
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or
part of any of the repository collections is not permitted, except that material may be duplicated by you for
your research use or educational purposes in electronic or print form. You must obtain permission for any
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not
an authorised user.

Riaz, Maria; Tilli, Juha-Matti; Kantola, Raimo
Sec-ALG

Published in:
Proceedings of the 29th International Conference on Computer Communications and Networks, ICCCN 2020

DOI:
10.1109/ICCCN49398.2020.9209718

Published: 01/08/2020

Document Version
Peer-reviewed accepted author manuscript, also known as Final accepted manuscript or Post-print

Please cite the original version:
Riaz, M., Tilli, J.-M., & Kantola, R. (2020). Sec-ALG: An Open-source Application Layer Gateway for Secure
Access to Private Networks. In Proceedings of the 29th International Conference on Computer Communications
and Networks, ICCCN 2020 Article 9209718 (Proceedings : International Conference on Computer
Communications and Networks). IEEE. https://doi.org/10.1109/ICCCN49398.2020.9209718

https://doi.org/10.1109/ICCCN49398.2020.9209718
https://doi.org/10.1109/ICCCN49398.2020.9209718

© 2020 IEEE. This is the author’s version of an article that has been published by IEEE.
Personal use of this material is permitted. Permission from IEEE must be obtained for all other
uses, in any current or future media, including reprinting/republishing this material for
advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works.

Sec-ALG: An Open-source Application Layer

Gateway for Secure Access to Private Networks

Maria Riaz, Juha-Matti Tilli, Raimo Kantola

Department of Communication and Networking

Aalto University

Espoo, Finland

e-mail: firstname.lastname@aalto.fi

Abstract—Middleboxes such as Network Address Translators
(NATs), proxy servers or Application Layer Gateways (ALGs)
provide remote access to end-hosts in the private address space.
The middleboxes offer proprietary solutions and encrypted traffic
poses a challenge when middleboxes employ packet payload
inspection techniques for connection establishment. Session key
sharing and decryption followed by re-encryption of the traffic,
for correctly routing to the private host, increases the connection
latency and also poses a higher threat in case of traffic
interception by a malicious third-party.

In this paper, we present a novel open-source ALG, called
Sec-ALG, for providing secure end-to-end communication to the
web servers situated in the private address space. Sec-ALG
relies on the technique of light Deep Packet Inspection
(DPI) for protocol detection and session establishment using
a novel parser-lexer generator called YaLe. The proposed
approach offers increased security by maintaining end-to-end
encryption for an HTTPS connection. Our experimental analysis
demonstrates that Sec-ALG reduces the HTTPS connection
latency in comparison to the NGINX reverse proxy using a
24-core host machine. Moreover, Sec-ALG handles requests at
a three-fold increased rate than NGINX proxy when tested with
100 concurrent connections. The ALG can be used either as a
standalone solution or a component of the Realm Gateway, that
is a generic interworking solution between public and private
networks. The presented work is part of an extensive ongoing
research at Aalto University focusing on embedding policy based
trust into the network.

I. INTRODUCTION

With the increase in complexity and scaling of the network,

the Internet invented more than 50 years ago required

middleboxes to cater various network challenges related

to security, e.g., intrusion detection/prevention, optimization

of performance, e.g., load balancing and scaling to ever

increasing number of end devices. A Network Address

Translator (NAT) [1] middlebox was proposed to solve the

issue of scalability to the growing number of connected

devices with the limited IPv4 (Internet Protocol version

4) address space. However, the traditional NAT causes a

reachability problem whereby the host in the public domain is

unable to initiate a connection towards a private network host.

Several NAT traversal mechanisms have been suggested

to provide access to private networks over the years but no

particular solution has been ubiquitously adopted. The existing

NAT traversal solutions either require a separate Application

Layer Gateway (ALG) for handling application layer traffic

through NAT, bypass the firewall/NAT functionality for NAT

unfriendly protocols, or require polling of the network on

application layer making them undesirable. After careful

analysis of the existing NAT traversal mechanisms we

developed a custom NAT solution called Realm Gateway

(RGW) [2] [3] for establishing end-to-end connectivity

between the hosts in public address realm and private address

realm. RGW acts as a traditional Source NAT (SNAT) for

the outbound connections and behaves as a Destination NAT

(DNAT) for inbound connections. It also operates as an

authoritative Domain Name System (DNS) server for all the

hosts it serves. Using a circular pool of publicly reachable IP

addresses, RGW creates a dynamic binding between the hosts

in the public domain and private domain in response to a DNS

query.

Our custom NAT gateway is compatible with most of

the protocols, however, an additional network component is

needed for processing web based communication. The web

browsers can initiate multiple parallel requests to retrieve

the embedded content for a web page and that might result

in stalling of connections if only one DNS query is sent

by the web browser’s DNS server for the multiple HTTP/S

requests. Integrating third-party middleboxes with RGW for

traversal of most popular application layer protocols for data

communication over the web namely, Hyper Text Transfer

Protocol (HTTP) and its encrypted counterpart, Hyper Text

Transfer Protocol Secure (HTTPS) is one approach. How-

ever, these proprietary middleboxes employ the technique

of Deep Packet Inspection (DPI) and packet modification

for forwarding the traffic to the correct private host behind

a NAT thus incurring high management and infrastructure

costs [4]. There are also recent proposals to outsource the

middleboxes to run in the cloud [4] [5]. Using cloud computing

for middlebox services offers performance benefits but trusting

third party providers with user-sensitive data leads to potential

security vulnerabilities. The paradigm shift towards encrypted

network traffic imposes additional challenges in processing

the packet payload in the middleboxes. As a result, either the

private keys of the host need to be shared with the middlebox

for payload inspection, or the functionality of middlebox has

to be disabled for encrypted communication.

To address the issue of handling encrypted traffic by

the middleboxes a number of different solutions have

been proposed. These proposals range from adopting

new protocol and encryption schemes while maintaining

end-to-end encryption such as Blindbox [6], modifying the

existing protocols like Transport Layer Security (TLS) to make

them compatible with middlebox functionality such as mcTLS

[7], or sharing of session keys using a key-sharing protocol [8].

