%) re-
surfacers and reported 228 µg/m3 average concentrations of NO2, 
ranging from 21 µg/m3 to 1176 µg/m3 (see Figure 2). In Sweden, 
Thunqvist et al133 studied fifteen ice arenas with either propane- 
or electric-powered resurfacing machines and reported the fol-
lowing indoor mean concentration of NO2: 276 µg/m3 (propane) 
and 11 µg/m3 (electric). In Hong Kong, Guo et al129 studied three 
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large indoor skating rinks and reported that the average NO2 con-
centrations ranged from 58 to 242 µg/m3. In Utah, United States, 
Cox et al130 reported that the NO2 concentrations were negligible 
for all rinks and all activities in their study. However, they con-
cluded that the peak concentration level (0.4 ppm = 750 µg/m3) 
was nearly one-half the short-term recommended exposure limit 
(REL), indicating that exposures to NO2 are still possible in these 
rinks despite the use of gasoline-powered equipment. In a study by 
Salonen et al,12 the exposure to NO2 (mean 228 µg/m3) in ice rinks 
was associated with rhinitis (18.3%) and a cough (13.7%) preva-
lent in hockey players during or after training or a game, and those 
symptoms were reported to possibly decrease performance. There 
is also evidence that exposure to high levels of NO2 in an indoor ice 
arena may be associated with an increased occurrence of airway 
symptoms several years later.134

The concentration of SO2 was reported in 6% of the studies re-
viewed. Game and Bell135 reported surprisingly high concentrations 
of SO2 in ice arenas, ranging from 0.3 to 4.5 ppm throughout the sea-
son. In Hong Kong, Guo et al129 measured much lower values. The 
average concentrations of SO2 ranged between 10 ppb and 13 ppb 
(0.01-0.013 ppm) and corresponded to the SO2 concentration in out-
door air. The cold, dry air, the presence of molds inside and outside 
the ice arena, the presence of SO2 in the arena air, combined with 
intense exercise during practices or competition, as well as living in 
a cold environment may trigger pulmonary impairment and possibly 
negatively affect athletic performance.135

Concentrations of PM or UFP were reported in 24% of the stud-
ies on ice arenas. For example, in Norway reported PM10 values were 
between 20 µg/m3 and 180 µg/m3 and PM2.5 values up to 30 µg/
m3.136 In Hong Kong, the average PM2.5 (28 µg/m3 to 62 µg/m3) and 
PM10 (50 µg/m3 to 79 µg/m3) concentrations inside the arenas were 

lower than those measured outdoors (PM2.5:97 µg/m3 to 134 µg/m3; 
PM10: 138 µg/m3 to 157 µg/m3).129

Measured PM10 values and some measured PM2.5 values were 
above the 24-hour recommended mean values, 50 µg/m3 for the 
PM10 and 20 µg/m3 for the PM2.5, given by the WHO.60 It has been 
concluded that the PM values were not affected by the electrical 
resurfacer but were caused by an inadequate ventilation system and 
accumulation of PM136 and that the increased concentrations of both 
PM2.5 and PM10 were probably related to the location of the nearby 
heavily traveled roads. Based on those reported PM values and the 
general use of filtering systems in ice arenas, it can be concluded that 
the resurfacers had little effects on the levels of PM in the ice rinks. 
However, in studies with low ventilation rates, high FP (fine parti-
cles, diameter <2.5 µm), UFP,137,138 and CO concentrations were as-
sociated with the resurfacing process.137 Rundell138 concluded that 
acute exposure to PM1 generated by ice resurfacing may aggravate 
an asthmatic reaction, while the precise effect of years of chronic 
exposure at high ventilation rates during ice sport activity from an 
early age may modify the morphology of the peripheral airways.

Microbiological contaminants were studied in only one ice arena 
in a Canadian study conducted by Game and Bell.135 In their study, 
Eurotium amstelodami was the only species to show an increase over 
the entire hockey season inside the ice arena, but these levels were 
lower than in the outdoor sample. Additionally, the only species re-
corded at a concentration of 50 CFU/m3 (colony forming units per 
cubic meter) or higher in the arena were Eurotium amstelodami and 
Alternia alternata, the concentrations being at the same level as the 
levels in outdoor air.

