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Maximum Likelihood Estimation and Uncertainty Quantification for Gaussian
Process Approximation of Deterministic Functions\ast 

Toni Karvonen\dagger , George Wynne\ddagger , Filip Tronarp\S , Chris Oates\P , and Simo S\"arkk\"a\| 

Abstract. Despite the ubiquity of the Gaussian process regression model, few theoretical results are available
that account for the fact that parameters of the covariance kernel typically need to be estimated from
the data set. This article provides one of the first theoretical analyses in the context of Gaussian
process regression with a noiseless data set. Specifically, we consider the scenario where the scale
parameter of a Sobolev kernel (such as a Mat\'ern kernel) is estimated by maximum likelihood. We
show that the maximum likelihood estimation of the scale parameter alone provides significant
adaptation against misspecification of the Gaussian process model in the sense that the model can
become ``slowly"" overconfident at worst, regardless of the difference between the smoothness of the
data-generating function and that expected by the model. The analysis is based on a combination
of techniques from nonparametric regression and scattered data interpolation. Empirical results are
provided in support of the theoretical findings.

Key words. nonparametric regression, scattered data approximation, credible sets, Bayesian cubature, model
misspecification
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1. Introduction. This article considers the related tasks of approximation and integration
of a deterministic function f : \Omega \rightarrow \BbbR , defined on \Omega \subset \BbbR d, using Gaussian process (GP) regres-
sion based on a noiseless data set \scrD := \{ (xn, f(xn))\} Nn=1. In GP regression the true function f
is formally considered unknown and is modeled a priori with a GP f\mathrm{G}\mathrm{P} \sim GP(m,K), which is
characterized by a mean function m : \Omega \rightarrow \BbbR and a symmetric positive (semi)definite covari-
ance function K : \Omega \times \Omega \rightarrow \BbbR , called a kernel. The GP is conditioned on the data set \scrD and
the conditional GP is used to produce credible sets for quantities of interest, such as the func-
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GP APPROXIMATION OF DETERMINISTIC FUNCTIONS 927

tion f itself or its integral. The popularity of the GP model can be attributed, at least in part,
to its elegance, flexibility, and computational tractability, and as such GPs underpin much of
the modern statistical toolkit for both regression and classification (Rasmussen and Williams,
2006). In the last decade GPs have been adopted in a wide variety of applications, a selection
of which includes time series analysis (Wang, Hertzmann, and Fleet, 2006), astrophysical data
analysis (Rajpaul et al., 2015), spatial statistics (Lindgren, Rue, and Lindstr\"om, 2011), bioin-
formatics (Gao et al., 2008), robotics (Yang, Keat Gan, and Sukkarieh, 2013), functional data
analysis (Shi and Wang, 2008), computer science (Manogaran and Lopez, 2018), emulation of
computer models (Sacks et al., 1989, Kennedy and O'Hagan, 2001), and probabilistic numeri-
cal computation (Larkin, 1972, Hennig, Osborne, and Girolami, 2015, Cockayne et al., 2019).

The GP model is typically misspecified : the deterministic data-generating function f is
not, or does not ``resemble,"" a sample path of f\mathrm{G}\mathrm{P}. Accordingly, the critical importance
of selecting an appropriate kernel K in GP regression is well understood (MacKay, 1992).
Different approaches include selecting a single kernel from a continuously parametrized family
\{ K\theta \} \theta \in \Theta (Rasmussen and Williams, 2006, Chapter 5), selecting a kernel from an arbitrarily
rich dictionary of possibilities (Duvenaud, 2014, Sun et al., 2018), or even learning a kernel in a
nonparametric manner from the data itself (B\u az\u avan, Li, and Sminchisescu, 2012, Oliva et al.,
2016). In the parametric case, maximization of (marginal) likelihood is the most common way
to select the kernel parameter \theta , for example, being the default in well-documented software
packages (e.g., Rasmussen and Williams, 2006). Despite their ubiquity in the applied context,
little is known about the circumstances in which these approaches to kernel parameter selection
work well and, by extension, when the credible sets arising from the GP regression model can
be trusted. The increasing use of GP regression models and their associated credible sets
in strategic and safety-critical systems, such as monitoring mine gas emissions (Dong, 2012),
assessing the health of lithium-ion batteries (Liu et al., 2013), and detecting anomalous or
malicious maritime activity (Kowalska and Peel, 2012), as well as in more general adaptive
numerical computation routines (e.g., Rathinavel and Hickernell, 2019), has led to an urgent
need to better understand approaches to kernel parameter selection and model misspecification
at a theoretical level.

This article shows that one of the simplest and most commonly used techniques, maximum
likelihood estimation of a single scale parameter of the kernel, provides a certain amount of
protection against model misspecification. We consider a kernel K\sigma (x, y) := \sigma 2K(x, y) that
depends on a scale parameter \sigma > 0 and analyze the asymptotic (as N \rightarrow \infty ) behavior
of \sigma \mathrm{M}\mathrm{L}(f,XN ), the maximum likelihood estimate of \sigma given noiseless evaluations of f at a
set XN \subset \Omega consisting of N points, and implications on the coverage of the credible sets
derived from the fitted GP model. For finitely smooth kernels (e.g., Mat\'ern) we show that the
maximum likelihood estimate detects the smoothness of the data-generating function: if K
induces a Sobolev space of smoothness \alpha , f is in a certain sense exactly of smoothness \beta \leq \alpha ,
and the points XN cover \Omega in a sufficiently uniform manner, then \sigma \mathrm{M}\mathrm{L}(f,XN ) is of order
N (\alpha  - \beta )/d - 1/2, up to logarithmic factors. Because f being akin to a sample of f\mathrm{G}\mathrm{P} roughly
speaking corresponds to \beta = \alpha  - d/2 (see section 4.2), the maximum likelihood estimate
inflates the conditional variance if f is rougher than the samples and deflates if f is smoother
than the samples. If f is in the Sobolev space of smoothness \beta \geq \alpha , then \sigma \mathrm{M}\mathrm{L}(f,XN ) is
of order N - 1/2. We then use these result to prove that, no matter the degree of over- orD

ow
nl

oa
de

d 
11

/0
6/

20
 to

 1
30

.2
33

.1
91

.5
6.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited. 

928 KARVONEN, WYNNE, TRONARP, OATES, AND S\"ARKK\"A

under-smoothing of f by the kernel, the model can become at most ``slowly"" overconfident in
that the GP conditional standard deviation can decay at most with rate N - 1/2 faster than
the true estimation error. If the scale parameter is held fixed (4.10) demonstrates that the
model may become significantly more overconfident than this.

The results are reviewed in more detail in section 2.7. Section 3 considers the case where f
is an element of the reproducing kernel Hilbert space of the kernel K and therefore smoother
than expected by the GP. Section 4 extends the results for kernels that induce Sobolev spaces
by allowing the function to live in a rougher Sobolev space than the one induced by the kernel,
in which case the results are dependent on the degree of oversmoothing by the kernel. Nu-
merical examples are used to validate the theoretical results in section 5. In most applications
of GP regression there will be several kernel parameters in addition to the scale parameter
that must be jointly estimated; our analysis does not extend to that more general setting.
The opportunities and challenges associated with estimation of other kernel parameters are
discussed in section 6.

2. Background. In this section we introduce the GP regression model and recall how the
kernel scale parameter can be estimated using maximum likelihood. Then we discuss how
credible sets can be obtained based on the fitted GP model and what it means to say that the
model is asymptotically underconfident or overconfident. For the latter, we focus on credible
sets both for function values and integrals of the function of interest.