We argue that the adoption of a new protocol and encryption

scheme as discussed in Blindbox is not a viable solution be-

cause the packet inspection is done by comparing the keywords

in the encrypted payload against a limited proprietary rule set

not accessible to everyone. Modifying the existing security

protocols like TLS as proposed in mCTLS which have been

widely deployed on most web servers requires acceptance as a

standard by Internet Engineering Task Force (IETF) before it

can be widely adopted. Furthermore, sharing of session keys

by the user devices through a secure channel as in [8] increases

the connection latency and also poses the question of trusting

the middlebox with the session keys and gives them access to

plaintext network traffic.

In this paper, we present Sec-ALG, a novel open-source

ALG for providing connectivity to devices located behind a

NAT while maintaining end-to-end encryption. Our solution

has the ingenuity where the private end host is not required

to exchange certificates or private keys with Sec-ALG acting

as the middlebox in case of encrypted traffic. Moreover, our

solution only requires changes at the NAT middlebox and no

end host protocol stack modification is required. To solve the

problem, Sec-ALG uses the technique of light DPI for the

detection of application layer protocol and hostname of the

destined web server during the session establishment phase.

We use our novel parser-lexer generator called YaLe [9] for

detecting the domain name of the private web server from the

packet payload. The Server Name Indication (SNI) extension

[10] exchanged at the start of TLS handshake includes the

plaintext name of the server requested by the client. Since TLS

is the underlying protocol for HTTPS, a YaLe created parser

identifies the destined server’s hostname using the grammar

we wrote for TLS. All the popular desktop browsers of today,

namely Internet Explorer, Mozilla Firefox, Google Chrome,

Opera and Safari support TLS version 1.2 with the SNI

extension in their latest versions which makes it easy to adopt.

We ensure middlebox transparency by logging all event details

for a configurable time aiding the auditing process in case an

anomaly or attack is detected later.

To improve the flexibility and allow customization for

administrative purposes, the policies of Sec-ALG are stored

in and retrieved from a policy management system called

Security Policy Management (SPM) [11]. We observe the

effects of the proposed extensions on RGW’s performance

by using various benchmark tools. We validate our design

by comparing the performance with a well-known web proxy

server called NGINX.

The main contributions of this paper are:

• Proposing a mechanism for TLS middleboxes to achieve

end-to-end connectivity while maintaining encryption.

• Developing a prototype of Sec-ALG for interworking

with a custom NAT solution called Realm Gateway.

• Improving the usability of Sec-ALG and RGW by

integrating them with a policy management system.

The paper is organized as follows: Section II describes

related work in the context of middleboxes and encrypted

traffic. Section III gives a brief overview of RGW. The

proposed architecture of Sec-ALG is presented in Section IV.

We present a potential use case for our proposed system in

Section V. In Section VI, we discuss our experimental setup

and performance evaluation of Sec-ALG after integration with

RGW. After a discussion in Section VII, we conclude the paper

in Section VIII.

II. RELATED WORK

A. NAT Middleboxes

Multiple approaches are discussed in [2] that allow devices

behind NATs to become reachable for hosts in the public

domain. An overview of the existing NAT traversal solutions

including Session Traversal Utilities for NAT (STUN),

Traversal Using Relays around NAT (TURN) and User

Datagram Protocol (UDP) hole punching is presented in [12].

Many of the existing solutions either require changes at the end

hosts, deployment of additional servers in order to establish

end-to-end connectivity, or both. Furthermore, forwarding in

NAT can be susceptible to spoofed incoming flows or flooding

from the botnets which require additional components to filter

the incoming flows. In [2] [3], we proposed our NAT traversal

solution called RGW that admits incoming flows based on

security policies customizable by the users based on the traffic

they wish to accept. However, RGW requires an additional

component when dealing with web traffic as discussed in

Section I. In this paper, we propose Sec-ALG that handles the

HTTP/S traffic at the RGW. It can also be used as a stand-alone

component by the edge nodes for forwarding the traffic to the

back-end web servers.

B. Middlebox Solutions for Encrypted Traffic

Middleboxes have adopted different methods for inspecting

traffic sent over HTTPS, the de facto protocol for encrypted

traffic over the web. Outsourcing the middlebox functionality

to the cloud for achieving higher performance has been pro-

posed in [4] [13] but it has a number of security implications.

Using a transparent SSL/TLS proxy between the client and

server by breaking down the session into two segments is

the most commonly used approach but it poses a number

of problems as discussed in [14] [15]. The splitting of TLS

session requires first decryption of the traffic using the web

servers’ private keys before it can be inspected, re-encrypted

and forwarded to the upstream web server, which makes it

unviable. Research carried out in [16] [17] indicate that TLS

proxies are being used for injecting malicious code when they

get access to decrypted user traffic. These violations raise

security concerns among the users about the handling of their

data by the service providers [18].

There are some proposals that allow network traffic

processing while maintaining encryption such as Blindbox

[6]. These solutions use the technique of DPI and use a

limited proprietary rule set for finding matching patterns not

freely accessible. Moreover, the adoption of a new encryption

protocol as proposed in Blindbox requires modification in the

application protocol stack of all the host systems.

III. REALM GATEWAY

We discussed server end NAT traversal using RGW in

[2] for connecting hosts located in the public realm with

the private realm. In contrast to other proposals discussed

in Section II-A, RGW is deployable one network at a time

and does not require any host stack modifications in kernel

or user space. To provide compatibility with Internet Protocol

version 6 (IPv6), the design of RGW was further enhanced and

presented in [19]. In addition to acting as a traditional SNAT

for outbound connections from private hosts, RGW uses a

pool of globally accessible public IP addresses for establishing

inbound connections from the public network hosts to the

servers located behind RGW.

Fig. 1 illustrates the system architecture of RGW where the

data plane functionality can be handled by a full Python-based

implementation or Open Virtual Switch (OVS). RGW acts

as a default gateway for accessing the Internet and uses the

Circular Pool Address (CPA) algorithm for inbound traffic.