In addition to chemical and microbiological indoor air pollutants, 
comfort parameters for CO2 and temperature affect the indoor air 
quality and well-being of occupants, as reported in several studies. 
For example, Toomla et al,139 Grande and Cao,136 and Guo et al129 
reported CO2 values exceeding the upper limit guideline value of 
1200 ppm.140 In Finland, Toomla et al139 demonstrated that although 
the measured concentration levels of CO2 were below 1200 ppm for 
the majority of the time, some measurements exceeded that value 
briefly, especially during the weekend when more people occupied 
the space. In Norway, Grande and Cao136 found that the CO2 con-
centration increased from 870 ppm to almost 1400 ppm in just under 
three hours with stabile high activity (during the training on the ice 
rink). In Hong Kong, Guo et al129 found that the average CO2 con-
centration ranged from 851 ppm to 1329 ppm and concluded that 
the high CO2 levels recorded in the ice arenas were attributed to 
overcrowding and an insufficient supply of fresh air.141

In Finland, the reported average temperature and humidity 
inside the arenas were 3.5°C–8.8°C and 64.5%–82%, respec-
tively.139,142 Salonen et al12 listed the following means to reduce 
exposure in ice arenas: 1) the use of electric resurfacers instead 
of combustion engine powered resurfacers; 2) retrofitting emission 
control technology in propane-fueled resurfacers as an efficient 
temporary option to reduce engine emissions; 3) mechanical venti-
lation at a reasonable air exchange rate (0.25-0.5 h-1) during open-
ing hours; 4) personnel training to understand the risks associated 

F I G U R E  2   Concentrations of CO, NO, and NO2 in different 
sports environments. Go-kart facility I: eight facilities, range of 
CO, NO, and NO2 maximum concentrations in the track areas159; 
go-kart facility II: one facility, maximum of one minute average CO 
concentrations during driving157; ice rink: multiple facilities, range 
of CO and NO2 concentrations.12,130 The arrows indicate that the 
minimum concentration is below the limit of quantitation
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with poor maintenance practices if combustion engine resurfacers 
are used; 5) if the CO concentration is >20 mg/m3 (17.46 ppm) or 
the NO2 concentration is >150 µg/m3, ventilation should be in-
creased; 6) at CO concentration >60 mg/m3 (52.37 ppm) or NO2 
concentration >2000 µg/m3, ice arena users and spectators should 
be evacuated if the elevated pollutant level cannot be effectively 
reduced within 15-30 minutes.

3.2.4 | Indoor climbing facilities

The fact that climbing and bouldering are Olympic disciplines dem-
onstrates the increasing popularity of this sport. Climbing and boul-
dering can now be practiced in countless facilities, and the number 
of facilities is still increasing. In the beginning, standard gyms were 
equipped with climbing walls. Later, special halls became necessary 
in order to be able to practice the different climbing techniques. We 
found 5 studies (see Table S3 in the SI) reporting the indoor air qual-
ity parameters in indoor climbing facilities, and all of those include 
measurements of particulate matter. For the athlete, it is essential to 
keep the hands dry, and MgCO3 (magnesia or magnesia alba) is the 
material of choice. However, magnesia is a strong source of particu-
late matter. Weinbruch et al143 studied the particle mass concentra-
tions of PM1, PM2.5, and PM10 in nine indoor climbing facilities and 
in five sports facilities. For periods of high activity, PM10 values be-
tween 1000 µg/m3 and 4000 µg/m3 were monitored (see Figure 1). 
PM2.5 reached concentrations up to 500 µg/m3. The size distribution 
and the total particle number concentration (3.7 nm–10 µm electri-
cal mobility diameter) were determined in one climbing facility. The 
highest number of concentrations were approximately 12,000/cm3, 
and the authors concluded that the use of magnesia alba was not a 
strong source for ultrafine particles. Weinbruch et al144 also studied 
different application techniques of magnesia and found that suspen-
sions in ethanol led to similar low-mass concentrations as the pro-
hibition of magnesia alba. Today, the use of liquid chalk is common 
in indoor climbing facilities. However, air ventilation was considered 
as the most effective way of reducing dust concentrations in indoor 
climbing gyms. Other studies produced analogous results. Almand-
Hunter et al145 measured up to 597 µg/m3 PM10 (6 hours on average) 
in a gym. Alves et al146 measured PM10 concentrations in the indoor 
environment of climbing venues and found distinct differences in 
the chemical composition of indoor and outdoor particles. The use 
of magnesia alba caused a significant increase in the mass and num-
ber of coarse mode particles. Moreover, MgCO3 was the dominant 
component of indoor particles. Moshammer et al147 examined 109 
climbers before and after a climbing activity and found acute and 
subacute adverse effects in lung function.

3.2.5 | Indoor golf courses

Little is known about the indoor air quality of indoor golf courses. 
Most popular is screen golf in which a computer, connected to sensors 

and cameras, provides a virtual golf experience in a projected land-
scape. Moreover, most indoor arenas offer training facilities for tee-
off and putting. Goung et al148 published the only comprehensive 
study on indoor air quality in sixty-four Korean screen golf courses. 
Concentrations of PM10, carbon monoxide, carbon dioxide, nitrogen 
dioxide, ozone, formaldehyde, TVOC, bacteria, asbestos, and radon 
were measured. The average concentrations of the target pollutants 
did not exceed the respective pollutant standard set by the Korean 
law. However, some of the facilities showed increased concentra-
tions of PM10, formaldehyde, and bacteria.