2.1. GP regression. Let \Omega be an arbitrary subset of \BbbR d and f : \Omega \rightarrow \BbbR a deterministic
function of interest. In GP regression the function f is modeled using a GP f\mathrm{G}\mathrm{P}, for which
(f\mathrm{G}\mathrm{P}(x1), . . . , f\mathrm{G}\mathrm{P}(xN )) is Gaussian-distributed for any finite collection \{ x1, . . . , xN\} \subset \Omega of
points. Let \BbbP denote the law of the GP and let \BbbE , \BbbV , and \BbbC , respectively, denote the expecta-
tion, variance, and covariance with respect to \BbbP . The law \BbbP of a GP is characterized by a mean
function m : \Omega \rightarrow \BbbR , such that m(x) = \BbbE [f\mathrm{G}\mathrm{P}(x)] for all x \in \Omega , and a symmetric positive defi-
nite covariance function K : \Omega \times \Omega \rightarrow \BbbR , called a kernel, such that K(x, y) = \BbbC [f\mathrm{G}\mathrm{P}(x), f\mathrm{G}\mathrm{P}(y)]
for all x, y \in \Omega . Although the kernel can be allowed to be positive semidefinite, in this article
we only consider positive definite kernels. It is common to denote the GP via the shorthand
f\mathrm{G}\mathrm{P} \sim GP(m,K). Throughout the article and without loss of generality1 we assume that f\mathrm{G}\mathrm{P}

is centered (i.e., m(x) = 0 for all x \in \Omega ). Further details on GP regression can be found in
Bogachev (1998), Stein (1999), and Rasmussen and Williams (2006).

Given a set \scrD = \{ (xi, f(xi))\} Ni=1 consisting of exact evaluations of f at distinct points
X = \{ x1, . . . , xN\} \subset \Omega , the conditional process is again Gaussian: f\mathrm{G}\mathrm{P} | \scrD \sim GP(sf,X , PX)
with the conditional mean and covariance functions

(2.1) sf,X(x) := kX(x)TK - 1
X fX and PX(x, y) := K(x, y) - kX(x)TK - 1

X kX(y),

where (kX(x))i = K(x, xi), (KX)i,j = K(xi, xj), and (fX)i = f(xi). The conditional process
quantifies the uncertainty associated with f after the data \scrD have been observed and can be
summarized in terms of a credible set for a quantity of interest. Let F stand for the cumulative
distribution function of the standard normal distribution and denote \psi a := F - 1(1 - a/2). For

1If m is nonzero then the true function f can just be replaced by f  - m, since m is considered to be known
and thus f  - m can also be pointwise evaluated.D
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GP APPROXIMATION OF DETERMINISTIC FUNCTIONS 929

any 0 < a < 1, the Gaussian model implies that

(2.2) \BbbP 
\Bigl[ \bigm| \bigm| f\mathrm{G}\mathrm{P}(x) - sf,X(x)

\bigm| \bigm| \leq \psi aPX(x, x)1/2
\bigm| \bigm| \bigm| \scrD \Bigr] = 1 - a for any x \in \Omega .

Thus (if PX(x, x) \not = 0) the interval bounded by sf,X(x)\pm \psi aPX(x, x)1/2 is a (1 - a) credible
set for the unknown quantity f(x) at fixed x \in \Omega \setminus X under the GP model. However, as is
evident from its algebraic expression in (2.1), the conditional covariance PX does not depend
on the function evaluations fX , which is clearly undesirable as this implies that the size of
the credible set is identical for two wildly different functions evaluated at the same inputs X.
It is well understood that, for sensible uncertainty quantification to be performed, the kernel
should be adapted to the data set (MacKay, 1992). When the kernel is parametrized by a
collection of parameters \theta (i.e., K = K\theta ), this means that \theta should be estimated based on the
data set. Standard approaches to estimation of \theta are reviewed in section 2.3.

2.2. Bayesian cubature. It is convenient to consider and easier to visualize credible sets
for scalar quantities derived from f , rather than f itself.2 Moreover, approximation of integrals
(i.e., numerical integration) is among the most prevalent applications where noiseless data are
provided. For these reasons we also focus on integrals of f as scalar quantities of interest.
The use of the GP regression model as a means to perform numerical integration is called
Bayesian cubature (quadrature if d = 1) and is due to Larkin (1972). See also O'Hagan (1991)
and Briol et al. (2019) for background. For a Lebesgue measurable3 \Omega \subset \BbbR d and a positive,
bounded, and measurable weight function w : \Omega \rightarrow \BbbR we consider the integral

(2.3) I(f) :=

\int 
\Omega 
f(x)w(x) dx

as a scalar quantity of interest. Because the integration operator is a linear functional, the
random variable I(f\mathrm{G}\mathrm{P}) | \scrD is Gaussian if

\int 
\Omega K(x, x)w(x) dx <\infty . Its mean and variance are

QX(f) := \BbbE 
\bigl[ 
I(f\mathrm{G}\mathrm{P}) | \scrD 

\bigr] 
=

\int 
\Omega 
sf,X(x)w(x) dx,(2.4a)

VX := \BbbV 
\bigl[ 
I(f\mathrm{G}\mathrm{P}) | \scrD 

\bigr] 
=

\int 
\Omega 

\int 
\Omega 
PX(x, y)w(x)w(y) dx dy.(2.4b)

The Gaussian model for the integral then implies that

(2.5) \BbbP 
\Bigl[ \bigm| \bigm| I(f\mathrm{G}\mathrm{P}) - QX(f)

\bigm| \bigm| \leq \psi aV
1/2
X

\bigm| \bigm| \bigm| \scrD \Bigr] = 1 - a

and thus (if VX \not = 0) the interval bounded by QX(f) \pm \psi aV
1/2
X is a (1  - a) credible set, or

credible interval for I(f) under the GP model.

2Indeed, unlike the scalar case there is no general consensus on how one should aim to construct a credible
set in a function space; see, for example, Liebl and Reimherr (2019).

3Whenever Bayesian cubature is discussed or results for it are provided, it is implicitly assumed in this
article that \Omega is Lebesgue measurable.D
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2.3. Scale parameter estimation. In this section we consider the case where the ker-
nel K\sigma (x, y) = \sigma 2K(x, y) depends on a single fixed scale parameter \sigma > 0. Under the law
f\mathrm{G}\mathrm{P} \sim GP(0,K\sigma ) the conditional distribution is f\mathrm{G}\mathrm{P} | \scrD \sim GP(sf,X , P

\sigma 
X), where the condi-

tional mean remains unchanged from (2.1) and the covariance is

P \sigma 
X(x, y) := \sigma 2PX(x, y) = \sigma 2

\bigl[ 
K(x, y) - kX(x)TK - 1

X kX(y)
\bigr] 
.

The purpose of this article is to analyze the maximum likelihood estimate, \sigma \mathrm{M}\mathrm{L}(f,X), of \sigma 
and its effect on the credible sets (2.2) and (2.5). The MLE is defined as the maximizer

(2.6) \sigma \mathrm{M}\mathrm{L}(f,X) := argmax
\sigma >0

L(\sigma | \scrD ) =

\sqrt{} 
fTXK

 - 1
X fX
N

of the log marginal likelihood,

logL(\sigma | \scrD ) :=  - 1

2

\biggl( 
fTXK

 - 1
X fX
\sigma 2

+N log \sigma 2 + log detKX +N log(2\pi )

\biggr) 
.

Equation (2.6) is easy to verify by finding the root of the derivative of L(\sigma | \scrD ). The
estimator \sigma \mathrm{M}\mathrm{L}(f,X) is sometimes called a maximum marginal likelihood or empirical Bayes
estimator. In applications where additional parameters are present in the kernel, these could
be simultaneously estimated based on the data set. However, our focus on the scale parameter
is due to the closed-form expression in (2.6); such expressions are not available, in general.

