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Abstract: 5G networks and Internet of Things (IoT) offer a powerful platform for ubiquitous
environments with their ubiquitous sensing, high speeds and other benefits. The data, analytics,
and other computations need to be optimally moved and placed in these environments, dynamically,
such that energy-efficiency and QoS demands are best satisfied. A particular challenge in this context
is to preserve privacy and security while delivering quality of service (QoS) and energy-efficiency.
Many works have tried to address these challenges but without a focus on optimizing all of them and
assuming fixed models of environments and security threats. This paper proposes the UbiPriSEQ
framework that uses Deep Reinforcement Learning (DRL) to adaptively, dynamically, and holistically
optimize QoS, energy-efficiency, security, and privacy. UbiPriSEQ is built on a three-layered model
and comprises two modules. UbiPriSEQ devises policies and makes decisions related to important
parameters including local processing and offloading rates for data and computations, radio channel
states, transmit power, task priority, and selection of fog nodes for offloading, data migration, and so
forth. UbiPriSEQ is implemented in Python over the TensorFlow platform and is evaluated using a
real-life application in terms of SINR, privacy metric, latency, and utility function, manifesting great
promise.

Keywords: 5G networks; Internet of Things (IoT); fog computing; edge computing; cloud computing;
Deep Reinforcement Learning (DRL); privacy; security; energy; quality of service (QoS)

1. Introduction

We have come a long way towards realizing Mark Weiser’s 1991 vision of ubiquitous computing,
where anytime, anywhere technologies will penetrate into our daily lives to such an extent that they
become indistinguishable from the environments we live in. Cyber-physical systems (CPSs) such as
smart cities and societies are examples of such environments [1,2]. The vision is to make systems and
applications coexist in these environments, interacting with each other, producing and consuming
historical and real-time information emanating from humans, sensors, and machines, and improving
quality of life in many areas, for example, transportation [3–6], healthcare [7], and others [8].

The Internet of Things (IoT) is a vital technology to enable sensing, actions, and other interactions
among various “entities” in these ubiquitous environments [9–12]. The number of “things” connected
to the IoT is expected to reach 50 billion by 2020 due to the massive influx of diverse “things” emerging
rapidly [13]. This will enable us to monitor and control our environments at micro-levels, in time
and space, advancing the path to providing interactive, personalized, and smarter services. However,
it will also require solving challenges related to transport, management and analysis of data generated
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from IoT, particularly the challenges related to the 4Vs of big data analytics (Volume, Velocity,
Variety, and Veracity) [9,14]. Any movement of data requires energy and could increase latency.
The data, analytics, and other computations would have to be optimally migrated and placed in these
environments—on the device, or in the cloud, fog, or edge layers—such that various energy efficiency
and QoS demands of these applications and the environments are best satisfied. The ubiquitous
environments hence will need reliable, high speed, and low latency wireless networks.

5G networks with their significantly higher speeds (50 Mbps—Gbps), lower-latency, reliability,
capacity, and other benefits offer a powerful communication platform for ubiquitous environments [15].
However, privacy and security of users and data will pose paramount challenges in the adoption of
these ubiquitous environments by governments, industry, and common people. A particular challenge
in this context would be to preserve privacy and security while delivering quality of service (QoS) and
energy-efficiency.

Several works have tried to address these challenges (QoS, energy efficiency, security, and privacy)
in distributed environments [16–21]. Despite these efforts, a number of gaps exist (see Section 2 for a
detailed literature review). Firstly, the focus of the existing approaches is on improving or optimizing
one or two of the design parameters—QoS, energy efficiency, security or privacy. Optimizing one
or more parameters without measuring and counteracting their impact on other parameters is no
more acceptable in the emerging ubiquitous environments. Secondly, existing approaches assume
a fixed network configuration and attack models, and use fixed strategies in devising solutions.
However, real environments are unpredictable and hence a priory identification of all design and
operations parameters is not feasible. Solutions are needed that dynamically and adaptively devise
strategies and make decisions in rapidly changing ubiquitous environments and holistically optimize
performance subject to varying sets of policy constraints.

This paper proposes UbiPriSEQ, a framework that adaptively, dynamically, and holistically
optimizes QoS, energy-efficiency, security, and privacy of IoT devices and 5G heterogeneous
networks (HetNet) based environments. The Framework is built on a three-layered model of
ubiquitous environments (IoT Devices Layer, FRAN Layer, and Core Layer). It comprises two modules
(Device Module and Network Module). Device Module executes within the IoT Devices Layer,
and Network Module runs in both the FRAN Layer and Core Layer. See Figure 1. For background on
Core Layer, FRAN Layer, and IoT Devices Layer, see References [17,22–28].
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Figure 1. The network and architectural overview of UbiPriSEQ.
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UbiPriSEQ allows various IoT devices and other entities to fulfil their computing and data
requirements while also managing their privacy and security needs. For example, a smartphone
may need to offload a deep learning (DL) computation and associated data to FRAN Layer due
to its low-latency constraints and the lack of computing resources to execute the computation on
board. Larger and latency-tolerant jobs that require bigger resources are offloaded to Core Layer,
which comprises clouds, high performance computing (HPC) clusters, big data analytics facilities,
and other infrastructures. The data and computations may also be offloaded or migrated due to
security and privacy reasons, or perhaps because the data required by a computational job at a device
resides in FRAN Layer. Many other possibilities also exist.

