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Abstract—Most of the applications in speech use mel-frequency
spectral coefficients (MFSC) as features as they match the
human perceptual mechanism, where the emphasis is given to
vocal tract characteristics. But in accent classification, mel-scale
distribution of filters may not always be the best representations,
e.g., pitch accented languages where the emphasis should be on
vocal source information too. Motivated by this, we use end-to-
end classification of accents directly from waveforms which will
reduce the effort of designing features specific to each corpus. The
convolution neural network (CNN) model architecture is designed
in such a way that the initial layers exhibit similar operation as
in MFSC by initializing the weights using time approximate of
MFSC. The entire network along with initial layers is trained
to learn accent classification. We observed that learning directly
from waveform improved the performance of accent classification
when compared to CNN trained on hand-engineered features
by 10.94% UAR on the test dataset of common voice corpus.
Analyzing the filters after learning, we observed changes in
distribution and bandwidths of center frequencies. We further
observed the importance of appropriately initializing CNN filters.

Index Terms—Accent classification, convolution neural net-
work, raw waveform, first order scattering transform.

I. INTRODUCTION

The speech of speakers belonging to a particular region
exhibit some similar patterns in pronunciations that distinguish
from other areas. These dissimilarities in the patterns of
pronunciations due to geographic spread or socio-regional
or influence of first language of the speaker are termed as
accents/dialects of speech. Dialect is the super-class of accents
which further includes vocabulary and grammatical variations.
This paper focuses on accent, i.e., pronunciation variations.
Accent specific automatic speech recognition (ASR) [1] or
deep accent embedding derived from a network trained to
classify accent can improve the performance of the ASR
system [2].

Previous studies on automatic classification of accent/dialect
is divided into three areas: the first one is to find the ap-
propriate frame-level feature extraction which contains accent
components, second representing variable-length features in
compact and fixed representations, and third is to design better
classifiers. Accent can be varied in speech either in acoustics
(distribution of sounds, stress, rhythm, and intonation patterns)
[3]–[6] or phonotactics (sequence of sounds) [7]–[10] of the
speech.

Representing the spectral features in unsupervised and
compact form is the most popular area of research, where
interesting approaches such as i-vectors [3], [4], [11], [12],
unsupervised bottleneck features (uBNF) [13], [14], autoen-
coders with recurrent neural networks [15] and factorized
hierarchical variational autoencoder (FHVAE) are explored.
The most widely used classifiers are support vector machine
(SVM), linear discriminant analysis (LDA) and its variants
such as quadratic discriminative analysis (QDA), probabilistic
linear discriminant analysis (PLDA), and heteroscedastic linear
discriminant analysis (HLDA) [12], [16]–[18].

With the invent of convolution neural networks (CNN) in
dialect classification [19], [20] which can handle variable
length utterances along with classification, three stages re-
duced to two. In [19], CNNs are evaluated over the Arabic
database (MGB-3) with various acoustic features such as -
mel-frequency cepstral coefficients (MFCC), log mel-scale
filterbank energies (FBANK), and spectrogram. This system
outperformed all the other baselines till then. Motivated by
this we considered this system as our baseline system.

There has been a tremendous improvement in the field of
vision [21], [22] by directly learning from pixels. Currently,
some applications of speech explored learning directly from
raw waveform such as speech recognition [23]–[26], speaker
verification [27], emotion recognition [28], and environment
sound recognition [29]. In [30], raw waveform modeling
approaches are used in Styrian dialect identification which per-
formed better than the baseline methods. Inspired by this, we
focus on analyzing the CNN filters trained on raw waveform
for accent classification. Using manually designed filterbanks
arranged non-linearly (mel-scale) might perform well for most
accents of English, but a few of them are pitch accented (Hong
Kong English, South African English, and Welsh), where the
emphasis should be given to voice (glottal) sources than vocal
tract components of speech. Therefore, learning directly from
waveform compensates manual feature engineering based on
the characteristics of the corpus.