Furthermore, it acts as an authoritative name server for the

designated DNS zone. A dynamic binding is established using

an available IP address from the circular pool in response

to the DNS query sent by the public host. The DNS query

contains the Fully Qualified Domain Name (FQDN) of the

destined private host. We introduced the concept of Service

Fully Qualified Domain Name (SFQDN) in [19] when the

DNS query also includes the service to be requested on

the domain name. For example, a web service running on

the host can be represented as www.host.gwa.demo

or alternatively as tcp80.host.gwa.demo and

tcp443.host.gwa.demo.

A connection state is maintained by RGW against each

public and private host pair and a timeout is associated with

each connection attempt and with each established connection.

The address given in response to DNS query is released back

to the circular pool for next allocation after a certain time

called the holding timeout, or upon arrival of a legitimate TCP

flow having a non-spoofed source IP address. Spoofed source

IP addresses are filtered by a SYN Proxy.

The operation of RGW requires configuration of different

policies; host policies, circular pool allocation policies and

firewall policies. RGW advocates embedding trust into the

network by maintaining a reputation for all the network entities

involved in communication. The reputation of a network entity

can be decreased for example, if it tries to deplete the resources

of RGW by sending multiple DNS queries without making any

further connection attempt. The evidence is used in the future

for not admitting flows from malicious users under heavy load

Address Pool

Control

DNS server

Linux

Netfilter + OVS

Security policy

database

RGW

DNS Resolver

Device Registry

Public network Private network

Outbound IPs

R
ep
u
ta
ti
o
n

S
y
st
em

P
o
li
cy

M
an
ag
em
en
t

Policy

Tools

Policy Management System

MySQL

Fig. 1: System Architecture of Realm Gateway

conditions. The reputation system together with the policies

allow fine grain control for the traffic flows.

IV. OVERVIEW OF SEC-ALG

Sec-ALG is a proposal for dealing with web protocols

particularly, HTTP and HTTPS for seamless connectivity

without compromising on security or user privacy. In this

section, we first discuss the design requirements followed

by the proposed system architecture of Sec-ALG. We then

describe our system implementation and the integration of

Sec-ALG to RGW and SPM.

A. System Requirements

While designing Sec-ALG the underlying premise is that it

must provide transparency to the users without requiring any

modifications at the hosts. The design of the ALG adheres to

the following goals:

• Sec-ALG must not interfere with the operation of existing

network components. In this context, Sec-ALG must not

modify the existing communication protocols.

• Sec-ALG must be able to interwork with NAT solutions

particularly RGW and support their objectives.

• The proposed solution should not be complex and

resource intensive; instead it should be easier to update

without making exhaustive changes in the original

solution.

B. System Architecture

At a high-level, Sec-ALG acts as an intermediary between

two network realms; the clients in the public network

requesting the services and the web servers situated in the

private network behind the NAT/firewall.

1) System Operation: Our system relies on three main

modules for its operation. Fig. 2 indicates the modules of

Sec-ALG involved for transparent connection establishment

between the public domain and private domain hosts. First, it

has a module for storing information in the form of policies

for the domains served by the web servers. The second module

is a custom parser-lexer for identifying the hostname after

the application layer protocol detection. The log management

module is another component used by Sec-ALG for the

purpose of auditing the connection information and detecting

malicious behaviour by the entities involved.

The module with the domain information stores the internal IP

address and port number corresponding to each domain name

Public Client

HTTP/S request

HTTP/S response

Parser-lexer

Packet Processor

Policy
Management

Log

Management

Sec-ALG

Private Web Servers

HTTP/S request

HTTP/S response

Fig. 2: Architecture of Sec-ALG

as Sec-ALG’s policies, used for forwarding the connection.

We use a novel parser-lexer generator called YaLe [9] for

extracting the domain name from the first HTTP or HTTPS

request sent by the client. Sec-ALG leverages the Linux

kernel stack for the maintenance of the existing Transmission

Control Protocol (TCP) connections. The connection state

information is written to a file by our log management module

in real time where setting different verbosity levels can log

information with varied detail. The connection is forwarded

to the destined web server after the protocol and hostname

have been successfully detected.

Prior to any connection, Sec-ALG must have the correct

domain name to internal IP address and port mapping for

forwarding the connection correctly. An end-to-end connection

between a client and a server is divided into two segments by

Sec-ALG referred as connection halves. The communication

in each direction, upstream or downstream, is handled in a

separate Operating System (OS) process for simplicity.

First, the client sends the TCP SYN packet which is handled

by the OS’s kernel. On receiving the first data packet, the

kernel forwards the packet to the user space Sec-ALG. The

ALG detects the application layer protocol from the HTTP/S

request and then validates the domain name using the custom

parser-lexer. The connection is established with the upstream

web server if a valid hostname is detected by Sec-ALG.

2) Custom Parser-lexer: Analyzing the application data is

common for network monitoring tools and they employ the

technique of lexical analysis and syntax analysis commonly

known as parsing, in one way or another. A lexer converts the

input characters into meaningful tokens while a parser is used

for finding the relationship between the tokens based on the

pre-defined grammar rules. Our proposal involves parsing the

application payload only for detecting the protocol used for

communication and the hostname of the web server and then

terminating the parser.

When the HTTP/S request is received by Sec-ALG, it makes

an API call to YaLe-generated parser-lexer. The generated

parser-lexer uses an event-driven approach for parsing the net-

work protocol payloads in a non-blocking manner based on a

pre-defined set of grammar rules. It has a Deterministic Finite

State Machine (DFSM) architecture where the operation of

lexer is dependent on the parser state. YaLe uses the common

lexical analysis approach called longest-match lexing which

involves constructing the tokens from the maximum input

characters matching against the pre-defined grammar rules.

The longest match lexing is implemented using a bounded

statically allocated backtrack buffer. The parser tool of YaLe

uses a table-driven LL(1) grammar for matching the input

into terminal/non-terminal symbols using callback functions

and uses as statically allocated stack for the generation of the

output.

The parser-lexer parses the HTTP request for finding the

information on the destined web server contained in the Host

header field. The HTTP request is broken down into lexical

tokens and the HTTP grammar rule handlers consult the

callback function to return the hostname. Similarly, the TLS

message is parsed to find the hostname from the SNI extension

of the TLS protocol [10] during the initial handshake phase.