Device Module decides whether to offload computations to the fog or cloud, or run locally. This is
done while managing privacy, priority, energy-efficiency, and QoS requirements of the computations.
Network Module devises policies for data migration between fog nodes to preserve privacy. It also
broadcasts dummy signals to confuse eavesdroppers to address privacy and security concerns. The two
modules continuously learn from each other and adaptively optimize the ubiquitous environment.
All in all, UbiPriSEQ devises policies and makes decisions related to a number of important parameters
including local processing and offloading rates for data and computations, radio channel states,
transmit power, task priority and selection of a fog node for offloading, data migration, and others.
These decisions are made dynamically, adaptively, and holistically, as needed, and based on the
environment to optimize QoS, energy efficiency, security and privacy. The operational intelligence in
UbiPriSEQ is provided by Deep Reinforcement Learning (DRL).

The UbiPriSEQ framework proposed in this paper is novel for several reasons. As mentioned
above, the earlier works have focused on one or two of the network design parameters while we
attempt to holistically optimize QoS, energy efficiency, security, and privacy (data privacy, user location
privacy, and user pattern privacy). Secondly, UbiPriSEQ adaptively and dynamically deals with
the environment by continuous learning, and does not need a priory complete specification of the
environment, security attack models, and other design parameters. Thirdly, we use DRL to provide
adaptive intelligence which has not been investigated before in 5G networks. Fourthly, most existing
works use simulated data for performance evaluation while we have used SpMV, a real-life application
to study UbiPriSEQ performance, and this has not been reported before. The SpMV operation is central
to deep learning algorithms and this per se would create a significant impact.

The rest of the paper is organized as follows. Section 2 reviews the relevant works.
Section 3 discusses system design requirements. Section 4 describes the UbiPriSEQ framework and
Section 5 evaluates the system. Section 6 concludes and gives future directions.

2. Related Work

Many works have focused on offloading computations to fog or edge devices in order to address
latency and energy consumption. Zhang et al. [29] and Liu et al. [30] address latency optimized and
energy optimized offloading respectively. Sun et al. [31] optimizes the computational energy efficiency
and latency on offloading to the mobile edge. Jiao et al. [20] and Dong et al. [19] discuss multi-user task
offloading, which involves multiple users offloading tasks to an edge server. Partial offloading which
involves both local processing and edge processing to reduce latency and energy have been discussed
by Ren et al. [32] and Kuang et al. [33] respectively. Cooperative offloading, i.e., offloading computation
tasks with the help of relay nodes to MEC servers far from the users to meet the computational
demands, have been discussed in Reference [34]. Task offloading with energy-harvesting have been
discussed by Mahmood et al. [35] and Xu et al. [36]. Extensive literature on this work can be found
in References [21,37]. However, these works does not address the privacy or security issues faced by
the users and the user devices.

Privacy (especially location-based privacy) have been explored in various networking
environments such as wireless sensor networks [38], wireless networks [39], and location-based
services [40]. Data privacy has been studied extensively leading the development of several
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new encryption techniques and distributed multi-party computational solutions; see for
example, References [41–43]. Large number of works have discussed the privacy and security issues
while offloading computations in an MEC network (see the surveys in References [17,18]). However,
most of these works address privacy and security issues derived from older cloud based systems.
There are only a few works that address privacy and security issues specific to edge and fog networks.
He et al. [44] have proposed Constrained Markov Decision Process (CMDP) based technique for
offloading computations to the mobile edge to reduce energy consumption and delay with a goal to
maintain a pre-specified level of privacy (location and usage pattern). Preserving location privacy
while optimizing the energy consumption in presence of a compromised edge service provider have
been discussed in Reference [45], where a deep post decision state (PDS) learning algorithm that
exploits information about energy harvesting process, has been proposed to offload to various edge
devices so that the energy consumption is minimal while maintaining specified privacy. He et al. [46]
propose privacy-preserving and cost-efficient (PEACE) task offloading scheme that can preserve
user location privacy when there is a user presence inference attack that invades user privacy when
offloading tasks to the edge nodes. PEACE is developed based on Lyapunov optimization framework.
These works have mainly focussed on offloading with privacy without considering security and other
design challenges.