3.2.6 | Indoor horse riding arenas

The riding surface is an important component in the equestrian 
discipline. The surface should support the performance of the 
horse but should also help prevent injuries. Materials like sand, 
sawdust, and synthetic fiber are commonly used in riding arenas.149 
The constant walking, trotting, and cantering of heavy horses on 
such grit causes the resuspension of particulate matter and, con-
sequently, exposure to different types of airborne pollutants. We 
found six studies (see Table S3 in the SI) reporting the indoor air 
quality parameters in indoor horse riding arenas. Particles (83% 
of the studies) and dust (67% of the studies) were the most com-
monly studied contaminants. Lühe et al150 investigated the distri-
bution of grain sizes in four German riding arenas: 80-90% were 
between 125 µm and 500 µm and 3-7% were smaller than 63 µm. 
The mean particle mass in the air of indoor riding arenas, averaged 
over one year, was between 0.022 mg/m3 and 0.233 mg/m3, but 
extreme peak concentrations up to 3 mg/m3 were observed (see 
Figure 1). Venable et al151 showed that recycled rubber material 
can reduce particulate matter in the air during an indoor riding 
event when applied over the layer of sand. The personal exposure 
of an equestrian worker to crystalline silica and respirable dust 
was studied over 16 days by Bulfin et al152 The concentrations 
measured over 8 hours per day resulted in time-weighted averages 
of <0.01-0.34 mg/m3 for respirable dust (see Figure 1) and <0.01-
0.09 mg/m3 for crystalline silica. The concentrations were lower 
on days when the arena was watered. Claußen et al153 studied 
the release of PM10 from footing materials, including pure sand, 
sand-wood chips, and sand-fiber in dependence of their moisture 
content, density, and particle size distribution. It was found that 
the density of the sand-fiber footings had a significant influence 
on the release of PM10. The authors considered regular watering a 
suitable measure to lower emissions of particulate matter. In horse 
stables, Samadi et al154 measured high concentrations of airborne 
particulate matter. The maximum value was 9.6 mg/m3. Moreover, 
increased concentrations of endotoxins and ß (1 → 3) glucan were 
found. The problem of extreme particle concentrations in horse 
stables were also investigated by Hessel et al,155 who measured 
the generation of PM20, PM10, PM2.5, and PM1 from horse feed. 
The maximum concentrations were 35.31 mg/m3 (PM20), 9.58 mg/
m3 (PM20), 0.34 mg/m3 (PM2.5), and 0.13 mg/m3 (PM1).
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3.2.7 | Indoor motorsport arenas

We found five studies (see Table S3 in the SI) reporting the indoor 
air quality parameters in indoor motorsport arenas, and carbon 
monoxide was the most commonly studied contaminant (80% of 
the studies). Particulate matter was reported in 40% of the studies. 
Morley et al86 investigated the exposure of employees and specta-
tors to carbon monoxide at a monster truck and motocross show. 
The peak concentrations were between 75 ppm and 340 ppm, and 
the time-weighted average during the show was between 42 ppm 
and 80 ppm. Levesque et al156 investigated the air quality during 
an indoor monster truck and car demolition show in a Canadian 
arena. For carbon monoxide, extreme peak concentrations be-
tween 219 ppm and 1645 ppm were found. Time-weighted aver-
ages ranged between 33 ppm and 100 ppm. The nitrogen dioxide 
concentrations were below the detection limit of the measuring 
device (0.5 ppm).

For many people, go-kart driving is also a popular activity. Today, 
most go-kart arenas are organized as multi-event complexes and 
offer other facilities, like bowling, restaurants, and business cen-
ters. Reports about acute cardiovascular events among drivers at 
an indoor go-kart arena prompted a study by Kim and Wagner157 
on carbon monoxide and PM2.5 inside an indoor go-kart facility. For 
drivers, the peak exposures to carbon monoxide ranged from 52 ppm 
to 130 ppm (see Figure 2). In the case of PM2.5,peak concentration 
ranged from 39 µg/m3 to 350 µg/m3, and the maximum 5-minute 
average PM2.5 concentrations was between 28 µg/m3 and 42 µg/
m3. Sysoltseva et al158 studied particulate matter in air at eight in-
door go-kart facilities. The mean PM10 concentrations were 4.9 µg/
m3 to 34.9 µg/m3 for workplaces and 5.6 µg/m3 to 28.4 µg/m3 for 
spectator areas (see Figure 1). The mean PM2.5 concentrations were 
2.3 µg/m3 to 29.2 µg/m3 for workplaces and 2.4 µg/m3 to 27.4 µg/
m3 for spectator areas. The authors point out that not only motor 
emissions but also brake and tire debris contribute to air pollution in 
kart arenas. In parallel measurements, Wolf et al159 found increased 
concentrations of carbon monoxide, NOx, C1-C3-benzenes, naph-
thalene, and benzo[a]pyrene dependent on the fuel (regular, special, 
and liquid gas). The lowest pollutant concentrations were measured 
for electrically powered karts.