The detection is done using YaLe’s TLS grammar. We use the

parser-lexer module only for the detection of hostname

C. System Implementation

We implemented a prototype for our proposed Sec-ALG

solution in Python that is available as an open-source software

[20]. Sec-ALG exploits the multi-processing approach for

maintaining a high number of concurrent connections. As

discussed in Section IV-B1, each connection is broken into

two connection halves. The master process is responsible for

accepting new connections and spawns two child processes

for dealing with one end-to-end connection. All the associated

operations for web server’s policies are handled by the master

process. By using semaphores, it ensures that no conflict

occurs when policies are updated in the master process.

Rate-limiting functionality is based on the token bucket

algorithm often used in traffic engineering for accepting

the incoming packets based on their arrival time [21]. The

token bucket algorithm has an inherent disadvantage that

on reaching the maximum connection count, defined before

running Sec-ALG, all new connections are dropped until a

new token becomes available. When a new TCP connection

is initiated by the client, it remains open for a duration we

refer to as connection timeout. If no application layer data is

received by Sec-ALG within the pre-set connection timeout,

the connection is closed.

Fig. 3: Connection Establishment using Sec-ALG and RGW

The Python socket module is used for establishing a TCP

connection. The socket timeout function is used to achieve the

non-blocking socket behaviour by setting a minimum timeout

value. The keep-alive mechanism of TCP sockets is used by

Sec-ALG to send keep-alive messages to the connection in the

waiting state. In the event of no response, Sec-ALG closes the

connection.

When the first HTTP/S request is received from the

client, ALG parses the request to determine the application

layer protocol based on the stored pre-defined metadata.

The protocol detection is used for sending the request

to the correct YaLe-generated parser-lexer, imported as a

shared loadable module in Sec-ALG. The network socket

programming employed in Sec-ALG is OS-specific and it is

based on Linux system. However, the logical implementation

of our software can be used for other computing platforms as

well.

1) Integration with RGW: We configured additional policies

in RGW to forward the web traffic to Sec-ALG. The policies

are enforced in the OS kernel’s NAT table and filter table that

are accessed using the iptables utility in the user space. After

integration, Sec-ALG runs as a separate service on the RGW

system. By default, Sec-ALG is listening on the wildcard IP

address and thus binds to all the IP addresses used by RGW.

Consequently, increasing the size of RGW’s circular pool or

changing the addresses in the pool would not affect Sec-ALG’s

operation.

As we discussed in Section III, the DNS query sent by the

client can contain information about the requested service in

which case the circular pool in RGW is not used for connection

establishment. The flows exchanged for one HTTP/S session

establishment are shown in Fig. 3. The DNS queries are

handled by RGW acting as the authoritative name server for

the served hosts. In the start of the communication, if the DNS

query is sent by a public client over UDP, RGW responds

with a truncated DNS message. The truncated DNS response

is an indicator for the querier to send the DNS request using

TCP. On receiving the DNS request over TCP, RGW informs

the public client to access the web server using its public IP

address. The HTTP/S connection is established by Sec-ALG

using RGW’s public IP address and bypasses the circular pool

algorithm. However, if the web service is not specified in the

DNS query, the connection is established using an available

circular pool IP address. On receiving the HTTP/S request

by the client, RGW updates the connection table with the

connection state information and releases the circular pool IP

address for the next connection allocation. Sec-ALG directly

handles further traffic for the client session. Furthermore, to

protect against TCP SYN flooding, the traffic can first pass

through a SYN Proxy before it reaches the RGW and Sec-ALG

setup further discussed in [22].

2) Integration with SPM: We developed SPM to allow the

end users and administrators to manage security policies for

improving their network communication [23]. SPM consists

of a Policy-API, a security policy database and a REST

based server. The security policies are stored and fetched

from the policy database using the Policy-API. Other functions

including modification, creation or removal of policies are also

supported by SPM. The users can update the user policies

remotely through a web interface. The user input generates

an HTTP request for the REST server in SPM which sends it

to the Policy-API after extracting the query parameters. The

Policy-API handles GET, PUT, POST and DELETE policy

requests. All the policies in SPM are stored in JSON format.

The policies involved in the operation of ALG and RGW,

discussed in Section III and Section IV, are stored in the

security policy database of SPM. The policies are retrieved

using a separate HTTP REST client which polls the SPM

after a pre-defined time and stores them in a local file

accessed by Sec-ALG when it starts. The policies related to

the web server’s domain information can be updated and the

changes are reflected in the local file by the HTTP client.

The updated policies become effective when new connections

are established by Sec-ALG. It is also possible to register

new web servers after Sec-ALG is operational. In a use case

scenario, the administrator can modify the internal IP address,

port number of the web server or add new web servers to

modify the Sec-ALG behaviour in real time.

The architecture of RGW is based on Python’s

asynchronous framework, and it retrieves the policies

from the SPM using an asynchronous HTTP client. A

system call is generated to retrieve the policies at the start

of RGW’s operation. The policies concerning the network

communication of the end hosts are updated after a specified

time using asynchronous co-routines in case of modification

in the policy database. Each host’s FQDN acts as the key for

managing their policies. The updated policies are reinitialized

in RGW and are reflected in any further communication.

V. APPLICATION IN SECURE BANKING

In this section, we present a use case of our proposed

Sec-ALG. Banking industries often employ in-network

components for making their servers resilient against attacks.

They also like their customers to use the bank’s own mobile

applications. A detailed survey conducted in [24] indicate

that most banks across the globe use SSL/TLS protocol

for providing online banking services. Our Sec-ALG and

RGW solution can be used by the bank’s Internet Service

Provider (ISP) for example, when a user connects to the

bank’s server for accessing internet banking using HTTPS.

To improve resilience against Distributed Denial of Service

(DDoS) attacks, each connection would be established using

a unique FQDN by the user. The FQDN would be shared

with the user by the bank after the user authentication has

taken place. Different methods can be used by the banks for

online user authentication [24]. To counter TCP SYN attacks,

the RGW and Sec-ALG are placed behind a SYN Proxy [25].

As a result, a potential attack we consider in this paper will

always use non-spoofed source IP addresses.