Even though physical layer security techniques such as noisy signals and receiver jamming ([47])
have been utilized to promote the security and privacy of the conventional wireless communication
systems [48], there are very few recent works that utilize such techniques. A novel secure offloading
scheme based on physical layer has been proposed in Reference [49]. In this work, the edge server
broadcasts jamming signals and utilizes full duplex communication to impede the eavesdroppers
and reduce the self interference. The optimal jamming signal and offloading ratio is solved as a
bilevel optimization problem. Efficient offloading algorithm is developed based on this technique.
Similarly, Zhao et al. [50] utilize a physical layer based technique and massive multiple input multiple
output (mIMO) to provide security while the user’s total energy consumption is minimized by jointly
optimizing the user’s offloading data bits, transmission power, and offloading rate. A user side secure
sub-carrier allocation has been studied in Reference [50]. Unmanned aerial vehicle (UAV) secure
offloading for single antenna mobile edge systems have been studied in Reference [51]. A block chain
based cooperative computation offloading and resource allocation scheme considering security and
privacy have been discussed in Reference [52]. These works have mainly focussed on offloading
with security without considering privacy and other design challenges (except the last work [52] that
considers both security and privacy).

The literature review shows that the focus of the existing approaches is on improving or optimizing
one or two of the design parameters while we propose to holistically optimize QoS, energy efficiency,
security, and privacy. Also, the way our proposed framework UbiPriSEQ adaptively and dynamically
deals with the environment by continuous learning is not seen before. Moreover, the use of DRL to
provide adaptive intelligence in 5G networks is also novel. Finally, no work similar to UbiPriSEQ exists
that have used a real-life application (SpMV) to implement and study the system performance.

3. UbiPriSEQ: System Requirements

We discuss here the design challenges for 5G IoT HetNets [53–56], which we have used as the
software design requirements for the UbiPriSEQ system.

3.1. QoS

Satisfactory QoS is the primary goal for network design. QoS metrics include throughput,
packet loss, bit error rate, throughput, latency, jitter, and others. While all QoS metrics are important,
latency has become a bottleneck due to emerging interactive, real-time, and safety-critical applications,
for example, online gaming, augmented reality, 4K video streaming, drone control, and remote surgery.
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3.2. Energy-Efficiency

Energy-efficiency (using less energy to perform the same task) has become a key goal in
designing any systems, vehicles, buildings, software, and so forth. The drivers include reducing
greenhouse gas emissions for planet sustainability, costs, and power requirements. For instance,
offloading computations to fog instead of cloud could reduce energy usage significantly.

3.3. Privacy

We have addressed the following types of privacy in UbiPriSEQ design.

3.3.1. Location Privacy

Service providers, eavesdroppers, and other attackers can estimate the location of the users
with ease via analyzing the offloaded data. Specifically, the user location can be inferred in several
ways. Analysis of offloaded data pattern, including the size and channel state, enables the service
providers (fog nodes) as well as eavesdropping attackers to deduce the distance to the mobile
user. Moreover, the service providers with multiple fog nodes or attackers can use techniques like
triangulation to estimate the exact location of the user when the data is offloaded to multiple fog nodes.
Hence, the offloading strategy should grantee location privacy.

3.3.2. Usage Pattern Privacy

This is a critical issue missing in the majority of existing research [44]. The fog nodes or attackers
can estimate the usage pattern of the user by analyzing the number of tasks generated and the size
of each task. As the mobile devices offload all tasks (including queued tasks and newly generated
tasks) to fog node to enhance the computational latency when in good channel radio state, the personal
information about the mobile device’s usage pattern can be obtained by observation. Task offloading
history and other related network statistics of the mobile user can be analyzed by the fog nodes to infer
and identify the user in the network. This enables the fog node as well as eavesdropper to deduce the
specific applications and usage times of a given user.

3.3.3. Data Privacy

Ensuring the confidentiality and privacy of the stored data at the fog nodes constitutes data
privacy. With the advent of 5G networks, a huge volume of data from safety-critical applications such
as banks and health care is generated and stored in the fog nodes as well as the clouds. Protecting this
data during transmission, computation, and storage requires privacy and security policies.

3.4. Security

We have addressed the following critical security challenges in UbiPriSEQ design.

3.4.1. Jamming

Jammers utilize noisy signals to interrupt radio communication between the fog nodes and
devices and prevents offloading of computations and data, affecting the network resources including
bandwidth, computational and energy resources.

3.4.2. Rogue Fog Nodes and Users

Rogue nodes, devices, or users can masquerade as a genuine entity and deceive others into
connecting to it, gaining access to confidential and personal information. They can perform a man in
the middle attack, which results in data loss and even loss of device control.
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4. UbiPriSEQ: The Proposed Framework

The UbiPriSEQ framework aims to adaptively, dynamically, and holistically optimize QoS,
energy-efficiency, security, and privacy of 5G IoT HetNet-based environments. We describe here
UbiPriSEQ, its architecture (Section 4.1), its brain (Section 4.2), and the two functional modules
(Sections 4.3 and 4.4).