3.2.8 | Indoor swimming pools

We found 62 studies (see Table S3) reporting the indoor air quality of 
indoor swimming pools and aquatic centers. Since chlorine (Cl2) and 
sodium hypochlorite (NaOCl) are the most common disinfectants 
used in swimming pools, air quality in light of disinfection by-prod-
ucts (DBPs) is unique in that kind of sport environment.160 Chlorine 
and hypochlorite react with natural organic matter (eg, sweat, skin 
cells, cosmetics, and urine from swimmers) in the water of swimming 
pools.161,162 Hypochlorite can also be produced from alternative 
disinfectants like trichloroisocyanuric acid and bromochlorodi-
methylhydantoin.163 The DBPs, mainly consisting of halomethanes, 

especially trihalomethanes (THMs) and chloramines, can be found 
in pool water and in the air of indoor swimming pools.4,164-166 
Chloroform (CHCl3) is the dominant THM by mass in swimming 
pools, and as chloroform is a highly volatile compound, in addition to 
absorption via dermal uptake, it can be also inhaled.167

In indoor chlorinated swimming pool facilities, both air and water 
qualities are relevant issues with respect to the health of the facility 
users.168 Chiu et al57 concluded that work-related eye and respira-
tory symptoms were about five times more common among employ-
ees working in the waterpark than employees working in the other 
parts of the resort (non-waterpark employees consisted of mainte-
nance staff, an arcade attendant, a bartender, housekeeping staff, 
hotel front desk staff, office staff, and managers). These symptoms 
were consistent with exposure to chemicals formed when chlorine 
used to disinfect pool water reacts with materials from swimmers' 
bodies.

In Italy, Fernández-Luna et al169 reported that the mean chlorine 
level in the air of twenty-one swimming pools was 4.3 ± 2.3 mg/m3, 
and in 85% of the facilities, the concentration of 1.5 mg/m3, the sug-
gested limit for the risk of irritating effects, was exceeded. They also 
found that the concentration of chlorine in indoor swimming pool air 
had a direct effect on self-perceived health problems among swim-
ming pool workers.

In Portugal,14,170 the reported THM concentrations in the pool 
air varied between 28 µg/m3and 906 µg/m3. Gouveia et al14 used the 
measured values to predict multi-pathway chronic daily intake (CDI), 
cancer risk (CR), and hazard index (HI), and they highlighted the need 
to develop comprehensive guidelines to safeguard the health of in-
dividuals involved in elite swimming. Sa et al170 found that THM con-
centrations at 150 cm above water surface were about 30% lower 
than the corresponding values found at 5 cm. Their data confirmed 
that swimmers are exposed to higher concentrations of THMs by 
inhalation than lifeguards. In Italy,56,165 the reported mean levels 
of THMs in ambient air at swimming pools in Modena and Emilia 
Romagna region were 58 µg/m3 and 81 µg/m3, respectively, being 
lower than the mean THMs values of 119 µg/m3 (ranging from 58 µg/
m3 to 552 µg/m3) measured in Canada171 and the mean THMs values 
of 146 µg/m3 (±117.8 µg/m3) measured in France.172

The concentration of chloroform (CHCI3) has been reported by 
several authors.4,165,173-178 For example, in Europe, the reported 
mean chloroform concentrations in the air of indoor swimming pools 
ranged between 35 µg/m3 and 55 µg/m3.4,165,179 It should be noted 
that the presence of chloroform indicates the formation and poten-
tial for exposure to additional chlorine disinfection by-products, such 
as chloramines (CAMs).57 The possible factors affecting chloroform 
concentrations in the air in indoor swimming pool facilities include 
ventilation rate, bather load, and free chlorine concentration.180

Trichloramine (NCl3), among the most commonly studied 
THM, is encountered as a by-product of chemical reactions be-
tween ammonia derivates and chlorine and has been associated 
with irritative ocular and upper airway symptoms, symptoms as-
sociated with the lower respiratory track, and an increased risk of 
asthma both in swimming pool workers and swimmers.181-185 The 
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formation of trichloramine in swimming pools from urea is pre-
sented in Figure 3. However, other nitrogen compounds (amines, 
amides, and amino acids) also act as precursors.186 Due to the low 
Henry constant of H = 9.9∙10-4 mol/(m3∙Pa),187 the compound is 
volatile in water. Chu et al188 found both the concentration of free 
available chlorine in water and the number of swimmers to be 
significantly associated with the airborne concentration of NCl3 
(P < .05). Bessonneau et al176 found that indoor trichloramine 
(geometric mean 190 µg/m3) as well as THM (geometric mean of 
74.9 µg/m3) concentrations were associated with the number of 
swimmers. They also reported that trichloramine was linked to air 
temperature and pH value.