The Sec-ALG and RGW software running at the ISP, e.g.

on a cloud platform, is responsible for routing the connection

correctly to the bank’s web server. RGW and Sec-ALG would

admit the traffic flows based on policies defined and configured

by the bank using our security policy management system

[11]. To further improve connection security and resilience

against DDoS, the bank can run the web service on multiple

domains and the Sec-ALG will be responsible for forwarding

the connection to the correct internal port and IP address of

the requested web server. The use of unique FQDN for each

user session provides an opportunity to collect evidence of

suspicious behavior by potential attackers requesting the IP

address for the domain names that are no longer available.

The bank and ISP can agree on the details of exchanging

DNS information for establishing connectivity or the bank can

run its own DNS server with TCP, or TLS over TCP rather than

DNS over UDP for access by the ISP’s DNS servers. If the

RGW runs on a cloud platform, under a heavy DDoS attack,

its globally unique outbound addresses can be re-orchestrated

as long as the DNS zone for the RGW is also updated.

Separating the identification and location functionality of a

network node can improve the security of the system in critical

applications e.g., banking. Unique identifier can improve ac-

countability in case of attack situations, and therefore enhance

the trust in the network [26]. Sec-ALG does not decrypt

the traffic, and thus the user confidentiality and privacy are

preserved.

VI. EVALUATION

A. Experimental Setup

We evaluated Sec-ALG in a virtualized environment using

Linux Containers (LXC). Our testbed comprised of an

orchestrated environment where different LXC containers

represented the public clients, public DNS server, a host

machine for the integrated setup of Sec-ALG and RGW and

the private web servers. Sec-ALG was listening on standard

HTTP/S port 80 and 443 and on non-standard ports 8080 and

8443.

The orchestration environment was tested on three different

host machines with different hardware specifications. Host

machine 1 was a workstation equipped with Linux kernel 4.15,

Intel i5-6300U quad-core processor having 8GB of RAM and

2.4 GHz clock frequency. Host machine 2 and host machine

3 were running Intel Xeon processors with Linux kernel 4.13.

Host machine 2 was Intel Xeon E5-2630 (2.3 GHz, 24 cores)

with 32 GB RAM while the specifications of host machine 3

include an Intel Xeon E5-2630L v5 processor (2.4 GHz, 24

cores) with 64 GB RAM. All the host machines were running

a 64-bit, Ubuntu 16.04 Long Term Support (LTS) OS. Most

powerful web servers today run on specialized server-grade

hardware and the optimum performance of Sec-ALG will

be achieved on a host machine with server-grade hardware

specifications.

For performance evaluation, we choose the metrics of

latency, scalability and availability. First, we measure the

latency of HTTPS connection to estimate the overhead due

to encryption. We also evaluate the scalability of our system

by subjecting it to increasing load conditions for both HTTP

and HTTPS connections. To observe the availability, Sec-ALG

is subjected to HTTP Denial of Service (DoS) attack and

the performance is observed. In addition to our test scripts,

we also used existing open-source benchmark tools for HTTP

and HTTPS. We use NGINX, a high performance, well-known

reverse proxy server as the baseline for evaluation as it was

integrated with the original version of RGW [2]. The effect of

integrating policy database on the performance of Sec-ALG

and RGW is also observed.

B. Latency

To quantify the overhead added by encryption, we evaluate

the time taken by a public client to retrieve a 626 bytes

web page from the web server. The request is sent using

the HTTP GET method and OpenSSL library is used for

encrypting the request with SSL wrapper. The latency of

2.3
3.52 3.34

19.11

11.72

6.79
5.89

9.17
7.9

L
a

te
n

c
y
 (

in
 m

ill
ie

c
o

n
d

s
)

0

5

10

15

20

Host machine 1 Host machine 2 Host machine 3

Latency on localhost Latency using Sec-ALG Latency using NGINX

Fig. 4: Measured latency for HTTPS connection

the localhost running the back-end NGINX web server is

measured as a baseline for different host machines. Each value

shown in Fig. 4 is an average of 1000 measurements. The

latency measurement includes the process time for maintaining

consistency in different measurement setups.

The execution time of a test case is measured using Python’s

time module. We compare the results with those of NGINX

reverse proxy. We observe that the latency of Sec-ALG was

3 times higher than NGINX on host machine 1. The reason

for the higher latency in host machine 1 is attributed to the

processor’s limited hardware specification. However, using

host machine 3, Sec-ALG outperforms NGINX by taking 1.13

milliseconds less in serving one HTTPS request. Sec-ALG

utilizes the multi-core structure of the host machine whereas

NGINX handles a connection using a single worker process.

Sec-ALG is written in python which introduces memory

overhead in comparison to NGINX written in C programming

language. Multiple processes consume memory but using

server-grade hardware reduces the impact of the overhead

added by Sec-ALG. We believe that Sec-ALG can perform

even better when the processor of the host machine has a more

advanced specification than host machine 3. The improved

performance would be due to lower process creation (forking)

time in different host machines. This is evident from the time

taken for forking 1000 processes in host machine 1 being 7.4

seconds and a significantly lower value of 0.76 seconds in

host machine 3.

C. Scalability

We next evaluate Sec-ALG’s scalability by increasing the

number of concurrent clients initiating multiple connections.

We use weighttp [27], a multi-threaded, open-source

benchmark HTTP tool for observing the number of requests

handled by Sec-ALG and NGINX reverse proxy. For the

HTTPS stress testing, Siege [28] benchmark tool is used as

weighttp does not support HTTPS. The scalability tests are

performed on host machine 3 with the hardware specification

explained in Section VI-A.

1) HTTP Stress testing: The number of requests is

increased gradually from 1000 to 100,000 using different

concurrency levels. Each client retrieves a static web page

of 323 bytes. The tests help in evaluating the time it takes

(a)

(b)

(c)

Fig. 5: Scalability testing for HTTP connections on host

machine 3

to serve multiple clients. To get an accurate comparison, the

configuration parameters of the NGINX reverse proxy are

tuned so that each worker process in NGINX can handle up

to 10000 simultaneous connections. The scalability tests are

performed only on host machine 3.