In this study, we used an end-to-end convolution neural net-
work (CNN) with the first three layers acting as a replacement
to log mel filterbanks (FBANK). First CNN filter weights are
initialized to the time domain approximated spectral filters
derived using first-order deep scattering spectrum [31]. The
approach used to initialize the weights is similar to that



described in [25], [32]. Then the complete network is trained
along with first layers to classify accents. We conducted
experiments with the common voice database [33]. Major
contributions of this study are as follows:
• To the best of our knowledge, this is the first study to

look into CNN filters while learning directly from raw
waveform for accent classification.

• Compared the rate of convergence when filters initialized
to time-approximate MFSC and random initialization.

• Analyzed the importance of dynamic filterbanks when
compared to fixed filter banks.

• Performance evaluations for CNN filters when initialized
to approximates of linearly placed filterbanks.

The organization of this paper is as follows: Section II
presents the architecture of the raw waveform CNN network.
Section III describes the corpus and the baseline system. The
configuration and the tools used in neural network architecture
is described in Section IV. Section V presents the results with
analysis, followed by a summary in Section VI.

II. RAW WAVEFORM CNN ARCHITECTURE

This section describes the complete architecture of the
neural network used in this study. The left side of the network
in Figure 1 represents the network which is approximate
of computing log mel filterbank energies which we term
as trainable filterbank network (TFN), while the right side
represents the other layers of the network for classifying the
accents. For classifying the network designed using two 1-
dimensional CNN layers followed by three fully connected
(FC) layers. Each layer is defined by aF-bK-cS, where a:
number of filters, b: size of the kernel, and c: stride along
the time axis.

A. MFSC approximated CNN layers

This section gives the overview of initial layers of CNN
which acts as learnable replacement to mel-filter spectral co-
efficients(MFSC). We refereed them as the trainable filterbank
network (TFN) in this study.

1) Trainable filterbank network (TFN) definition: The im-
plementation of the initial layers in TFN is based on studies
reported in [32]. This architecture of this network consists of
three 1-dimensional CNN layers, one L2 pooling layer, one
instance normalization layer and two operations (absolute and
log operations). These layers are structured such that after an
appropriate weight initialization, these acts as a replacement
to MFSC. The structural details of each layer are given below:
(a) First layer: CNN filter operation in this layer is equiva-

lent to pre-emphasis operation.

yt = WXt,

where W is the weight row vector of convolution fil-
ter (size= 1x2), Xti represents the input column vector
[xt−1 , xt] (which represents the previous and present
input along the sequence), and yt represents the output
at time t along time sequence.

(b) Second layer: This is a complex convolution layer with
a filter size 200, and 80 such filters (40 representing
real and other 40 representing imaginary part) which are
initialized to complex Gabor wavelets approximating to
MFSC.

(c) L2 pooling is performed which is the approximation of
modulus operation, which computes the magnitude of the
output from real and imaginary filters, and reduces 80
filters to 40 filters.

(d) Third layer: This CNN filter acts as the square of
the Hanning window with a width of 25 ms (which is
equivalent to 200 samples along the time axis for 8 kHz
as sampling frequency) and a stride variant of 80. There
are 40 such filters in this layer.

(e) Since the weights are not constrained to have positive
values, a log compression over the one added to the
absolute of the output of the previous layer is computed.

(f) Then finally an instance normalization is applied over
the log compressed output to stabilize training, which is
similar to mean-variance normalization.

Biases in all these three convolution layers are set to zero,
to have a similar structure as in the first order scattering
transform.

CNN4
500F-5K-1S

CNN	5
3000F-1K-1S

FC1
3000x1500

FC2
1500x600

FC3
600x8

CNN3
40F-400K-80S

abs(.)+1	and
log(.)

instance
normalization

CNN1
1F-2K-1S

CNN2
80F-200K-1S

Average
pooling

We
igh

ts	
ini
tia
liz
ati
on
	(a
pp
rox

im
ati
on

of	
M
FS
C)

Speech
signal

Hypothesized
accent

L2
pooling

Fig. 1. Raw waveform CNN network architecture for accent classification.