In Switzerland189 and France,190,191 the suggested exposure 
limit for trichloramine in indoor swimming pool air is 300 µg/m3. 
However, frequent pool users who may be exposed to trichloramine 
for longer periods might be more sensitive to lower concentrations, 
and respiratory symptoms with concentrations as low as 17 µg/m3 
were reported.188 In Switzerland, Parrat et al189 measured a 114 µg/
m3 mean concentration of trichloramine and concluded that there is 
an increased risk of irritative symptoms up to a level of 200-300 µg/
m3 of trichloramine. Rundell et al192 observed significant ocular and 
respiratory symptoms for lifeguards and trainers when they were 
exposed to 500-1300 µg/m3 of trichloramine. Fantuzzi et al193 rec-
ognized that irritative symptoms become significant at trichloramine 
concentrations over 500 µg/m3. Those studies by Rundell et al192 
and Fantuzzi et al193 confirmed that the recommended values given 
by the WHO can be considered protective in occupational exposure 
to airborne trichloramine in indoor swimming pools.

There are several studies in which the suggested exposure lim-
its for trichloramine were frequently exceeded. For example, in 
Belgium, the reported mean value for trichloramine in air varied 
from 300 to 660 µg/m3.182,194,195 In Spain, the mean concentration 
of trichloramine ranged from 170 to 858 µg/m3. 179,196 In Sweden, 
reported mean concentrations of trichloramine in the pool air varied 

between 23 µg/m3 and 210 µg/m3 (range 1-770 µg/m3).181,184,197,198 
For personal exposure to trichloramine in indoor swimming pool fa-
cilities in Sweden, the reported mean values varied between 36 µg/
m3 and 71 µg/m3 (range < 1 µg/m3 to 240 µg/m3).198,199 A swimming 
school teacher and a lifeguard presented the highest exposures to 
trichloramine of 240 µg/m3 and 220 µg/m3, respectively.199 In the 
United States168 and in Canada,200 the reported mean concentra-
tions of trichloramine in the air were 150 µg/m3 and 380 µg/m3, 
respectively. In indoor chlorinated swimming pool facilities located 
in Southern Europe, the reported mean concentration of indoor 
bromoform (CHBr3), dibromochloromethane (CHClBr2), chloro-
form (CHCl3), and bromodichloromethane (CHBrCl2) was 0.4 µg/
m3-11.2 µg/m3; 1.9 µg/m3-13.2 µg/m3; 35.0 µg/m3-54.5 µg/m3; and 
4.2 µg/m3-14.6 µg/m3, respectively.165,179 In indoor seawater swim-
ming pools located in France, the reported mean concentration of 
indoor bromoform (CHBr3) and dibromochloromethane (CHClBr2) 
were 200 µg/m3 (max 1600 µg/m3) and 13 µg/m3(max 150 µg/m3), 
respectively.164,172 Bromoform is the most abundant trihalomethane 
(THM) compound in seawater swimming pools, and measured levels 
of bromoform (CHBr3) in those kinds of pools are particularly alarm-
ing. Consequently, it seems important to determine the occupants 
exposure to bromoform (and to the other THM), not only in water 
but also in air.164 The measured values of bromoform exceeded fre-
quently the recommended value of 350 µg/m3.201

Studies concerning pollutants other than DBPs in swimming 
pool facilities are rare. Tolis et al4 did a comprehensive air qual-
ity investigation at an aquatic center in Greece, measuring differ-
ent indoor air parameters. They found that, in general, the mean 
concentrations of VOCs were very low, except in the morning. 
Chloroform was the most abundant compound found in the atmo-
sphere of the aquatic center due to the disinfection of the water. 
In addition to chloroform, m-xylene, p-xylene, octane, and toluene 
were three compounds with the highest concentrations found in-
doors. Limonene, commonly contained in cleaning products and 