Fig. 5 indicates the benchmark testing results obtained using

weighttp. We can see that the performance of Sec-ALG is

significantly better than the performance of NGINX reverse

proxy for smaller concurrency level as shown in Fig. 5. For

higher number of HTTP requests sent, the performance of

NGINX reverse proxy is comparable to Sec-ALG indicated

by Fig. 5b and Fig. 5c, with the ALG handling requests at a

slightly increased rate as indicated by Fig. 5c.

It was observed that increasing the number of total requests

sent by the clients resulted in an increased rate of served

requests in Sec-ALG or NGINX reverse proxy. However, this

is valid only until the maximum concurrency level is attained

by the web server. Increasing the number of requests with

1000 parallel clients resulted in huge processing delays with

failed requests, discussed in detail in ([22], Table. 9).

Further investigation revealed that the cause for failed

requests was due to the PHP-FastCGI module of the backend

NGINX web server. Sec-ALG uses multi-processing ideal for

handling small concurrency levels while NGINX is based on

a non-blocking I/O multiplexing hardware better suited for

higher concurrency levels. However, the results obtained with

a concurrency of 100 for varied number of total HTTP requests

sent indicate that performance of Sec-ALG is comparable to

NGINX proxy server for HTTP connections.

2) HTTPS Stress testing: We investigate the performance of

Sec-ALG when subjected to multiple parallel HTTPS requests

using Siege [28] on host machine 3. Siege is our chosen

benchmark tool as it supports sending SNI extension during

the initial TLS handshake. The tool has an inherent limitation

which resulted in a few failed requests when a large number

of requests are sent in parallel. Similar to Section VI-C1, the

configuration parameters of the NGINX reverse proxy were

tuned so that each worker process can handle up to 10000

connections. We observed the impact of concurrent clients

by increasing the total number of requests. The backend web

server was unable to handle requests from 1000 simultaneous

clients and the requests started failing, further discussed in

([22], Table. 14).

We illustrate the results of our scalability testing for HTTPS

in Fig. 6, and it can be seen that the performance of Sec-ALG

is notably better than NGINX reverse proxy. The reason

behind the slow served request rate of NGINX reverse proxy

is the computational overhead due to decryption and then

re-encryption of traffic for forwarding. In contrast, Sec-ALG

only performs light DPI to detect the hostname without

decrypting the traffic, and stops the DPI after hostname has

been successfully extracted.

By comparing Fig. 5 and Fig. 6, we observed that a higher

request rate is attained for HTTP requests by Sec-ALG and

NGINX reverse proxy than HTTPS requests because of the

additional overhead associated with an HTTPS connection.

Since Sec-ALG does not decrypt the traffic, the difference

between HTTP and HTTPS connection request rate is lower

in Sec-ALG than NGINX reverse proxy. With the increase in

encryption of network traffic, the performance improvement

offered by Sec-ALG becomes more significant.

D. Availability

We evaluate the availability of the back-end web server

under attack conditions. For this purpose we conduct a

low-bandwidth HTTP DoS attack against the protected web

server, also known as slowloris attack. The design of HTTP

requires the web server to wait for the complete request before

it can be processed. A malicious user exploits this design

criteria of HTTP by initiating multiple HTTP connections

towards the backend web server. The user sends HTTP headers

periodically but never fully completes the request. The purpose

is to exhaust the resources of the backend web server.

(a)

(b)

(c)

Fig. 6: Scalability testing for HTTPS connections on host

machine 3

We use an application layer DoS simulator SlowHTTPTest

[29] for evaluation. The connection count is gradually

increased to 20000 at a a rate of 1000 connections per second.

The maximum window size advertised by the client is 24

bytes and a new HTTP header is sent after every 10 seconds.

The request is never fully completed by the client. We also

send traffic from 100 concurrent legitimate users towards the

web server. The legitimate users request a 1 MB file from

the web server. Fig. 7 indicates that Sec-ALG’s rate limiting

functionality did not allow opening of 20000 connections

when the maximum allowed connections are 10000. Moreover,

the pending connection count is never more than one illustrat-

ing that Sec-ALG handles all the incoming connections. In the

test presented in Fig. 7, the web server closed the connection

half after 60 seconds when the complete HTTP request was not

received and resultingly, Sec-ALG closed the other connection

half towards the client end.

Fig. 7: Results of the low-bandwidth HTTP DoS attack

The results indicate that the legitimate users were able to

retrieve the requested file without any disruption. However,

without the backend web server’s protection against slowloris

attack, Sec-ALG alone does not have functionality for

mitigating low-bandwidth HTTP DoS attack. The scalability

testing in Section VI-C1 indicates that HTTP flooding using

GET requests does not exhaust Sec-ALG’s system resources.

Moreover, the clients were able to access the web page

requested within a reasonable time.

Next, we evaluate how Sec-ALG responds to HTTP

requests that do not include the hostname. Sec-ALG uses a

multi-process architecture and for N TCP connections initiated

by the client, 2N processes are created by Sec-ALG. A user

might exhaust Sec-ALG’s system resources by initiating mul-

tiple HTTP connections and depleting the available resources

of the host machine. To protect Sec-ALG against a resource

depletion attack, it has a connection timeout. When Sec-ALG

cannot detect the hostname or no application layer data is sent

within the connection timeout, Sec-ALG closes the associated

process to prevent exhaustion of system resources. In this

case, the connection half towards the backend server is never

initiated by the Sec-ALG. The attack scenario is simulated by

initiating 40000 connections using 100 clients. The connec-

tions are closed by Sec-ALG within the specified timeout of

2 seconds and the process count never exceeded 2500. The

test validates that Sec-ALG closes the malicious connections

quickly and it is also verified from the log records.

E. Policy database

The performance of SPM has been analyzed in [30] and

[23]. Our aim is to observe the impact of the integration of

SPM on Sec-ALG and RGW’s performance. The policies of

Sec-ALG are grouped into one policy database entry. The

TABLE I: Time taken to fetch policies from SPM

Setup All policies Host policies CP policies All policies
ALG [ms] RGW [ms] RGW [ms] RGW [ms]

Stand-alone 9.85 102.08 23.47 126.44

RGW+ALG 10.63 146.09 25.94 173.55

policies for the web servers are updated every 10 seconds if the

local file containing the policies is modified since it was last

accessed. RGW has an extensive set of policies as explained

in Section III. We observe the time for retrieving policies

for 16 different hosts (host policies) and 463 policies for the

firewall functionality. Additionally, 81 policies (CP policies)

are configured for the circular pool operation of RGW. The

policies are added in the MySQL database of SPM and the

time taken for policy retrieval is measured.