2.4. Credible sets and maximum likelihood. Adopting the maximum likelihood approach
to parameter selection means that \sigma is replaced by \sigma \mathrm{M}\mathrm{L}(f,X) in (2.2) and (2.5) to produce

\BbbP 
\Bigl[ \bigm| \bigm| f\mathrm{G}\mathrm{P}(x) - sf,X(x)

\bigm| \bigm| \leq \psi a\sigma \mathrm{M}\mathrm{L}(f,X)PX(x, x)1/2
\bigm| \bigm| \bigm| \scrD \Bigr] = 1 - a,

\BbbP 
\Bigl[ \bigm| \bigm| I(f\mathrm{G}\mathrm{P}) - QX(f)

\bigm| \bigm| \leq \psi a\sigma \mathrm{M}\mathrm{L}(f,X)V
1/2
X

\bigm| \bigm| \bigm| \scrD \Bigr] = 1 - a.

We use the compact notation

(2.7) R\mathrm{G}\mathrm{P}(x, f,X) := \sigma \mathrm{M}\mathrm{L}(f,X)PX(x, x)1/2 and R\mathrm{B}\mathrm{C}(f,X) := \sigma \mathrm{M}\mathrm{L}(f,X)V
1/2
X

for the unscaled widths of the credible sets and denote the credible sets as

\scrC a
\mathrm{G}\mathrm{P}(x, f,X) :=

\Biggl\{ 
y \in \BbbR :

| y  - sf,X(x)| 
R\mathrm{G}\mathrm{P}(x, f,X)

\leq \psi a

\Biggr\} 
,(2.8a)

\scrC a
\mathrm{B}\mathrm{C}(f,X) :=

\Biggl\{ 
\mu \in \BbbR :

| \mu  - QX(f)| 
R\mathrm{B}\mathrm{C}(f,X)

\leq \psi a

\Biggr\} 
.(2.8b)

These credible sets underpin inferences and decisions based on the fitted GP regression model,
with applications in diverse fields, including strategic and safety-critical systems, several of
which were mentioned in section 1. It is therefore important to understand when these sets
can and cannot be trusted to accurately reflect the function f or its integral.D

ow
nl

oa
de

d 
11

/0
6/

20
 to

 1
30

.2
33

.1
91

.5
6.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited. 

GP APPROXIMATION OF DETERMINISTIC FUNCTIONS 931

It is immediately clear from (2.6) that credible sets are invariant to scaling of f , in the
sense that the transformation f \mapsto \rightarrow \lambda f for some constant \lambda leads to \sigma \mathrm{M}\mathrm{L}(f,X) \mapsto \rightarrow | \lambda | \sigma \mathrm{M}\mathrm{L}(f,X).
However, it is far from clear how these credible sets behave as a function of the point set X.
In particular, we consider the limit of a large number of points next.

2.5. Asymptotics of credible sets. Consider a sequence (XN )\infty N=1 \subset \Omega of point sets such
that XN contains N distinct points. The function f is fixed and our focus is on the behavior
of credible sets when N \rightarrow \infty , a setting called fixed domain asymptotics by Stein (1999).
Specifically, we are interested in whether or not f(x) or I(f) can be expected to fall within
the relevant credible set, \scrC a

\mathrm{G}\mathrm{P}(x, f,XN ) or \scrC a
\mathrm{B}\mathrm{C}(f,XN ), for large N . To avoid confusion, it is

important to note that our focus is distinct from the assessment of frequentist coverage that is
more commonplace in the statistical literature. There, it is most common for N and f to be
fixed and for observations of f to be contaminated with noise; one can then ask for credible sets
to have correct coverage with respect to realizations of the noise generating process. Equally,
our analysis is distinct from an assessment of frequentist coverage in which f is considered to
be drawn at random from \BbbP and observed (without noise) at N locations. To emphasize, in
this article the data set \scrD and function f are deterministic and the only source of uncertainty
is the epistemic uncertainty from the GP regression model.

We say that a GP model with a covariance kernel K is asymptotically overconfident for
approximation at x \in \Omega (respectively, integration) of a function f : \Omega \rightarrow \BbbR if

(2.9) lim inf
N\rightarrow \infty 

| f(x) - sf,XN
(x)| 

R\mathrm{G}\mathrm{P}(x, f,XN )
= \infty 

\Biggl( 
lim inf
N\rightarrow \infty 

| I(f) - QXN
(f)| 

R\mathrm{B}\mathrm{C}(f,XN )
= \infty 

\Biggr) 
and asymptotically underconfident if

(2.10) lim
N\rightarrow \infty 

| f(x) - sf,XN
(x)| 

R\mathrm{G}\mathrm{P}(x, f,XN )
= 0

\Biggl( 
lim

N\rightarrow \infty 

| I(f) - QXN
(f)| 

R\mathrm{B}\mathrm{C}(f,XN )
= 0

\Biggr) 
.

Conforming to conventional statistical terminology we call the ratios in (2.9) and (2.10) stan-
dard scores. Note that R\mathrm{G}\mathrm{P}(x, f,XN ) = 0 only if f(x) = sf,XN

(x); in this case we set 0/0 = 1.
Asymptotic overconfidence means that the width of the credible set decays faster than the
true approximation or integration error: for any fixed a \in (0, 1) we have f(x) /\in \scrC a

\mathrm{G}\mathrm{P}(x, f,XN )
or I(f) /\in \scrC a

\mathrm{B}\mathrm{C}(f,XN ) for all sufficiently large N . Conversely, asymptotic underconfidence
implies that for any a \in (0, 1) we have f(x) \in \scrC a

\mathrm{G}\mathrm{P}(x, f,XN ) or I(f) \in \scrC a
\mathrm{B}\mathrm{C}(f,XN ) for all N

large enough.
Overconfidence can have disastrous effect, in particular, in safety-critical applications while

underconfidence results in inefficiency as more data than are necessary is needed to attain
the same level of assurance. The ideal state of affairs is thus for the model to be neither
asymptotically overconfident nor underconfident, a situation which we call asymptotic honest
as this implies that the size of the credible sets decay at a rate that is commensurate with
the true approximation error. See Szab\'o, van der Vaart, and van Zanten (2015) for a similar
concept. In practice asymptotic honesty is a weak requirement and does not guarantee credible
sets can be trusted at finite values of N . Our tools are not powerful enough to identify or
prove the existence of meaningful collections of functions for which the model is asymptotically
honest, and our results concern only asymptotic overconfidence and underconfidence.D
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2.6. Prior work on maximum likelihood estimation. The only prior work in an identical
setting, to the best of our knowledge, is by Xu and Stein (2017) and Karvonen, Tronarp, and
S\"arkk\"a (2019). Xu and Stein (2017) considered the Gaussian kernel K(x, y) = exp( - (x  - 
y)2/(2\ell 2)) with \ell > 0 fixed and monomials f(x) = xp on [0, 1], evaluated at successive sets of
N equispaced points, XN = \{ 1/N, 2/N, . . . , 1\} . They conjectured an asymptotic equivalence

\sigma \mathrm{M}\mathrm{L}(f,XN ) \sim \ell 2p\surd 
2\pi (p+ 1/2)

Np - 1/2 for any p \geq 0

and proved this for p = 0 and partially for p = 1 using an explicit Cholesky decomposi-
tion of the kernel matrix. Karvonen, Tronarp, and S\"arkk\"a (2019) worked with the Ornstein--
Uhlenbeck kernel K(x, y) = exp( - \lambda | x - y| ) - exp( - \lambda (x+y)) with \lambda > 0 fixed, and equispaced
evaluation points on [0, 1]. They proved that limN\rightarrow \infty \sigma \mathrm{M}\mathrm{L}(f,XN ) is proportional to the qua-
dratic variation V 2(f) of f . Consequently, the maximum likelihood estimate (MLE) converges
to zero if the H\"older exponent of f exceeds 1/2 (e.g., the function is differentiable) and to a
positive constant if V 2(f) \in (0,\infty ). As almost all sample paths of the Ornstein--Uhlenbeck
process have a finite nonzero quadratic variation, this is in agreement with the intuition that
the MLE should behave reasonably if the function is plausible as a sample from the GP.