2) Weight initialization: The details of the weight initial-
ization of CNN filters in three layers of TFN are given below:

(i) First layer: The weights of CNN filters ’W ’ in the first
layer are initialized to [−0.97, 1] which makes this layer
computation similar to the pre-emphasize operation of the
speech signal.

(ii) Second layer: We evaluated three variants of weight
initializations in the second layer of TFN. They are
weight initialization approximating mel-scaled filterbank



spectral coefficients, approximating linear-scaled filter-
bank spectral coefficients, and random initialization.
For the first two variants, time domain approximates of
filters are computed based on the first order scattering
transform [31] which is give by:

Mx(t, n) ≈ |x ∗ ψn|2 ∗ |φ|2(t) (1)

where Mx(t, n) represents triangular filterbanks at center
frequency ηn with full width at half maximum (FWHM)
wn. n takes values from 1 to N , where N defines the
number of filters, and φ(t) defines the Hanning window.
In equation (1), ψn defines the wavelet which is an
approximation of nth triangular filter place at center
frequency ηn. Similar to [25], we use Gabor wavelets
for ψn whose equation is given by:

ψn(t) α e
−2πiηnt 1√

2πσn
e

−t2

2σ2n , (2)

where σn is computed from wn, σn = 2
√
2 log 2
wn

. Each
wavelet is normalized to have same energy as triangular
filter and the time support of ψn is constrained to be less
than the window size of φ.
In the first variant, the filters are initialized to the ap-
proximate of MFSC. So, the center frequencies ’η’ of
triangular filters should be spaced based on mel-scale and
the variance σn of each filter is computed from FWHM
of triangular filter. Second variant of initialization is ap-
proximating time domain filters to linearly spaced filters
in frequency domain. Therefore, weights are computed
using right part of the equation (2) by setting the center
frequencies ’η’ of Gabor wavelets to a linear scale. Third
variant is random initialization of weights in CNN filters.

(iii) Third layer: Weight initialization of CNN filters in third
layer is computed by |φ|2(t) from equation (1) which is
the square of Hanning window.

B. Other layers of the network

The architecture of CNN model used in this study has two
variants: first one is the TFN model which is the replacement
of learnable MFSC’s and the second variant of the network is
learned to distinguish accents. For ease of understanding, we
termed this second variant as classifier network. The details
of network architecture of second variant are provided below.

The classifier network has two 1-dimensional CNN layers
(500F-5K-1S and 3000F-1K-1S) which covers a span of 5
frames with a stride of 1. Global averaging is done to get a
fixed-length output of size 3000 passed through three fully
connected (FC) layers with output 1500, 600, and 8. Finally,
the log softmax layer gives a normalized estimated probability.
Rectified linear unit (ReLU) activation [34] with a dropout
[35] of 0.51 is used across the network. The network is
trained with negative log-likelihood (NLL) loss function and
stochastic gradient descent (SGD) optimizer. Since the corpus
which we considered is highly imbalanced, the loss function
is class balanced which is computed based on proposition 1
in [36].

III. CORPUS AND BASELINE SYSTEM

This section describes the corpus used in this study for
evaluations and an overview of the baseline system.

A. Common voice

Common voice corpus (version 1) is collected using crowd-
sourcing from the people across the world [33]. Along with
speech clips of the user, some metadata of the speaker is
collected which includes accent. It is the read speech with
a sampling frequency of 48 kHz. The data collected has
16 accents in English, namely: United States English (US),
Australian English (AU), England English (EN), Canadian
English (CA), Filipino English (FP), Hong kong English (HK),
India and South Asia (IN), Irish English (IR), Malaysian
English (ML), New Zealand English (NZ), Scottish English
(SE), Singaporean English (SG), South Atlantic (Falkland
Islands, Saint Helena) English (SA), Southern African (South
Africa, Zimbabwe, Namibia) English (SAF), Welsh English
(WE), and West Indies and Bermuda (Bahamas, Bermuda,
Jamaica, Trinidad) English (WI). Considering only the speech
utterances for which accent is provided and the utterances
with no downvotes, resulted in a subset of the dataset with
imbalanced distribution of samples across accents. So, we
considered only top frequently occurred 8 accents (SA, AU,
CA, EN, IN, NZ, SE, and US) which resulted in 57356
utterances in train set, 1200 utterances in validation (val.) set,
and 1175 utterances in test set. The average length of utterance
is 4.12 seconds. The distribution of data (in %) is shown in
Table I.