RGW has an asynchronous system architecture and an

asynchronous system call is used to fetch the policies. Table I

shows the time taken to fetch different policies of RGW and

Sec-ALG. The time is first measured when Sec-ALG and

RGW act as stand-alone components. To see if the integration

of RGW with Sec-ALG and SPM affects its performance,

the policy retrieval time is measured again after integration.

We measure the connection establishment time for one client

when SPM is integrated with Sec-ALG and RGW. The time

to serve the HTTP request when the policies are retrieved

locally is 5.13 ms, whereas almost same response time of

5.18 ms is observed after integration with SPM. These results

demonstrate that the integration of SPM with Sec-ALG, or

RGW does not degrade their performance.

VII. DISCUSSION

Different in-network components facilitate the access to end

hosts in private network space. Our Sec-ALG is compatible

with HTTP/S used by web servers to provide various services.

It can also work with any application protocol that has TLS

with SNI support as an underlying protocol.

We argue that maintaining the data privacy in an encrypted

end-to-end connection is crucial. The security community

acknowledges the occurrence of TLS interception and the

vulnerabilities it poses [31] but no consensus has been

achieved on a standard solution to deal with encrypted traffic at

the middlebox. We advocate that only the end devices should

have access to unencrypted traffic and the middlebox should

not perform the operation of decryption. The recent shift

towards cloud-based technology and its data privacy issues

further validate the argument.

We believe that disruption in critical web services such as

e-governance, e-health or banking can lead to social unrest.

The services offered by the private network hosts should be

available for the public users at all times. In Section V, we

presented a use case for our system to enhance the security

in internet banking. Taking a bank in United States as an

example, which has 35 logins to their banking application per

second and that go up to 100 logins per second during peak

hours [32], we subjected Sec-ALG to legitimate and malicious

traffic in the test conducted in Section VI-D. We observed

that the services for the legitimate users were not disrupted

even under a low bandwidth HTTP DoS attack. Our Sec-ALG

and RGW solution can be used in addition to the security

mechanisms employed by banks for client authentication [24]

to provide more fine-grain control for example, for admitting

maximum connections based on load conditions, by allowing

configuration of security policies remotely by the banks.

Our work focuses on promoting trust based networking

[26] where in the event of an attack, an entity can be held

responsible. RGW currently has a reputation system that

is used for collecting evidence of malicious behaviour and

allocating resources under varied load conditions. Future work

would involve integrating the reputation system of RGW with

Sec-ALG.

Although the idea of TLS SNI extraction for connection

establishment has been deployed in commercial firewalls, it

is still not widely available in open-source software. Our

Sec-ALG relies on TLS grammar for detecting the plaintext

hostname from the TLS handshake. However, there is active

discussion on replacing TCP with a new encrypted transport

layer protocol called QUIC. The adoption of QUIC, if followed

by encrypting the SNI extension in TLS version 1.3 would

require some mechanism where Sec-ALG can access the

plaintext hostname in the beginning of the session. However,

the replacement of TCP with QUIC as the default transport

protocol in the protocol stack first requires consensus and

standardization. A possible approach to handle fully encrypted

inbound packet transport is to offer the RGW with Sec-ALG

and SPM as Software as a Service (SaaS) to the bank on the

telco cloud. Under this model, the bank would maintain the

end-to-end encryption and prevent the telcos and any 3rd party

from intercepting user traffic by using a highly scalable and

resilient network (cloud) based service.

VIII. CONCLUSION

In this paper, we presented the design, implementation

and evaluation of a novel application layer gateway called

Sec-ALG, which aims at providing accessibility to private

network hosts while improving end-to-end security. Sec-ALG

uses a multi-process approach and it relies on the technique

of light DPI for establishing HTTP and HTTPS connections

without requiring the private keys of the served hosts. We

proposed an open-source solution that uses a novel parser-lexer

for detection of hostname and protocol from the packet

payload without decrypting the traffic. By using domain names

to establish connections, Sec-ALG also alleviates the issue of

IPv4 address scarcity and improves the HTTPS connection

latency in comparison to other middlebox solutions. Sec-ALG

is inter-operable with IPv6 networks as well.

We proposed an integrated system which comprised of

Sec-ALG, NAT traversal solution called RGW and policy

management system, SPM, to improve the overall security of

the private hosts. Our solution has the benefit of supporting

incremental deployment and it does not require any changes

on the end hosts. To improve security further, we used optional

changes on host applications in the banking use case discussed

in this paper. The multi-process architecture of Sec-ALG

utilizes the resources of the system for increasing scalabil-

ity. Our solution does not introduce any overhead due to

decryption and then re-encryption of HTTPS traffic, and thus

the request handling capabilities are improved significantly

compared to the state-of-the-art solutions.

ACKNOWLEDGMENT

This work was supported by the Finnish public funding

agency for research, Business Finland under the project

“5G Finnish Open Research Collaboration Ecosystem

(5G-FORCE)” which is part of 5G Test Network Finland

(5GTNF).

REFERENCES

[1] P. Srisuresh and K. Egevang, “Traditional IP Network Address
Translator (Traditional (NAT),” RFC 3022, IETF, Jan. 2001. [Online].
Available: https://tools.ietf.org/html/rfc3022.

[2] J. L. Santos, R. Kantola, N. Beijar, and P. Leppäaho, “Implementing
NAT traversal with Private Realm Gateway,” in 2013 IEEE International

Conference on Communications (ICC), June 2013, pp. 3581–3586.

[3] H. Kabir, J. L. Santos, and R. Kantola, “Securing the Private Realm
Gateway,” in 2016 IFIP Networking Conference (IFIP Networking) and

Workshops, May 2016, pp. 243–251.