In addition, frequentist coverage of Bayesian credible sets when various hyperparame-
ters of a GP are selected with maximum likelihood has been extensively studied by Szab\'o,
van der Vaart, and van Zanten (2013, 2015) and Hadji and Szab\'o (2019). In these articles
the model of interest differs from ours, being the Gaussian white noise model for an unknown
function f(x) =

\sum \infty 
i=1 \vargamma i\varphi i(x) expressed in a basis \{ \varphi i\} \infty i=1. A sequence Y = (Yi)

\infty 
i=1 of noisy

observations are made directly on the square-summable parameter \vargamma = (\vargamma i)
\infty 
i=1 via

Yi = \vargamma i+
1
\surd 
\eta 
Zi, where Zi \sim N(0, 1) are independent and identically distributed (i.i.d.)

In Szab\'o, van der Vaart, and van Zanten (2013, 2015) the parameter \vargamma was assigned a Gaussian
prior distribution that is analogous to GPs with Sobolev kernels that we analyze. Behavior as
\eta \rightarrow \infty (i.e., the noise level decreases) of the MLE of the scaling parameter of this prior and
the coverage properties of the resulting credible sets were analyzed in Szab\'o, van der Vaart,
and van Zanten (2013) for the true parameter satisfying \vargamma 2i \leq C2

2 i
 - 1 - 2\beta or C2

1 i
 - 1 - 2\beta \leq \vargamma 2i \leq 

C2
2 i

 - 1 - 2\beta for some C1, C2 > 0 and a smoothness parameter \beta > 0. These sets are analogous

to our S\beta 
 - (\BbbR d) and S\beta (\BbbR d) defined in section 4.1. The white noise model is widely studied as

a theoretically tractable analogue of regression with noisy data. As such the results are not
directly applicable in our context where the function f is exactly evaluated.

For other work related to GP misspecification and kernel parameter estimation in a variety
of settings, see Stein (1993), Bachoc (2013), Bachoc, Lagnoux, and Nguyen (2017), Bachoc
(2017), Bachoc, Lagnoux, and Lopera-L\'opez (2019), and Teckentrup (2019).

2.7. Our contributions. Let (XN )\infty N=1 \subset \Omega be a sequence of point sets, each containing N
distinct points, and let the function f : \Omega \rightarrow \BbbR be fixed. Our results concern (i) the behavior,
as N \rightarrow \infty , of the MLE, \sigma \mathrm{M}\mathrm{L}(f,XN ) in (2.6), of the GP scale parameter based on exact
evaluation of f on XN and (ii) whether or not this induces asymptotic overconfidence or
underconfidence in the GP model, as defined in (2.9) and (2.10).D
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Reproducing kernel Hilbert spaces. In section 3 we do not place any restrictions on the
covariance kernel K. We first prove the surprising result that if f is an element of \scrH K(\Omega ),
the reproducing kernel Hilbert space of K, then

(2.11) \sigma \mathrm{M}\mathrm{L}(f,XN ) \asymp N - 1/2

regardless of the point sets XN used, provided the XN share a common element x\ast such that
f(x\ast ) \not = 0 (Proposition 3.1). Theorem 3.2, an implication of this, states that for such functions
and point sets the model cannot become overconfident ``too fast,"" meaning that

(2.12) sup
x\in \Omega 

| f(x) - sf,XN
(x)| 

R\mathrm{G}\mathrm{P}(x, f,XN )
= O(N1/2) and

| I(f) - QXN
(f)| 

R\mathrm{B}\mathrm{C}(f,XN )
= O(N1/2).

Note that this does not imply that the model is asymptotically overconfident. Indeed, in
Theorem 3.4 we show that underconfidence occurs if f belongs to a certain subspace of\scrH K(\Omega ).

Sobolev spaces. Section 4 focuses on Sobolev kernels, which induce Sobolev spaces and
include the popular Mat\'ern kernels. The restrictive assumption f \in \scrH K(\Omega ) is relaxed and it
is proven in Proposition 4.5 that if K induces a Sobolev space of smoothness \alpha and f is in
the Sobolev space of smoothness \beta < \alpha , then

(2.13) \sigma \mathrm{M}\mathrm{L}(f,XN ) = O
\bigl( 
N (\alpha  - \beta )/d - 1/2

\bigr) 
assuming that XN cover the domain \Omega in a uniform fashion; (2.11) is applicable if \beta \geq \alpha .
Moreover, a similar lower bound is available when a lower bound on the smoothness of f
is known (Proposition 4.7). If it is known that f is of exact smoothness \beta \leq \alpha , in that
it belongs to the set S\beta (\Omega ) in (4.4), then the rate (2.13) is sharp up to logarithmic factors
(Theorem 4.9). In particular, if f is of exact smoothness \beta = \alpha  - d/2, which roughly speaking
corresponds to f having the same regularity as samples from the GP (see section 4.2), then
\sigma \mathrm{M}\mathrm{L}(f,XN ) is constant up to logarithmic factors. If the exact smoothness of f is known,
bounds similar to (2.12) on the standard scores then hold by Theorem 4.10. These results
thus show that maximum likelihood estimation of the scale parameter is a useful tool in
adapting the GP model to misspecified smoothness of the data-generating function. Finally,
according to Theorem 4.11, f being much smoother than the kernel implies underconfidence
of the GP model.

Empirical results in section 5 verify the MLE asymptotics (2.11) and (2.13) but suggest
that the standard score bounds (2.12) and their extensions in the Sobolev setting are not
tight. Although sufficient conditions for asymptotic honesty of a GP model are not provided
here, the collection of results that we establish represents a substantial expansion of what is
currently known in the context of maximum likelihood estimation with a noiseless data set.

2.8. Notation. For x \in \BbbR d we let \| x\| := (x21 + \cdot \cdot \cdot + x2d)
1/2 be the Euclidean norm.

The space Lp(\Omega ) stands for the space of p-integrable functions on a Lebesgue measurable
set \Omega \subset \BbbR d. For nonnegative sequences (an)

\infty 
n=1 and (bn)

\infty 
n=1 we denote an \lesssim bn (an \gtrsim bn)

if there is C > 0 such that an \leq Cbn (an \geq Cbn) for every sufficiently large n. When
an \lesssim bn \lesssim an, we write an \asymp bn. Analogous notation is used for nonnegative functions. For
example, h(x) \lesssim g(x) means that there is C > 0 such that h(x) \leq Cg(x) for all sufficiently
large \| x\| .D
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The restriction of a function g : A \rightarrow \BbbR on a subset B \subset A is the function g| B : B \rightarrow \BbbR 
such that g| B(b) = f(b) for every b \in B. In particular, the statement that h| X = g| X for a
set X \subset \BbbR d means that the function g interpolates h on X. Conversely, if g : A \rightarrow \BbbR and
h : B \rightarrow \BbbR are such that g| B = h, then g is said to be an extension of h (onto A).

In what follows the set X = \{ x1, . . . , xN\} always denotes a collection of N \in \BbbN distinct
points contained in the domain \Omega \subset \BbbR d of the function f of interest. If it is necessary to
emphasize the number of points in the set, we write XN for a set of N points.