TABLE I
COMMON VOICE DATA DISTRIBUTION (IN %) WITH A TOTAL OF 57356

UTTERANCES IN TRAIN, 1200 IN VALIDATION (VAL.), AND 1175 IN TEST
SETS.

SA AU CA EN IN NZ SE US
train 1.7 6.7 6.3 24.2 6.9 1.8 2.5 49.4
val. 1.6 7.9 5.7 25.1 6.8 1.6 2.6 48.2
test 1.9 7.3 8.2 23.6 6.8 1.2 2.0 48.5

B. Baseline system

Convolutional neural networks (CNN) are widely used
deep network architecture [21], [37], due to their automatic
detection of important features and it’s architecture is mainly
motivated by the observations in [38], on visual cortex of a
cat.

From the literature for accent classification in [19], it can
be observed that CNN model trained with log mel filterbank
energies (FBANK) outperformed all the state-of-the-art till
then. So, our baseline system is an end-to-end CNN model
which is based on [19] except for few layers excluded from
the network architecture. The architecture of the network is
as in the right side of Figure 1. Instead of TFN as in the left
side of Figure 1, hand-engineered features, such as FBANK,
spectrogram, and MFCC features are given as input to CNN.



In both the baseline and proposed systems, the architecture
of this network is the same with the input of size 40 except
for spectrogram whose input size is 200. The input of the
baseline is hand-engineered features while the input of the
proposed system is from the TFN (initialized to approximate
of MFSC).

IV. EXPERIMENTAL SETUP

All the speech samples are down sampled to 8 kHz and
the utmost 4 seconds of each utterance is considered to
compensate the time and memory complexities while working
with waveform directly. From our initial experiments on the
baseline systems, we found that after 170 epochs the weight
and the accuracy on validation data are toggling. So, we set
number of epochs to 170 on all the variants of models and
with a learning rate of 0.05 to have a fair comparison. For
evaluations, unweighted average recall (UAR) is considered
as our primary metric as it is unbiased to imbalanced classes
while accuracy is considered as a secondary metric.

In this study, we experimented with five variants of TFN
configurations. Out of them, first four are similar to the con-
figurations in [25], [39] while the last one is introduced in this
study. (1) LearnFBANK: learns only the second convolution
layer of TFN (2) Fixed: Fixes the TFN during training (3)
Learnall: learns all the layers in TFN architecture (4) RandInt:
Randomly initialized the second convolution layer of TFN and
learns only that layer of TFN, and (5) LinearInt: Initialized
convolution layer of TFN to time approximate of linearly
scaled filter coefficients and learns only that layer of TFN.
There is no restriction of on classifier network, all the layers
of classifier network are learned during training.1

V. RESULTS AND DISCUSSION

This section gives an analysis of CNN filters after learning
and it also presents and analyzes the evaluation results of
baseline and proposed systems for accent classification.

A. Analysis of CNN filters

Figure 2 shows the heat-map of the magnitude of frequency
responses for the filters at variant stages and configurations.
Figure 2(a) represents the non-linearly initialized filters, and
Figure 2(b) shows the frequency responses of the learned
filters which are initialized to time domain filters that are
approximate of mel-scaled filterbanks. Figure 2(c) and 2(d)
shows the responses of learned filters initialized to time
domain filterbanks which are approximates of linear-scaled
filters in frequency domain and random weights, respectively.
For phone recognition, there is a lot of variability in bandwidth
but there is no distortion in center frequencies observed in
[25] . However, for accent classification the distribution of
filters after learning is distorted where filters 1 to 25 are
arranged below 1 kHz giving much more emphasis to the
low frequency components and other filters (25 to 40) are
arranged with a very steep linear scale (in Figure 2 (b)),