4.1. UbiPriSEQ: Architectural Overview

UbiPriSEQ is built on a three-layered model of ubiquitous environments comprising
IoT Devices Layer (dLayer), FRAN Layer (fLayer), and Core Layer (cLayer). Figure 1 provides its
overview, and Figure 2 accentuates its two functional components, Device Module (DevM) and
Network Module (NetM).

dLayer [17,25–28] comprises devices (smartphones and other smart “things” in IoT) that produce
or consume data or take certain actions. fLayer consists of a macro base station and several micro
base stations along with several fog nodes. FRAN (Fog Radio Access Networks) is a paradigm for 5G
networks to provide high spectral and energy efficiency [23]. The idea behind FRAN is to take full
advantage of local radio signal processing, cooperative radio resource management, and distributed
storing capabilities in edge devices, which can decrease the heavy burden on fronthaul and avoid
large-scale radio signal processing in the centralized Baseband Unit (BBU) pool [24]. The fog nodes
near the micro base stations can locally store and process the data. Both the fog nodes and the
micro base stations have caches; however, the data stored in them are not the same. Fog caches have
more locally relevant data than the micro base station caches. cLayer [22] consists of the BBU pool
connected through the wider Internet with clouds and HPC clusters, dealing with larger, delay-tolerant,
applications that require large compute and storage resources. DevM executes in the dLayer on
all devices and NetM executes in both fLayer (not in all fog nodes, rather centralized) and cLayer
(see Figures 1 and 2). The two modules continuously learn from each other and adaptively optimize
the ubiquitous environment.
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Figure 2. The functional architecture of Privacy Aware High Capacity Low-Latency Offloading
(Device Module) and Defense against Attacks and Data migration (Network Module) components
in UbiPriSEQ.

4.2. UbiPriSEQ: Adaptive Learning Architecture

Deep Reinforcement Learning (DRL) is UbiPriSEQ’s brain. Reinforcement Learning (RL) enables
agents to take optimal decisions through observations and feedback received from the system in terms
of positive or negative rewards [57]. Q-Learning is an RL technique in which the agent tries to estimate
the Q value-function iteratively, based on the reward obtained from an action, which indicates the
optimality of the action in a given state of the system. Many techniques exist to find the Q-value.
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We use here Deep Q-Network (DQN), a DRL technique that uses a Deep Learning Network for
estimating the Q-values. DQNs leverage Deep Neural Networks (DNNs) to train the learning process
by the involved agents thereby improving the learning speed and the performance of Q-Learning
algorithms. We discuss the DQN in detail, later in Section 4.3.5.

In UbiPriSEQ, a learning agent could be an IoT device, or edge or fog device, situated near the
remote radio head at the micro base stations. An action corresponds to various privacy policies,
security policies, defending mechanisms against attacks, and offloading policies. A state is the state of
the agent, other devices, fog nodes, various attacks, and privacy characteristics observed by an agent.
A search for the best Q-function terminates when an optimal strategy is found. The fog and other
devices need to explore and exploit various actions to discover the best action providing an optimal
reward. Sufficient interaction with various privacy leaking states and various attack states enable it to
reach the optimum action for each state.

4.3. Device Module (DevM)

The main functions of Device Module (DevM) are to offload computations to the fog or cloud,
or run locally, while managing privacy, priority, energy-efficiency, and QoS. The algorithm for
Device Module is given in Algorithm 1. The explanation of Device Module and its algorithm follows
in Section 4.3.1 to Section 4.3.5.

Algorithm 1 Device Module (DevM)

Input: system state st
Output: action at = [al

t, at
t, ab

t , f ]
1: Set Q(st, at) with random weights θ0
2: while ¬converged do
3: observe dt, bt, and lt
4: compute ζt
5: estimate ht
6: st ← {dt, bt, lt, ht, ζt, sinrt}
7: if t ≤ K then
8: Select at ∈ A at random
9: else

10: Form experience sequence
11: Φt = ((st−K , at−K), · · · , (st−1, at−1), st)
12: Input Φt to the DNN
13: [Q(Φt, at)]← get Q-value for A using DNN
14: ε← random(0,1)
15: take action at with probability εt

16: at(al
t, at

t, ab
t , f )← at

17: end if
18: locally compute al

t; keep ab
t in buffer; and

migrate at
t tasks to fog node f

19: Prid(st, at)← |gt − tt|+ wl
20: obtain the latency tt
21: u fn ← Prin(st, at)− µ · ζt · tt − ρ + η · sinrt
22: P ← P ∪ (Φt, at, ud(t)d , Φt+1)
23: for x ∈ DNN mini-batch do
24: Select Φt ∈ P at random
25: Calculate DNN loss as per Equation (6)
26: end for
27: Update DNN weights θt using gradient descent
28: t← t + 1
29: end while
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4.3.1. DevM: Workflow