3. Approximation of functions in the RKHS. In this section we introduce reproducing
kernel Hilbert spaces (RKHSs) and study the MLE and implications for the standard scores
when f is regular enough to be contained in the RKHS of the covariance kernel. Results for
less regular functions are deferred until section 4.

3.1. Positive-definite kernels and RKHSs. The monograph of Berlinet and Thomas-
Agnan (2004) is a standard introduction to the theory of RKHS. Let \Omega be an arbitrary
subset of \BbbR d. We say that a function K : \Omega \times \Omega \rightarrow \BbbR is a kernel (on \Omega ) if it is positive-definite.
Positive-definiteness entails that, for any N \in \BbbN , the N\times N kernel matrix (KX)i,j = K(xi, xj)
is positive-definite for any set X = \{ x1, . . . , xN\} \subset \BbbR d of N distinct points. Every kernel
induces a unique RKHS \scrH K(\Omega ) equipped with the inner product \langle \cdot , \cdot \rangle \scrH K(\Omega ) and the induced
norm \| \cdot \| \scrH K(\Omega ). This space consists of certain sufficiently regular functions g : \Omega \rightarrow \BbbR and is
characterized by

(i) K(\cdot , x) \in \scrH K(\Omega ) for every x \in \Omega and
(ii) \langle g,K(\cdot , x)\rangle \scrH K(\Omega ) = g(x) for every g \in \scrH K(\Omega ) and x \in \Omega (the reproducing property).

Note the RKHS \scrH K(\Omega ) and its norm are always those of the ``unscaled"" kernel K. That is,
they do not depend on the scale parameter \sigma .

Throughout the article we assume that K is a kernel. In this section the kernel K is
arbitrary, meaning that it is not necessarily straightforward to verify if a given function is
contained in its RKHS. However, in section 4 the kernel is selected such that the RKHS is a
Sobolev space so that the differentiability of a function determines if it is a member of the
RKHS. We occasionally define the kernel on the whole of \BbbR d and then consider the restriction
of \scrH K(\BbbR d) to \Omega \subset \BbbR d. The restriction consists of functions g : \Omega \rightarrow \BbbR that admit an extension
g0 \in \scrH K(\BbbR d) and its norm is

\| g\| \scrH K(\Omega ) := inf
\bigl\{ 
\| g0\| \scrH K(\BbbR d) : g0 \in \scrH K(\BbbR d) such that g0| \Omega = g

\bigr\} 
.

3.2. Kernel interpolation and error estimates. It is necessary to recognize the equiv-
alence of GP regression and kernel or radial basis function interpolation (Wendland, 2005,
Fasshauer and McCourt, 2015): the GP conditional mean (2.1) is the kernel interpolant to f
at X, which is to say that it is the unique function g in span\{ K(\cdot , xi)\} Ni=1 such that g| X = f | X .
Equivalently, sf,X is the interpolant to f of the minimal norm among the functions in the
RKHS of the kernel:

(3.1) sf,X = argmin
\bigl\{ 
\| g\| \scrH K(\Omega ) : g \in \scrH K(\Omega ) such that g| X = f | X

\bigr\} 
.

This property implies in particular that \| sf,X\| \scrH K(\Omega ) \leq \| f\| \scrH K(\Omega ) if f \in \scrH K(\Omega ). If f /\in \scrH K(\Omega ),
the conditional mean is still an element of the RKHS but its norm diverges to infinity as X be-
comes denser. Further discussion on the relationship between GP regression and kernel-basedD
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minimum-norm interpolation can be found in Scheuerer, Schaback, and Schlather (2013),
Kanagawa et al. (2018), Karvonen (2019), and Fasshauer and McCourt (2015, Chapter 17).
Oettershagen (2017, Chapter 3) contains a compact collection of basic results on approxima-
tion in RKHS.

The RKHS framework is useful in deriving generic estimates for GP approximation or
integration error. The conditional variances (2.1) and (2.4b) are equal to squared worst-case
errors in function and integral approximations in the RKHS of the covariance kernel:

(3.2) PX(x, x)1/2 = sup
\| g\| \scrH K (\Omega )\leq 1

| g(x) - sg,X(x)| and V
1/2
X = sup

\| g\| \scrH K (\Omega )\leq 1
| I(g) - QX(g)| .

Furthermore, the reproducing property of the kernel can be used in bounding the approxima-
tion or integration error for a specific function f \in \scrH (K) using the standard deviations:

(3.3) | f(x) - sf,X(x)| \leq \| f\| \scrH K(\Omega ) PX(x, x)1/2 and | I(f) - QX(f)| \leq \| f\| \scrH K(\Omega ) V
1/2
X .

3.3. Maximum likelihood estimation in the RKHS. In this section we study the maxi-
mum likelihood estimator \sigma \mathrm{M}\mathrm{L}(f,XN ) and asymptotic underconfidence and overconfidence of
the GP model when the function f is sufficiently regular to belong to \scrH K(\Omega ).4

All results in this article are based on the following expression for the MLE that, simple
as it is, appears to have been seldom exploited in the GP literature:

(3.4) \sigma \mathrm{M}\mathrm{L}(f,XN ) =
1\surd 
N

\| sf,XN
\| \scrH K(\Omega ) .

Note that this equation does not require that f \in \scrH K(\Omega ). This connection between the
MLE of the scale parameter and the RKHS norm of the conditional mean is made explicit
in Fasshauer and McCourt (2015, Remark 9.2), and the straightforward proof, based on the
reproducing property and (2.1) and (2.6), can also be found in, for example, Fasshauer (2011,
section 5.1). Bull (2011, section 3.3) uses (3.4) in the context of Bayesian optimization.
Equation (3.4) leads immediately to our first result for f \in \scrH K(\Omega ).

Proposition 3.1 (MLE in the RKHS). If f \in \scrH K(\Omega ), then \sigma \mathrm{M}\mathrm{L}(f,XN ) \leq N - 1/2 \| f\| \scrH K(\Omega ).
Furthermore, if there exists a point x\ast \in \Omega such that f(x\ast ) \not = 0 and x\ast \in XN for all sufficiently
large N , then \sigma \mathrm{M}\mathrm{L}(f,XN ) \asymp N - 1/2.

Proof. If f \in \scrH K(\Omega ), it follows from (3.4) and the minimum-norm characterization (3.1)
of the conditional mean that

\sigma \mathrm{M}\mathrm{L}(f,XN ) =
\| sf,XN

\| \scrH K(\Omega )

N1/2
\leq 

\| f\| \scrH K(\Omega )

N1/2
.

The minimum-norm characterization also implies that 0 < \| sf,\{ x\ast \} \| \scrH K(\Omega )
\leq \| sf,XN

\| \scrH K(\Omega ) if

x\ast \in XN and f(x\ast ) \not = 0, which proves the second claim and completes the proof.

4Note that, as discussed in detail in section 4.2, samples from the GP do not lie in this RKHS with
probability 1 if the RKHS is infinite dimensional.D
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The reasonableness or otherwise of this behavior for the MLE is best assessed in the
context of its implied conditional GP and, in particular, the behavior of its credible sets.

Theorem 3.2 (slow overconfidence at worst in the RKHS). If f \in \scrH K(\Omega ) and there is x\ast \in \Omega 
such that f(x\ast ) \not = 0 and x\ast \in XN for all sufficiently large N , then

(3.5) sup
x\in \Omega 

| f(x) - sf,XN
(x)| 

R\mathrm{G}\mathrm{P}(x, f,XN )
\lesssim N1/2 and

| I(f) - QXN
(f)| 

R\mathrm{B}\mathrm{C}(f,XN )
\lesssim N1/2.