F I G U R E  3   The formation of NCl3 in 
swimming pools (see also Schmalz et al186)
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personal hygiene products, used inside the swimming pool was 
characterized by a high indoor/outdoor value. The concentrations 
of NO2 indoors (mean 113.07 µg/m3) was higher than outdoors 
(mean 63.31 µg/m3), and the hourly concentrations of NO2 for in-
door areas sometimes exceeded the WHO guideline of 200 µg/m3 
(for one-hour exposure).20 In their study, indoor concentrations of 
NO2 showed an increased pattern when the swimming pool was 
fully occupied (around hours 16:00 to 21:00). The concentrations of 
ozone outdoors (mean 81.96 µg/m3) was higher than ozone concen-
trations inside the facility (mean 59.90 µg/m3). This indoor/outside 
ratio of 0.73 is high but not uncommon.42 In a swimming pool, the 
surfaces are covered with a film of water, which slows down the 
surface reaction of ozone.202 The Henry constant of ozone is small 
with H = 1.0.10-4 mol/(m3∙Pa).187 Therefore, the pool water is not 
a significant sink. The diurnal variation of ozone indoors followed 
the diurnal variation of the ozone outdoor concentration (a clearly 
increasing trend, starting from 11:00 and ending by 21:30). The ex-
planation for this may be that swimming pool areas started to be 
ventilated during these hours, while for the rest of the day, these 
areas remain unventilated or closed. One possible explanation for 
the lower concentrations of ozone indoors may be that if there 
are not indoor sources of ozone present, gas phase reactions, and 
deposition, which might result in lower indoor ozone.42

In Italy, Brandi et al203 investigated the occurrence of mycotic spe-
cies in 10 swimming pools, and they found moderate mycotic titers 
and high biodiversity. Penicillium spp.; Aspergillus spp.; Cladosporium 
spp.; and Alternaria spp. were continually detected in air and surface 
samples by the swimming area, while pathogenic yeast Candida albi-
cans was never detected. Fusarium spp. was the most common taxon 
isolated from surfaces. In Iran, Mansoorian et al204 found that E coli; 
Actinobacteria; Pseudomonas alcaligenes; Pseudomonas aeruginosa; 
and Klebsiella pneumonia were the most important isolated bacteria 
types in swimming pool environments, and bacterial contamination 
was observed in about 17% of the samples. In waterpark studies 
conducted in the United States, the reported mean endotoxin lev-
els22,57 in the pool area were 45 EU/m3 (endotoxin units per cubic 
meter of air volume) (range: not detectable to 84 EU/m3).

Indoor CO2 concentrations in swimming pool facilities usually 
meet the recommendations. For example in Greece, the reported 
mean concentration of CO2 was 502 ppm (range: 259-1322 ppm).205

The air temperature and RH levels measured in the swimming 
pool facilities and waterparks did not always meet the given guide-
lines206,207 (see Table S1 in the SI). For example, in the Southern 
European swimming pool studies, the daily average air temperature 
and humidity were 26.5°C (range: 19.2-37.5°C) and 64.5% (range: 
23.9%-95.7%), respectively.165,172,205,208 In a US waterpark study 
by Dang et al,22 daily average air temperature and relative humid-
ity ranged from 27.8°C to 31.7°C, and 41% to 69%, respectively. 
ASHRAE206 recommends that air temperatures be 2˚C to 4˚C above 
the water temperature to reduce evaporation and avoid chilling ef-
fects for waterpark users. For buildings containing swimming pools, 
ASHRAE206 guidelines require an RH of 50-60%, exceeding of which 
(over 60%), can lead to mold growth.57

Efficient means to reduce indoor exposure in swimming facil-
ities include carefully regulated chlorine levels and temperatures 
in swimming pools, properly ventilated pools, and information 
transmitted to bathers about the importance of personal hygiene 
to reduce irritants in swimming pool environments.209 Using in-
door pools treated with combined chemical treatments (eg, ozone) 
can reduce direct exposure to disinfection by-products and their 
negative effects on respiratory function compared to chlorinated 
pools.210

3.2.9 | Sports halls

We found nine studies reporting indoor air contaminants in sports 
halls (see Table S3 in the SI). The most often studied parameters were 
carbon dioxide (78% of the studies), temperature (78% of the stud-
ies), and relative humidity (67% of the studies). The measured mean 
indoor CO2 concentrations varied between 420 ppm and 1287 ppm 
(ranging from 294.8 ppm to 1529 ppm).211-215 This indicates that 
inside closed spaces, where physical activity is practiced,215 rec-
ommended optimum levels and guidelines of CO2 are very often ex-
ceeded.102,104,105,140,216 (see Table S1 in the SI). For example, in Spain, 
Accili213 found that CO2 concentration increases significantly during 
the evening, and the recommended comfort levels of CO2

217 (see 
Table S1 in SI) are not met starting from 19:00. The study establishes 
that the users of the sports hall experience periods of discomfort 
due to poor air quality when the occupation is maximum.