DevM observes the current channel state and task buffer, and takes a set of actions (i.e.,which tasks
to process locally, and which ones to be offloaded, to which fog/cloud node, etc.) based on the current
Q-value (obtained from the training phase) or at random with a small probability (see Section 4.3.5).
A reward (also known as utility) is associated with each set of actions taken. The utility could be
positive or negative, depending on whether DevM is able to improve the functional parameters, that is,
privacy, QoS, and energy-efficiency. Subsequently, DevM computes the new Q-value using DQN,
and based on it decides the set of actions. This process is repeated iteratively until an optimal Q-value
is found. Figure 2 in the left block depicts DevM’s process flow.

We now explain how DevM computes its functional parameters—privacy (Section 4.3.2), QoS and
energy-efficiency (Section 4.3.3)—utility (Section 4.3.4), and Q-value (Section 4.3.5).

4.3.2. DevM: PrivacyMetric

The PrivacyMetric Prid(st, at) for the state st and action at at time t is defined in Equation (1).
The variable gt is the number of tasks generated, ot is the number of tasks to be transmitted,
wl (PrivacyWeight) is the weight that determines the relative importance of the location privacy
compared to the usage-pattern privacy, and ht indicates the channel state. The channel state, ht,
is modeled as a Markov process with two states {0, 1}. The variable wl takes the value w, ∀w ∈ R+

(the required level of usage pattern privacy), when the channel state is “bad”, otherwise it is zero for
“good” state (see Reference [44]). Simply put, under ‘good’ channel state, PrivacyMetric is the absolute
difference of all the computational tasks produced by a device and the tasks offloaded to fog or cloud.

Prid(st, at) , |gt − ot|+ wl

wl =


0, if ht == 0

w, if ht == 1, ∀w ∈ R+

.

(1)

DevM maintains usage pattern privacy and breaks any patterns in PrivacyMetric value over time
by adding PrivacyWeight and intentionally delaying offloading to avoid attackers detecting a usage
pattern. DevM is able to hide usage pattern and hence attackers are unable to detect the device’s
location which could have been compromised due to the device’s connection with a known or rogue
node or base station (using distance or trilateration). DevMPrivacyMetric estimates the usage pattern
privacy and location privacy.

4.3.3. DevM: QoS and Energy-Efficiency

DevM provides higher QoS by selecting the fog or cloud nodes that have SINR higher than a
threshold. Moreover, it improves QoS further by utilizing latency constraints of tasks in setting task
priorities, and offloading lower-priority tasks to fog or cloud only if needed. Energy-efficiency is
improved by DevM by attempting to execute tasks locally if possible, otherwise on fog, and then
on cloud.

4.3.4. DevM: Reward Function (Utility)

DevM in each time t observes various parameters from the device and network (newly generated
tasks by the device, SINR, etc.), and stores them as the state in time t. This state is used to compute
the utility or the rewards (udd), which is a weighted function given by Equation (2). The reward/utility
function provides a higher reward when the task offloading meets the objectives (privacy, latency,
QoS) and a lower reward when an offloading is far from our objectives. It is computed by adding
PrivacyMetric (given by Equation (1)) and SINR (sinrt), and subtracting tasks’ computational costs (ct),
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tasks’ communication and queuing delays (bt), and the loss to the device due to the tasks’ execution
delays (ρ). All the parameters are weighted (µ, ω, η) based on their relative importance. DevM tries to
achieve a higher utility, so parameters such as SINR are added while others such as costs are subtracted.
DevM adds each utility for time t, and its associated action (offload policy) to an Experience Sequence
(i.e., the accumulated knowledge).

udd , Prid(st, at)− µ · ct − ρ−ω · bt + η · sinrt. (2)

4.3.5. DevM: Q-Value

DevM comprises a DQN that consists of an input layer, two hidden convolutional layers, a rectifier
linear unit layer, and two fully connected output layer. The weights in the CNN are updated using
gradient descent optimization [58] based on the previous attack experiences.