Proof. From (3.3) we know that | f(x) - sf,XN
(x)| \leq \| f\| \scrH K(\Omega ) PXN

(x, x)1/2 for every x \in 
\Omega if f \in \scrH K(\Omega ). By this estimate and Proposition 3.1,

| f(x) - sf,XN
(x)| 

R\mathrm{G}\mathrm{P}(x, f,XN )
=

| f(x) - sf,XN
(x)| 

\sigma \mathrm{M}\mathrm{L}(f,XN )PXN
(x, x)1/2

\leq 
\| f\| \scrH K(\Omega )

\sigma \mathrm{M}\mathrm{L}(f,XN )
\asymp N1/2.

The argument for integration is identical.

The interpretation of Theorem 3.2 is that a GP model can become at worst slowly over-
confident, in the sense that the credible sets are asymptotically O(N1/2) times narrower than
they would be if the model was asymptotically honest. After the present work was completed,
a closely related result appeared as Proposition 3.1 in Wang (2020).

Remark 3.3. Szab\'o, van der Vaart, and van Zanten (2015) included a blowup factor LN >
0 in the studied credible sets, which in our setting is equivalent to using the scale parameter
\sigma = LN\sigma \mathrm{M}\mathrm{L}(f,XN ). If LN is set to grow sufficiently fast, our results guarantee that the model
is not asymptotically overconfident. For example, if LN \gtrsim N1/2 a modification of Theorem 3.2
would state that the standard scores are O(1). It is not clear to us that such artificial inflation
of \sigma can be statistically justified.

Theorem 3.2 establishes only upper bounds on standard scores and it does not follow that
there is a function for which the model is asymptotically overconfident---let alone that this is
the case for all functions in the RKHS. In fact, the upper bounds (3.5) can be improved to
\| f  - sf,XN

\| \scrH K(\Omega )N
1/2 by the use of improved versions (e.g., Wendland, 2005, p. 192) of the

generic error estimates (3.3):

| f(x) - sf,X(x)| \leq \| f  - sf,X\| \scrH K(\Omega ) PX(x, x)1/2,(3.6a)

| I(f) - QX(f)| \leq \| f  - sf,X\| \scrH K(\Omega ) V
1/2
X .(3.6b)

If the RKHS error \| f  - sf,XN
\| \scrH K(\Omega ) decays sufficiently fast it can be established that the

model is not asymptotically overconfident. Although it is known that \| f  - sf,XN
\| \scrH K(\Omega ) \rightarrow 0

as N \rightarrow \infty if the kernel is continuous and the point-set sequence (XN )\infty N=1 is space filling (in
the sense that the fill distance, to be defined in section 4.3, decays to zero), this convergence
in the RKHS norm can be arbitrarily slow (Iske, 2018, Theorem 8.37 and Exercise 8.64). It
is therefore interesting to ask whether there is a well-characterized subset of the RKHS for
which the GP model is not asymptotically overconfident. Such a subset is identified next.D
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3.4. Asymptotic underconfidence for a subset of the RKHS. In this section we char-
acterize a subset of the RKHS, related to an L2(\Omega ) integral operator, where the true approx-
imation error can be shown to decay faster than the width of the credible set. If \Omega \subset \BbbR d is
compact and the kernel K continuous, it follows that the integral operator T : L2(\Omega ) \rightarrow L2(\Omega )
defined as

(3.7) Tg(x) :=

\int 
\Omega 
g(y)K(x, y) dy for g \in L2(\Omega )

is self-adjoint and compact. By the spectral theorem there exists a sequence of positive and
decreasing eigenvalues (\lambda n)

\infty 
n=1 and corresponding eigenfunctions (\varphi n)

\infty 
n=1 \subset L2(\Omega ) such that

T\varphi n = \lambda n\varphi n. Since K is assumed continuous, Mercer's theorem implies that (\varphi n)
\infty 
n=1 form

an orthonormal basis of L2(\Omega ) and (\lambda 
1/2
n \varphi n)

\infty 
n=1 form an orthonormal basis of \scrH K(\Omega ) when

each \varphi n is uniquely identified with a continuous element of the RKHS. Therefore the kernel
has the uniformly convergent expansion K(x, y) =

\sum \infty 
n=1 \lambda n\varphi n(x)\varphi n(y) on \Omega \times \Omega and the

RKHS is

\scrH K(\Omega ) =

\Biggl\{ 
g \in L2(\Omega ) :

\infty \sum 
n=1

\langle g, \varphi n\rangle 2L2(\Omega )

\lambda n
<\infty 

\Biggr\} 
.

It can be then shown that the range of T is

(3.8) T (L2(\Omega )) =

\Biggl\{ 
g \in L2(\Omega ) :

\infty \sum 
n=1

\langle g, \varphi n\rangle 2L2(\Omega )

\lambda 2n
<\infty 

\Biggr\} 
\subset \scrH K(\Omega ).

It is easy to prove that the error estimates (3.3) can be improved if f is in T (L2(\Omega )) (Wendland,
2005, section 11.5). Namely, if there is v \in L2(\Omega ) such that f = Tv, then

\| f  - sf,X\| \scrH K(\Omega ) \leq 
\biggl( \int 

\Omega 
PX(x, x) dx

\biggr) 1/2

\| v\| L2(\Omega ) =: \| P
1/2
X \| L2(\Omega ) \| v\| L2(\Omega )

and therefore by (3.6) the error estimates become

| f(x) - sf,X(x)| \leq PX(x, x)1/2 \| P 1/2
X \| L2(\Omega ) \| v\| L2(\Omega ) ,(3.9a)

| I(f) - QX(f)| \leq V
1/2
X \| P 1/2

X \| L2(\Omega ) \| v\| L2(\Omega ) .(3.9b)

The standard convergence rates are thus effectively squared, this being occasionally referred
to as superconvergence (Schaback, 2018). See Schaback (1999, 2000), Fasshauer and McCourt
(2015, section 9.4.3), and Bach (2017, section 5) for additional results and discussion and
Kanagawa, Sriperumbudur, and Fukumizu (2020, section 6.2) for numerical examples. Also
note the connection of the space (3.8) to powers of RKHSs (Steinwart and Scovel, 2012) and
Hilbert scales (Dashti and Stuart, 2017, Appendix A.1.3). Unfortunately, the argument that
yields the improved rates (3.9) does not appear amenable to handling more general subspaces
of \scrH K(\Omega ).

By replacing (3.3) with (3.9) in the proof of Theorem 3.2 we establish that the GP model
is asymptotically underconfident for f \in T (L2(\Omega )).D
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Theorem 3.4 (asymptotic underconfidence for sufficiently regular functions). Suppose that
\Omega \subset \BbbR d is compact, K is continuous, f \in T (L2(\Omega )) \subset \scrH K(\Omega ), and there is x\ast \in \Omega such that
f(x\ast ) \not = 0 and x\ast \in XN for all sufficiently large N ; then,

sup
x\in \Omega \setminus XN

| f(x) - sf,XN
(x)| 

R\mathrm{G}\mathrm{P}(x, f,XN )
\lesssim N1/2 \| P 1/2

XN
\| 
L2(\Omega )

and
| I(f) - QXN

(f)| 
R\mathrm{B}\mathrm{C}(f,XN )

\lesssim N1/2 \| P 1/2
XN

\| 
L2(\Omega )

.

That is, the model is asympotically underconfident if the sequence (XN )\infty N=1 \subset \Omega is such that

N1/2 \| P 1/2
XN

\| 
L2(\Omega )

\rightarrow 0 as N \rightarrow \infty .