In Europe,211,212,214 the reported mean values for T and RH in the 
sports halls varied between 15.9 and 22.1°C and 48.5 and 49.9%. In 
several cases, the temperature were under the recommended range 
of 20°C and 22°C115 (see Table S1 in the SI), while the relative humid-
ity in those facilities were in accordance with the recommendations 
(under 60%).115 In Australia, Rajagopalan and Luther218 investigated 
(by using the comfort cart designed according to the ASHRAE stan-
dard219) the thermal and ventilation performance of a naturally 
and hybrid ventilated sports hall within an aquatic center located 
in Victoria, Australia. They found a high level of thermal discomfort 
during warm weather, with high solar radiation.

Particulate matter in sports halls were measured in 33% of the 
studies. The concentration of PM10 (mean 400 ± 310 µg/m3) were 
measured only in three sports halls211 and the range of concen-
tration is presented in the Figure 1. In all those sports halls, the 
recommended values of 20-50 µg/m3 21,28,74,114 (see Table S1 in 
the SI) for PM10 were exceeded. The concentration of PM2.5 were 
measured only in one sports hall in Greece by Tolis et al212 In their 
study, the PM2.5 concentration was a little higher outdoors (mean 
13.98 µg/m3) than indoors (mean 11.96 µg/m3) and the I/O (in-
door/outdoor) ratio was always under 1, indicating the influence 
of outdoor sources to indoor PM2.5 concentrations. The recom-
mended annual target value of 10 µg/m3 21 (see Table S1 in SI) for 
PM2.5 was slightly exceeded.

The VOC in sports halls were found at very low levels, both 
at indoor and especially at outdoor air, and toluene was the 
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compound with the highest concentrations both indoors and out-
doors.212 The I/O ratio was below 1 for most of the compounds, 
indicating the major source to be outdoor air. Styrene and d-lim-
onene with the maximum observed I/O ratio value of 4.7 and 3.7, 
respectively, seems to have both indoor sources and an outdoor 
influence through the air exchange. Possible indoor sources of 
those compounds in sports halls are the cleaning process and the 
plastic substrate of the floor for the volley playing field. It was 
also found that athletic events influence the VOC concentrations 
in indoor and outdoor air.212

The sports hall results have revealed that outdoor sources of 
O3 significantly affected indoor air quality inside the halls.5,212 The 
measured O3 indoor air concentrations (mean 12-36 µg/m3) in sports 
halls has been lower than concentrations in outdoor air (50-64 µg/
m3) both in the “event period” as well as “no event period.”5,212 For 
example, in Greece, Stathopoulou et al5 studied two large differently 
ventilated sports halls and found that both in the naturally ventilated 
as well as in the mechanically ventilated sports halls, the concentra-
tion of O3 is much higher at the outdoor air than at indoor air (I/O 
ratio 0.3 in the naturally ventilated sports hall and 0.6 in the mechan-
ically ventilated sports hall) during the event and at a period when 
there are no events.

For NO2, the findings are contradictory. For example, in the study 
by Stathopoulou et al,5 the NO2 concentrations found at outdoor 
air (33-41 µg/m3) were lower than that found at indoor air (mean 
38-61 µg/m3). This is opposite to that observed by Tolis et al212 In 
their study, the mean NO2 concentration at indoor and outdoor was 
73 µg/m3 and 95 µg/m3, respectively. Microbial contamination was 
studied in three sports hall studies.211,215,220 The measured con-
centrations of fungi and bacteria in those studies ranged between 
0-1649 CFU/m3 for fungi and 0-6872 CFU/m3 for bacteria. After 
intense sporting activities, hemolytic bacteria were present in high 
concentration. The correlation between the microorganisms (fungi 
and bacteria) and the number of persons showed that intense ath-
letic activities influenced the variation of microorganisms.215

In order to ensure comfort and energy efficiency as well as 
achieve and maintain sport performance in sports halls, many pa-
rameters must be considered in an integrated approach.5,215 The 
studies have revealed that the outdoor pollution, the type of the 
ventilation, and the operating patterns of the HVAC system when 
ventilation is mechanical, the indoor materials, the location of the 
sports hall, and the location of its physical openings as well as the 
different indoor activities with the varied number of occupants are 
important factors affecting and controlling IAQ in sports halls as well 
as in other large enclosures where large number of spectators are 
present during athletic events.

4  | CONCLUSIONS AND 
RECOMMENDATIONS

This study provides a review on human exposure to indoor air 
contaminants in different types of indoor sport facilities, the 

contributing factors of various levels of those contaminants, and the 
means to reduce the exposure. The respective people can be active 
themselves or be a spectator.

Combustion engines are used in many sporting events with or 
without an audience. Here, for example, the available indoor guide 
values for CO, NOx, and TVOC can be used as a criterion (see 
Table S1 in the SI). In ice hockey arenas, NO2 and CO exposure are 
most concerning, and the means to abate these indoor air pollutions 
is an electric resurfacer instead of the combustion engine powered 
resurfacer and the use of mechanical ventilation at a reasonable air 
exchange rate during opening hours.