[4] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Ratnasamy, and
V. Sekar, “Making middleboxes someone else’s problem: network pro-
cessing as a cloud service,” ACM SIGCOMM Computer Communication

Review, vol. 42, no. 4, pp. 13–24, 2012.

[5] C. Lan, J. Sherry, R. A. Popa, S. Ratnasamy, and Z. Liu, “Embark:
Securely outsourcing middleboxes to the cloud,” in 13th {USENIX}
Symposium on Networked Systems Design and Implementation ({NSDI}
16), 2016, pp. 255–273.

[6] J. Sherry, C. Lan, R. A. Popa, and S. Ratnasamy, “Blindbox: Deep
Packet Inspection over Encrypted traffic,” ACM SIGCOMM Computer

communication review, vol. 45, no. 4, pp. 213–226, 2015.

[7] H. Lee, Z. Smith, J. Lim, G. Choi, S. Chun, T. Chung, and T. T. Kwon,
“matls: How to Make TLS middlebox-aware?” in NDSS, 2019.

[8] C. Liu, Y. Cui, K. Tan, Q. Fan, K. Ren, and J. Wu, “Building generic
scalable middlebox services over encrypted protocols,” in IEEE INFO-

COM 2018-IEEE Conference on Computer Communications. IEEE,
2018, pp. 2195–2203.

[9] “Yale,” Software, 2019. [Online]. Available:
https://github.com/Aalto5G/yale.

[10] D. Eastlake, “Transport Layer Security (TLS) Extensions: Extension
Definitions,” RFC 6066, IETF, Jan. 2011. [Online]. Available:
https://tools.ietf.org/html/rfc6066.

[11] “Security policy management,” Software, 2019. [Online]. Available:
https://github.com/Aalto5G/SecurityPolicyManagement.

[12] O. Novo, “Making constrained things reachable: A secure ip-agnostic nat
traversal approach for iot,” ACM Transactions on Internet Technology

(TOIT), vol. 19, no. 1, pp. 1–21, 2018.

[13] A. Rao, J. Sherry, A. Legout, A. Krishnamurthy, W. Dabbous, and
D. Choffnes, “Meddle: middleboxes for increased transparency and
control of mobile traffic,” in Proceedings of the 2012 ACM conference

on CoNEXT student workshop, 2012, pp. 65–66.

[14] J. Jarmoc and D. Unit, “Ssl/tls interception proxies and transitive trust,”
Black Hat Europe, 2012.

[15] L. S. Huang, A. Rice, E. Ellingsen, and C. Jackson, “Analyzing forged
ssl certificates in the wild,” in 2014 IEEE Symposium on Security and

Privacy. IEEE, 2014, pp. 83–97.

[16] G. Tsirantonakis, P. Ilia, S. Ioannidis, E. Athanasopoulos, and M. Poly-
chronakis, “A large-scale analysis of content modification by open http
proxies.” in NDSS, 2018.

[17] M. O’Neill, S. Ruoti, K. Seamons, and D. Zappala, “Tls proxies: Friend
or foe?” in Proceedings of the 2016 Internet Measurement Conference,
2016, pp. 551–557.

[18] S. Ruoti, M. O’Neill, D. Zappala, and K. Seamons, “User attitudes
toward the inspection of encrypted traffic,” in Twelfth Symposium on

Usable Privacy and Security ({SOUPS} 2016), 2016, pp. 131–146.

[19] J. L. Santos and R. Kantola, “Transition to ipv6 with realm gateway
64,” in 2015 IEEE International Conference on Communications (ICC).
IEEE, 2015, pp. 5614–5620.

[20] “Applicationlayergateway,” Software, 2019. [Online]. Available:
https://github.com/Aalto5G/ApplicationLayerGateway.

[21] D. Medhi and K. Ramasamy, “Chapter 18 - traffic conditioning,” in
Network Routing (Second Edition), second edition ed., ser. The Morgan
Kaufmann Series in Networking, D. Medhi and K. Ramasamy, Eds.
Boston: Morgan Kaufmann, 2018, pp. 626 – 644.

[22] M. Riaz, “Extending the functionality of the realm gateway,”
G2 Pro gradu, diplomityö, 2019-10-21. [Online]. Available:
http://urn.fi/URN:NBN:fi:aalto-201910275869

[23] H. Kabir, M. H. B. Mohsin, and R. Kantola, “Implementing a security
policy management for 5g customer edge nodes,” in Accepted in 2020

IEEE/IFIP Network Operations and Management Symposium’. IEEE,
2020.

[24] S. Kiljan, K. Simoens, D. D. Cock, M. V. Eekelen, and H. Vranken,
“A survey of authentication and communications security in online
banking,” ACM Computing Surveys (CSUR), vol. 49, no. 4, pp. 1–35,
2016.

[25] “nmsynproxy.” [Online]. Available:
https://github.com/Aalto5G/nmsynproxy.

[26] R. Kantola, “6g network needs to support embedded trust,” in Proceed-

ings of the 14th International Conference on Availability, Reliability and

Security, 2019, pp. 1–5.
[27] “weighttp,” Software. [Online]. Available:

https://github.com/lighttpd/weighttp.
[28] “Siege,” Software, 2019. [Online]. Available:

https://github.com/JoeDog/Siege.
[29] “Slowhttptest,” Software. [Online]. Available:

https://github.com/shekyan/slowhttptest.
[30] M. Mohsin, “Security policy management for a cooperative

firewall,” G2 Pro gradu, diplomityö, 2018-10-08. [Online]. Available:
http://urn.fi/URN:NBN:fi:aalto-201810175456

[31] Z. Durumeric, Z. Ma, D. Springall, R. Barnes, N. Sullivan, E. Bursztein,
M. Bailey, J. A. Halderman, and V. Paxson, “The security impact of https
interception.” in NDSS, 2017.

[32] K. Silvestri and C. McFee, “Keybank chooses anthos to
develop personalized banking solutions for its customers,”
Google Cloud Blog, Aug. 2019. [Online]. Available:
https://cloud.google.com/blog/topics/hybrid-cloud/keybank-chooses-
anthos-to-develop-personalized-banking-solutions-for-its-customers.