Proof. Let f = Tv for v \in L2(\Omega ). By using (3.9) instead of (3.3) in the proof of Theo-
rem 3.2, we get

sup
x\in \Omega \setminus XN

| f(x) - sf,XN
(x)| 

R\mathrm{G}\mathrm{P}(x, f,XN )
\leq 

\| P 1/2
XN

\| 
L2(\Omega )

\| v\| L2(\Omega )

\sigma \mathrm{M}\mathrm{L}(f,XN )
\lesssim N1/2 \| P 1/2

XN
\| 
L2(\Omega )

.

The supremum is over x /\in XN because for x \in XN we have defined the standard score to be
one. The argument for integration is identical.

If (XN )\infty N=1 are quasi-uniform (see section 4.3 for details), then N1/2 \| P 1/2
XN

\| 
L2(\Omega )

\rightarrow 0 is

true, for example, when K is one of the popular infinitely smooth kernels associated with
superalgebraic rates of convergence such as a Gaussian or an inverse multiquadric (Rieger and
Zwicknagl, 2010). A specialization to Sobolev kernels will be given in section 4.5.

4. Sobolev kernels and functions outside the RKHS. This section extends the results
of section 3 for functions outside the RKHS when the kernel K is a Sobolev kernel.

4.1. Sobolev spaces and kernels. Let \widehat g(\xi ) := \int \BbbR d g(x)e
 - \mathrm{i}\xi Tx dx denote the Fourier trans-

form of g \in L1(\BbbR d). The Sobolev space W\alpha 
2 (\BbbR d) of order \alpha \geq 0 is the Hilbert space

W\alpha 
2 (\BbbR d) :=

\biggl\{ 
g \in L2(\BbbR d) :

\int 
\BbbR d

\bigl( 
1 + \| \xi \| 2

\bigr) \alpha | \widehat g(\xi )| 2 d\xi <\infty 
\biggr\} 

equipped with the inner product

\langle h, g\rangle W\alpha 
2 (\BbbR d) :=

\int 
\BbbR d

\bigl( 
1 + \| \xi \| 2

\bigr) \alpha \widehat h(\xi )\widehat g(\xi ) d\xi ,
where \=z is the complex conjugate of z \in \BbbC . When \alpha \in \BbbN , the spaceW\alpha 

2 (\BbbR d) can be equivalently
defined as consisting of those functions whose weak derivatives up to order \alpha exist and are
in L2(\BbbR d). For \alpha /\in \BbbN , W\alpha 

2 (\BbbR d) can also be defined as an interpolation or Besov space, up
to equivalent norms (e.g., Triebel, 2006). If \alpha > d/2, then every element of W\alpha 

2 (\BbbR d) can be
uniquely identified with a continuous function from its L2(\BbbR d) equivalence class and W\alpha 

2 (\BbbR d)
can be viewed as an RKHS of continuous functions on \BbbR d. This identification will be implicitly
assumed throughout the article.

Let \Omega \subset \BbbR d be Lebesgue measurable and let W\alpha 
2 (\Omega ) be the restriction of W\alpha 

2 (\BbbR d) to \Omega ,
as defined in section 3.1. We say that a kernel K : \Omega \times \Omega \rightarrow \BbbR is a Sobolev kernel of orderD
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\alpha > d/2 (on \Omega ) if its RKHS \scrH K(\Omega ) is norm-equivalent to W\alpha 
2 (\Omega ). That is, \scrH K(\Omega ) equals

W\alpha 
2 (\Omega ) as a set of functions and there exist positive constants CK and C \prime 

K such that

(4.1) CK \| g\| W\alpha 
2 (\Omega ) \leq \| g\| \scrH K(\Omega ) \leq C \prime 

K \| g\| W\alpha 
2 (\Omega )

for all g \in \scrH K(\Omega ). Stationary kernels with prescribed Fourier decay form an important
subclass of Sobolev kernels: if there is \Phi : \BbbR d \rightarrow \BbbR such that K(x, y) = \Phi (x - y) and

C1

\bigl( 
1 + \| \xi \| 2

\bigr)  - \alpha \leq \widehat \Phi (\xi ) \leq C2

\bigl( 
1 + \| \xi \| 2

\bigr)  - \alpha 
for some C1, C2 > 0 and all \xi \in \BbbR d,

then K is a Sobolev kernel of order \alpha and \scrH K(\BbbR d) is norm-equivalent to W\alpha 
2 (\BbbR d). Perhaps

the most ubiquitous Sobolev kernels are the Mat\'ern kernels

(4.2) K\nu ,\ell (x, y) =
21 - \nu 

\Gamma (\nu )

\biggl( \surd 
2\nu \| x - y\| 

\ell 

\biggr) \nu 

K\nu 

\biggl( \surd 
2\nu \| x - y\| 

\ell 

\biggr) 
,

where \nu > 0 is a smoothness parameter, \ell > 0 a length-scale parameter, \Gamma the gamma function,
and K\nu the modified Bessel function of the second kind of order \nu . The Fourier transform of
a Mat\'ern kernel is (Stein, 1999, p. 49)

(4.3) K\nu ,\ell (x, y) = \Phi \nu ,\ell (x - y), \widehat \Phi \nu ,\ell (\xi ) =
\Gamma (\nu + d/2)

\pi d/2\Gamma (\nu )

\biggl( 
2\nu 

\ell 2

\biggr) \nu \biggl( 2\nu 

\ell 2
+ \| \xi \| 2

\biggr)  - (\nu +d/2)

,

and its RKHS is thus norm-equivalent to the Sobolev space W\alpha 
2 (\BbbR d) with \alpha = \nu + d/2. See

Wendland (2005, Chapter 10) for proofs and further detail.
Functions that lie on the ``boundary"" of a Sobolev space play an important role in our

analysis. For this purpose, define the sets

S\alpha 
 - (\BbbR d) :=

\bigl\{ 
g \in L2(\BbbR d) : | \widehat g(\xi )| 2 \lesssim \bigl( 1 + \| \xi \| 2

\bigr)  - (\alpha +d/2)\bigr\} 
,

S\alpha 
+(\BbbR d) :=

\bigl\{ 
g \in L2(\BbbR d) : | \widehat g(\xi )| 2 \gtrsim \bigl( 1 + \| \xi \| 2

\bigr)  - (\alpha +d/2)\bigr\} 
,

and

(4.4) S\alpha (\BbbR d) := S\alpha 
 - (\BbbR d) \cap S\alpha 

+(\BbbR d).

From the fact that
\int 
\BbbR d(1+\| \xi \| 2)\alpha (1+\| \xi \| 2) - (\beta +d/2) d\xi is finite if and only if \beta > \alpha it follows that

S\beta (\BbbR d) and S\beta 
 - (\BbbR d) are subsets of W\alpha 

2 (\BbbR d) if and only if \beta > \alpha . Similarly, S\beta 
+(\BbbR d) \cap W\alpha 

2 (\BbbR d)
is nonempty if and only if \beta > \alpha , and it may therefore be helpful to think of S\alpha 

+(\BbbR d) as
approximately the collection of square-integrable functions that are not inW\alpha 

2 (\BbbR d). A function
g : \Omega \rightarrow \BbbR is said to be in S\alpha 

 - (\Omega ) (S
\alpha 
+(\Omega )) if it has an extension g0 \in S\alpha 

 - (\BbbR d) (g0 \in S\alpha 
+(\BbbR d)).