1The trained models along with the split of exact data set used is provided
at : https://github.com/r39ashmi/cvaccent wav.
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Fig. 2. Magnitude of frequency response of 40 filters (modulus of complex
filters) ordered by their peak amplitudes. (a) initialized to time approximated
MFSC, (b) learned filters which were initialized to time approximated MFSC
initialization, (c) learned filters which were initialized to time approximate
of linearly places filterbanks, and (d) learned filters which were initialized
randomly.

which supported our initial hypothesis. Even though filters are
analytically initialized, a moderate amount of energy is leaked
into negative frequencies after learning to result in symmetry
at low frequencies below 1 kHz. The heat-maps of filters in
Figure 2 (c) and (d) represents filters learnt from randomly
initialized and time approximates of linearly placed filters.
We observed that all the variants of initialization showed a
similar distribution after learning, however training took more
epochs for randomly initialized weights and time approximates
of linear scaled filters.

B. Analysis of results

Table II shows the performance evaluation of the base-
line system (FBANK, spectrogram, and MFCC with clas-
sifier network) and the proposed system (raw wave-
form+TFN+classifier network). First three rows of Table II
show the results of the baseline system, while others show
the results of the proposed system with five different config-
urations. For discussion of results, here we considered only
UAR which is our primary metric. It can be observed that
among the three baselines features, classifier network trained
on MFCC’s performed better. The performance of all the
proposed systems (training directly from waveform) are better
than baseline systems on both validation and test datasets.
Now analyzing the results of proposed systems among them,
”LearnFBANK” configuration outperformed both on valida-
tion and test datasets. By comparing best systems from both
baseline (MFCC) and proposed (LearnFBANK), we found an
improvement of 10.94% UAR on test dataset.



TABLE II
PERFORMANCE EVALUATION (IN UAR [%] AND ACCURACY [%]) OF

BASELINE SYSTEM WITH INPUT AS ACOUSTIC FEATURES AND PROPOSED
SYSTEM WITH INPUT AS RAW WAVEFORM FOR ACCENT CLASSIFICATION.

system val. Test
configuration UAR ACC. UAR ACC.
Input features Baseline systems results

FBANK 66.46 79.31 67.08 76.23
spectrogram 62.14 74.64 58.98 71.55

MFCC 70.17 76.91 68.97 77.31
Input raw waveform Proposed systems results

LearnFBANK 72.83 81.15 76.52 81.26
Fixed 72.46 80.31 71.50 79.30

Learnall 71.36 80.48 76.83 81.09
RandInt 70.79 80.06 70.09 77.34
LinearInt 72.07 79.48 74.62 78.87

Further, we also introduced ”LinearInt” configuration in this
study and found comparable performance with the highest per-
former of the proposed system, and better than all the baseline
systems considered. This improvement in performances, when
learnt directly from waveform supports our hypothesis that
dynamic learning of filterbanks improves the performance of
accent classification.

During the experiments, we observed that the initial 15 iter-
ations of training with ”Fixed” configuration exhibited better
performance, later on, the configurations ”LearnFBANK” and
”Learnall” outperformed all the other configs which showed
the importance of dynamic filterbanks and appropriate initial-
ization.

From figure 3, it can be observed that the network with
random initialized weights (green color) converged slowly
when compared to MFSC approximated time domain (TD)
filters (red color), which highlights the importance of initializa-
tion of CNN filters to MFSC approximated filters. Other than
the configurations from [25], we also introduced ”LinearInt”
configuration which also gave a comparable performance and
better than ”RandInt” and ”Fixed” configurations.

Fig. 3. Loss convergence of random initialization vs initialization to MFSC
approximated filters.

VI. SUMMARY AND CONCLUSION

Our initial hypothesis was that hand engineering features
for accent classification may need domain knowledge and
may not perform up to the mark. So, this study mainly
explored learning filterbanks which are initialized based on
hand-designed features which are embedded as part of CNN
network for accent classification. The learned filters changed
in their distribution and bandwidths. We observed that these
learned filters improved the performance when compared to
fixed filters and hand-engineered features which supported our
hypothesis. We also found that the efficient initialization of
filterbanks will converge the network faster.
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