Assessments become more difficult in the case of exposure to 
coarse particles. During horse riding events, it has to be assumed 
that high concentrations of particles released from the grit can be 
measured directly in the arena. However, systematic studies on the 
size-dependent particle distribution in the entire riding hall and the 
possible exposure of spectators are not yet available.

The air quality in large closed arenas with spectator capacities 
of up to 25,000 people has rarely been examined (see Table S3 in 
the SI). In contrast, there is much work on outdoor air quality in 
open stadiums221 and at major sporting events such as the Olympic 
Games222,223 and World Championships.10 The same applies to the 
health effects of air pollutants on athletes in the amateur and profes-
sional sectors. Brunekreef and colleagues7,224 examined the effects 
of photochemical air pollutants and particles on cyclists. As early as 
2001, Carlisle and Sharp6 discussed adverse effects of ambient air 
pollutants in sporting activities. Various works deal with the influ-
ence of air pollution on marathon runners.8,225 In 2018, the Clean Air 
Initiative of the International Association of Athletics Federation's 
(IAAF) has started a project for the regular measurement of air pol-
lution at major sporting events.226 On the other hand, there is a lack 
of risk assessments for indoor sport activities.

The evaluation of measured pollutant concentrations shows 
that trained and recreational athletes as well as children and all 
asthmatic individuals could also be at risk when they are practicing 
in indoor environments. The effect on athletes is apparent as met-
abolic demands of exercise increase the alveolar minute ventilation 
(AMV) and thus the rate of inhalation of pollutants. At moderate 
levels of activity (approx. 100 W), the AMV of a standard person 
is quadrupled with approx. 30 l/min compared to the resting vol-
ume. At maximum power of athletes, the AMV is even increased 
tenfold (see Figure 4). Therefore, the question arises, whether pub-
lished indoor air guidelines20,73 can also be used during physical 
activity. The results are contradictory. In various studies, no ad-
verse response during exposure to ozone,227 NO2,228 or VOCs229 
was found under light training conditions. On the other hand, the 
combination of terpenes and ozone caused irritation even at low 
concentrations.230

In addition, occupants working in the facilities may be at risk. The 
high CO2 concentrations and the calculated ventilation rates in sev-
eral studies demonstrated that, in general, fitness centers and gym-
nasiums have inefficient ventilation, considering the large number 
of people, and relatively small room sizes for the types of activities 
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conducted in those facilities. High CO2 concentrations have also 
been found to be a problem in sports halls, especially during the 
evenings with elevated number of occupants. When exercising at 
100 W, a standard person exhales approx. 80 l CO2 per hour. In a 
400 m3 room, an occupancy of 25 people would require a minimum 
air change of 6 h-1 to keep the CO2 concentration permanently in the 
range of 1000 ppm. The location of air intakes and air filtration is 
also essential for the maintenance of good IAQ. As cleaning practices 
affect chemical exposure and cleaning chemicals are recognized as 
risk factors for respiratory health, low emitting cleaning agents and 
cleaning practices should be used. In addition, attention should be 
paid to the number of people attending the facility as well as the oc-
cupant's behavior. Comfort parameters (T and RH) should be main-
tained within the recommended ranges (eg, by the proper use of an 
air conditioning system, room insulation, or sun and heat reduction). 
At indoor swimming pools, the most concerning pollutants are DBPs, 
such as CHCl3 and NCl3. Appropriate ventilation to minimize chlora-
mine accumulation, control of water chlorination and temperature, 
and adequate hygiene of swimmers should be enforced to reduce 
irritants in swimming pool environments for the occupants.

In conclusion, better and more efficient ventilation concepts for 
sport facilities are required, especially for fitness centers and climb-
ing halls due to the potentially high concentrations of CO2 and parti-
cles. In general, there is a lack of knowledge regarding IAQ in sports 
facilities and additional studies representing different climatic areas 
are urgently needed. The respective measurement strategy should be 
based on the individual circumstances. In climbing halls, it can make 
sense to measure the personal concentration of particles instead 
of the air concentration. Air quality guidelines are already available 
for many types of pollutants.33,129 However, for several important 
compounds like DBPs such guidelines are still missing. Moreover, 
a critical discussion on stringent air quality requirements for sport 

facilities is advisable, thus young people as well as vulnerable groups 
spend a lot of time in these facilities at high pulmonary ventilation 
rates. Benefits of physical activities can be strengthened by reduc-
ing the exposure to pollutants and by minimizing the risk of possible 
adverse health effects in different indoor sport environments.
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