The state transits from the state st to st+1 when the agents offload data to the selected fog node
at state st. Based on different offloading experiences denoted by (st, at, ud(t)d , st+1), the Q-function
update of the state-action pair, using general RL based technique can be computed as

Q(st, at)← (1− α)Q(st, at) + α
(
ud(t)d + γ max

at∈A
Q(st+1, at)

)
, (3)

where α ∈ (0, 1] is the learning rate denoting the weight of the current experience and γ ∈ [0, 1]
denotes the view of the agents regrading the future rewards. However, the DQN computes the Q-value
for each time t by learning from the replay memory (Experience Sequence). The experience sequence
(replay memory) Φt consists of the current system state st and the previous K state-action pairs,
given by:

Φt = ((st−K , at−K), · · · , (st−1, at−1), st) . (4)

The experience sequence Φt is fed as input to the first convolutional layer in DQN. The output
of the first convolutional layer is then passed through a rectified linear unit (ReLU) as an activation
function. The output of ReLU is passed through the second convolutional layer. The outputs from
second convolutional layer is then passed to fully connected layers to obtain the Q-value for all the
possible actions |A| (offloading strategies) at current sequence Φt. Subsequently, in time t, DevM takes
an action for offloading based on the Q-value with a probability 1− ε, or takes a random action with a
minute probability ε (to explore various rewards and reach global optimum reward).

Once the results are obtained from the offloaded computation the agents update their reward
using Equation (2) and the offloading experience (Φt, at, ud(t)d , Φt+1) is stored in the memory pool
denoted by P . As per the experience replay technique, the agents randomly select an experience from
the pool to update the CNN weight θt. The mean squared error is used to calculate the loss between
the networks output and the optimal Q-value. The Q-function for each state-action pair in a DQN is
given below:

Q(Φt, at, θt) = E
[

ud(t)d + γ max
at∈A

Q(Φt, at)|Φt, at

]
, (5)

where Φt is the next state sequence based on the selection of the offloading policy at at state Φt and
θt is the weight of DNN at time t. Furthermore, every T time steps, the Q-network is duplicated to
obtain a target network to obtain the target Q-values so that updated DNN weights can be obtained.
The target optimal Q-function Qopt(Φt, at, θt) is given as follows:

Qopt(Φt, at, θt) =

[
ud(t)d + γ max

at∈A
Q(Φt, at, θt−1)|Φt, at

]
(6)

and hence the loss is computed as follows [59]:

L(θt) = Q(Φt, at, θt)−Qopt(Φt, at, θt). (7)
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This explains the loss calculation and weight updating in DQN as well as Q-value compuations
using DQN.

4.4. Network Module (NetM)

The data sent to the fog nodes for task processing and other cached data in fog needs to be
protected against privacy leakages and eavesdroppers. Network Module (NetM) devises policies for
data migration between fog nodes to preserve privacy and broadcasts dummy signals to confuse
eavesdroppers to address privacy and security concerns. The algorithm for Network Module is given
in Algorithm 2 and is explained in the following.

Algorithm 2 Network Module (NetM)

Input: system state st
Output: action at = [acl

t , ac f
t , acc

t , c, f , f r]
1: while ¬converged do
2: observe acl

t , ac f
t , and acc

t
3: compute ζt
4: estimate ht
5: st ← {ct, ht, ζt, sinrt, δ}
6: if t ≤ K then
7: Select at ∈ A at random
8: else
9: Form experience sequence

10: Φt = ((st−K , at−K), · · · , (st−1, at−1), st)
11: Input Φt to the DNN
12: [Q(st, at)]← get Q-value for A using DNN
13: ε← random(0,1)
14: take action atwith probability εt

15: at(acl
t , ac f

t , acc
t , c, f )← at

16: end if
17: locally store acl

t ; transmit ac f
t to fog node f

migrate acc
t from fog to cloud node c

send dummy signal with frequency f
18: Prin(st, at)← 1

p(K(Di)∈M)−p(K(Dj)∈M)
19: obtain the latency tt
20: u fn ← Prin(st, at)− µ · ζt · tt − ρ + η · sinrt
21: P ← P ∪ (Φt, at, ud(t)d , Φt+1)
22: for x ∈ DNN mini-batch do
23: Select Φt ∈ P at random
24: Calculate DNN loss using Equation (6)
25: end for
26: Update DNN weights θt using gradient descent
27: t← t + 1
28: end while

NetM workflow is the same as of DevM (see Section 4.3.1), i.e., it observes its environment
and takes a set of actions (see Figure 2). The difference lies in the specific observations and set of
actions it takes, the way it calculates the PrivacyMetric and Utility, and the parameters it tries to
improve. The observations include cache content, channel state, task priority, and SINR. The actions
include which data to keep, and which ones to be offloaded, to which fog/cloud node, and which
basestations the dummy signal is broadcasted to. The PrivacyMetric used by NetM, Prin(st, at),
defined in Equations (8), is based on differential privacy, i.e., the difference in hamming distance
between two data blocks (from two arbitrary devices) present at a fog node should not exceed a
certain threshold (i.e., required privacy) because a higher difference could allow attackers to identify
types and content of data, and the device. NetM PrivacyMetric estimates the data privacy unlike the
PrivacyMetric in DevM.
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K is a privacy operation (Laplace mechanism) that operates on two data sets Di and Dj received
at a fog node from two arbitrary devices, i and j. M is the local memory of the fog node and εdi f f
is the privacy parameter in differential privacy. Prin(st, at) can be considered as the lower bound
differential probability parameter exp(εdi f f ) [42].

Prin(st, at) =
p(K(Di) ∈ M)

p(K(Dj) ∈ M)
. (8)

The utility function (reward) udn is computed by Equation (9). Prin(st , at) represents the data privacy
metric for NetM. ct is the tasks’ aggregated computational costs and sinrt is SINR at time t; µ and η

are the weights giving their relative importance, respectively. ζt is the priority of the task and ρ is the
loss to the device when the computations are not performed in the given time threshold.

u fn , Prin(st, at)− µ · ζt · ct − ρ + η · sinrt. (9)

5. UbiPriSEQ: System Evaluation

We now evaluate the performance of UbiPriSEQ using SpMV computations (see Section 1).
We have implemented the UbiPriSEQ framework in Python over the TensorFlow platform.
The UbiPriSEQ system is evaluated using a real-life application of prime significance,
Sparse Matrix-Vector product (SpMV). SpMV computations are fundamental to many scientific,
engineering, business, and social applications that provide timely intelligence for the design,
operations, and management of ubiquitous environments [60–67]. SpMV is also utilized in newer
compressed Deep Neural Networks with pruned layers for computations [68]. The sparse matrices
used for our experiments are from the University of Florida Sparse Matrix Collection consisting of
a varied number of applications such as thermal, economics, optimization, and structural design
(https://sparse.tamu.edu/). We have studied the performance of the UbiPriSEQ system for a range
of SpMV computations and metrics including SINR, privacy metric, latency, and utility function and
have compared it with constrained Markov Decision Process (CMDP) [44].

The experiments were run on a machine with 12 core Intel Xeon CPU with clock frequency of
3GHz, 32 GB RAM, and an Nvidia Quadro GPU. The edge nodes based on Jetson Nano has a Quad-core
ARM A57 CPU with 1.43 GHz frequency, 4 GB RAM, and Ethernet connectivity. The storage of fog
nodes is using microSD. The experiments were performed based on one-second time slots. The number
of devices in IoT Devices Layer to the number of fog nodes is 1:3. The ε for the greedy selection in
DRL is xt, where x is a real number in the range (0, 1), and t is the time [57]. The default network
parameters used in the experiments have been depicted in Table 1. The jamming attacks are modeled
as interfering signals/noise in the experiment. Some devices and fog nodes are modeled as “rogue”
and UbiPriSEQ detects and defend itself from these.

Table 1. UbiPriSec: Experimental Network Parameters.

Parameter Value

System bandwidth 10 MHz
Transmit power of user nodes 10 dBm
Number of fog nodes 30
Number of user nodes 90
Processing Density 4 double-precision FLOPS/cycle [69]
Fog compute power 10 GHz
Sparse Matrix Size [10, 40,000] KB
Learning Rate 0.8
Discount Factor 0.7
Privacy weight 5
Task arrival rate [0, 5]
Selection probability: ε xt, ∀x ∈ (0, 1), t ∈ R

https://sparse.tamu.edu/
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Figure 3 compares performance of UbiPriSEQ (both DevM and NetM combined) with CMDP in
terms of PrivacyMetric, SINR, latency, and utility against clock-time. The utility is the average of all
DevM and NetMutilities (Sections 4.3.4 and 4.4). The PrivacyMetric is also an average (Sections 4.3.2
and 4.4). The latency is the average latency including the tasks’ aggregated computational costs,
and the queuing and transmission delays. Figure 3a compares provided privacy levels and shows
that UbiPriSEQ outperforms CMDP by 25% on average (computed by the average difference between
the two privacy levels). UbiPriSEQ achieves a higher-level of privacy at a faster rate due to the data
migration policies not seen in Reference [44]. We achieve a higher QoS due to better defenses against
the attacks. Figure 3b plots SINR and shows an average improvement in the network QoS by 22%
in the presence of jamming signals and eavesdroppers. Figure 3c shows that UbiPriSEQ minimizes
the average latency at a faster rate then CMDP with the maximum difference against CMDP of 74%
2.19× 105 seconds (lower difference in latency is seen later after the systems stabilize). Figure 3d
shows better average utility for UbiPriSEQ compared to CMDP, 33% on average.
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Figure 3. UbiPriSEQ: Performance vs. Time (a) PrivacyMetric, (b) SINR, (c) Latency, (d) Utility.

Figure 4 depicts the performance of UbiPriSEQ and CMDP for the same four metrics as in
Figure 3 against the task and data sizes (SpMV computations for matrices of sizes ranging between
10 KB and 40 MB). UbiPriSEQ outperforms CMDP, on average, for PrivacyMetric by 1.12×, SINR by
1.25×, latency by 1.20×, and utility by 1.18×.
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Figure 4. UbiPriSEQ: Performance vs. Task and Data Sizes (a) PrivacyMetric, (b) SINR, (c) Latency,
(d) Utility.

These results illustrate that UbiPriSEQ was able to defend and recover from security issues in
the network. UbiPriSEQ is successful in selecting the best offload and migration policies that ensure
improved privacy, security, and QoS including latency, energy-efficiency, and reliability. The dynamic
learning process in both the modules enables both the fog devices as well as the edge devices to
optimize the offloading strategy while preserving user privacy and security. This multi-agent learning
enables the devices to learn and decide the offloading decisions based on the strategies taken by the
network module to provide security. Similarly, at the same time, the network module learns from the
effects of the strategies taken by the device module to provide a better security (jamming, noise, etc.)
strategy while maintaining the required privacy. This process of learning by modules from each other
provides theUbiPriSEQ framework a better performance compared to the CMDP-based approach [44].
Moreover, as we have mentioned earlier, the CMDP-based approach [44] has only focussed on privacy,
while we propose a holistic framework to optimise multiple design goals, and this differentiates our
work from all the state-of-the-art relevant approaches.

6. Conclusions and Future Work

5G networks with their significantly higher speeds, lower-latency, reliability, capacity, and other
benefits offer a powerful communication platform for ubiquitous environments. The complexity
of today’s ubiquitous environments have become increasingly complex due to the emergence of
collaborative edge, fog, and cloud paradigms. However, privacy and security of users and data
will pose paramount challenges in the adoption of these ubiquitous environments by governments,
industry, and common people. A particular challenge in this context would be to preserve privacy
and security while delivering quality of service (QoS) and energy-efficiency. Several works have
tried to address one or more of these challenges (QoS, energy efficiency, security, and privacy) in
distributed environments.
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Despite these efforts, a number of challenges exist. Firstly, the focus of the existing
approaches is on improving or optimizing one or two of the design parameters; QoS,
energy efficiency, security or privacy. Optimizing one or more parameters without measuring and
counteracting their impact on other parameters is no more acceptable in the emerging ubiquitous
environments. Secondly, existing approaches assume a fixed network configuration and attack models,
and use fixed strategies in devising solutions. The ultimate aim is to optimally migrate and place data,
analytics, and other computations in these environments such that security, privacy, energy efficiency
and QoS demands of these applications and the environments are best satisfied [8,70–73].

In this article, we proposed UbiPriSEQ that uses DRL to adaptively, dynamically, and holistically
optimize QoS, energy-efficiency, security, and privacy. The Framework is built on a three-layered model
and comprises two modules. UbiPriSEQ devises policies and makes decisions related to a number
of important parameters including local processing and offloading rates for data and computations,
radio channel states, transmit power, task priority, selection of fog nodes for offloading, and data
migration. We evaluate UbiPriSEQ and compare it with the CMDP-based approach [44]. The results
of our modular approach show clear performance gain over the CMDP-based approach as well as
addresses other challenges that the CMDP-based approach does not address (e.g., security).

Our UbiPriSEQ framework is novel for several reasons. In contrast to the existing state-of-the-art,
we attempt to holistically optimize QoS, energy efficiency, security, and privacy. Also, UbiPriSEQ is
designed using a modular approach. It adaptively and dynamically deals with the environment
by continuous learning, and does not need a priory complete specification of the environment,
security attack models, and other design parameters. Moreover, DRL has not been used before
in 5G networks to provide adaptive intelligence. Finally, most existing works use simulated
data for performance evaluation while we have used SpMV, a real-life application to study
UbiPriSEQ performance, and this has not been reported before. The SpMV operation is central
to deep learning algorithms and this per se would create a significant impact.

We would like to note here that while the experimental results reported in this paper show
that UbiPriSEQ outperforms CMDP [44], the excellence of one scheme over the other cannot be
proved by a set of simulated experiments. Although we have given some valid justifications for
UbiPriSEQ outperforming CMDP (see the last paragraph in Section 5), this is not a mathematical
and absolute proof that UbiPriSEQ is better than CMDP. Many deeper investigations and actual
deployments of the proposed work are needed to understand and improve the proposed approach.
Nevertheless, we believe that UbiPriSEQ does provide overall a better approach for network design
and operations due to its holistic and modular approach.

Going forward, we aim to explore integrating blockchains with UbiPriSEQ, which would enable a
highly secure and private network for data and task offloading. We also aim to improve privacy metrics
to improve better integration of various types of privacy. While UbiPriSEQ proposed in this paper
provides a first step towards holistic optimization of 5G-based ubiquitous environments, this is just
the beginning of an exciting quest; much more needs to be done in perfecting the various dimensions
of UbiPriSEQ system.
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