As an aside, we note the similarity of these sets to the sequence hyperrectangles analyzed in
Szab\'o, van der Vaart, and van Zanten (2013, 2015) and Hadji and Szab\'o (2019).D
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4.2. Motivation: Sample path properties of GPs. In this article the function f is fixed,
but nevertheless it seems reasonable that a statistical estimation method based on a GP model
ought to perform well when the assumptions of the GP model are satisfied. This motivates
us to consider the regularity of samples from the GP model, which will later form the basis of
regularity assumptions on f . The most important results relating the samples and the RKHS
are the following (for a recent review, see Kanagawa et al., 2018):

\bullet If \scrH K(\Omega ) is infinite dimensional, then the sample paths of the GP belong to \scrH K(\Omega )
with probability 0. In general, the samples being contained in the RKHS of a different
kernel R with probability 0 or 1 depends on whether or not a certain nuclear dominance
condition between the kernels K and R holds (Driscoll, 1973, Luki\'c and Beder, 2001).

\bullet If K is a Sobolev kernel of order \alpha > d/2, then the GP sample paths are in W \beta 
2 (\Omega )

with probability 1 if \beta < \alpha  - d/2 and with probability 0 if \beta \geq \alpha  - d/2 (Scheuerer,
2010, Steinwart, 2019).

The latter result essentially says that for Sobolev kernels the sample paths are rougher than
elements in \scrH K(\Omega ) by order d/2. Furthermore, it follows that sample paths are in the set

(4.5) W
\alpha  - d/2 - \varepsilon 
2 (\Omega ) \setminus W\alpha  - d/2

2 (\Omega )

with probability 1 for any \varepsilon > 0. We are not aware of more advanced developments than this
but, encouraged by (4.9), conjecture that the set S\alpha  - d/2(\Omega ), which is a subset of (4.5) for any
\varepsilon > 0, is in some sense the smallest set (or closely related to such a set) that contains almost
all sample paths of a GP with a Sobolev covariance kernel of order \alpha .

4.3. Error estimates for Sobolev kernels. In this section we present bounds on the GP
approximation and integration errors and sharp rates (i.e., the upper and lower bounds are of

matching order) of decay of supx\in \Omega PX(x, x)1/2 and V
1/2
X when K is a Sobolev kernel; these

will be used to study the maximum likelihood estimator in section 4.4. Define the fill distance
hX and the separation radius qX of a set of distinct points X = \{ x1, . . . , xN\} \subset \Omega as

hX := sup
x\in \Omega 

min
i=1,...,N

\| x - xi\| and qX :=
1

2
min
i \not =j

\| xi  - xj\| .

Also define the mesh ratio \rho X := hX/qX \geq 1. A sequence (XN )\infty N=1 \subset \Omega is quasi-uniform if
\rho XN

\lesssim 1, which implies that qXN
\asymp hXN

\asymp N - 1/d (Wendland, 2005, Proposition 14.1).
The domain \Omega \subset \BbbR d will often be assumed to satisfy the following requirement, which will

be made explicit when required.

Assumption 4.1. The set \Omega \subset \BbbR d is bounded and connected, has a nonempty interior and
a Lipschitz boundary, and satisfies an interior cone condition.

The Lipschitz boundary condition says that the boundary is sufficiently regular in that
it is locally the graph of a Lipschitz function, while the interior cone condition prohibits the
existence of pinch points; for technical definitions see, for example, Kanagawa, Sriperumbudur,D

ow
nl

oa
de

d 
11

/0
6/

20
 to

 1
30

.2
33

.1
91

.5
6.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited. 

GP APPROXIMATION OF DETERMINISTIC FUNCTIONS 941

and Fukumizu (2020, section 3). These conditions are standard in the theory of Sobolev spaces
and error analysis of kernel-based approximation methods.5 In particular, they guarantee that
various different notions of integer and fractional order Sobolev spaces defined on \Omega result in
identical function spaces up to equivalent norms. Assumption 4.1 is satisfied by all typical
domains and in particular by \Omega = [0, 1]d, which is used in the numerical examples in section 5.

The following theorem provides bounds on the approximation and integration error by a
GP conditional mean when the kernel is Sobolev and f does not necessarily lie in the RKHS.
The theorem as we state it is a consequence of results in the scattered data approximation
literature (Wendland and Rieger, 2005, Narcowich, Ward, and Wendland, 2006). For com-
pleteness and to simplify later developments the proof is provided in Appendix A.

Theorem 4.2. Let \alpha \geq \beta and \lfloor \beta \rfloor > d/2. Suppose that \Omega \subset \BbbR d satisfies Assumption 4.1

and K is a Sobolev kernel of order \alpha . If f \in W \beta 
2 (\Omega ), then there are C1, C2, h0 > 0, which do

not depend on f or X, such that

sup
x\in \Omega 

| f(x) - sf,X(x)| \leq C1h
\beta  - d/2
X \rho \alpha  - \beta 

X \| f\| 
W\beta 

2 (\Omega )
and | I(f) - QX(f)| \leq C2h

\beta 
X\rho 

\alpha  - \beta 
X \| f\| 

W\beta 
2 (\Omega )

whenever hX \leq h0. For a quasi-uniform sequence (XN )\infty N=1 \subset \Omega these bounds become

sup
x\in \Omega 

| f(x) - sf,XN
(x)| \lesssim N - \beta /d+1/2 \| f\| 

W\beta 
2 (\Omega )

and | I(f) - QXN
(f)| \lesssim N - \beta /d \| f\| 

W\beta 
2 (\Omega )

.

See Arcang\'eli, de Silanes, and Torrens (2007, 2012) and Wynne, Briol, and Girolami (2020)
for a collection of marginally more general versions of Theorem 4.2. These generalizations are
not used here because proofs of some of the results in section 4.4 require understanding of the
dependency, which is much less transparent in the generalizations, on the Sobolev smoothness
parameters of the constants C1 and C2. The following extension for f \in S\beta 

 - (\Omega ), that we have
not found in the literature, will be useful. Its proof is given in Appendix A.

Theorem 4.3. Suppose that the other assumptions of Theorem 4.2 are satisfied but f \in 
S\beta 
 - (\Omega ). Then for a quasi-uniform sequence (XN )\infty N=1 \subset \Omega ,

sup
x\in \Omega 

| f(x) - sf,XN
(x)| \lesssim N - \beta /d+1/2(logN)1/2 and | I(f) - QXN

(f)| \lesssim N - \beta /d(logN)1/2.

The implicit constants in the estimates of Theorem 4.3 depend on the smallest C > 0

such that | \widehat f0(\xi )| 2 \leq C(1 + \| \xi \| 2) - (\beta +d/2) for a Sobolev exntesion f0 of f and all sufficiently
large \xi \in \BbbR d. Similar dependencies are implicit in the bounds of Propositions 4.6 and 4.8 and
Theorems 4.9 and 4.10.

Due to (3.2) the error estimates of Theorem 4.2 for \beta = \alpha are also upper bounds on the
conditional standard deviations. It is possible to establish matching lower bounds, which leads
to the following standard result, the proof of which is given in Appendix A.

5In the results we cite it is often assumed that \Omega is open. Because these results provide bounds on Lp(\Omega )
norms and a Lipschitz boundary is of measure zero, they remain valid whenever \Omega has a nonempty interior.D
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Theorem 4.4. Suppose that \Omega \subset \BbbR d satisfies Assumption 4.1. If K is a Sobolev kernel of
order \alpha > \lfloor d/2\rfloor and the sequence (XN )\infty N=1 \subset \Omega is quasi-uniform, then

sup
x\in \Omega 

PXN
(x, x)1/2 \asymp N - \alpha /d+1/2 and V

1/2
XN

\asymp N - \alpha /d.

Furthermore, PXN
(x, x)1/2 \asymp N - \alpha /d+1/2 for any x /\in 

\bigcup \infty 
N=1XN .

4.4. Maximum likelihood estimation. This section contains upper and lower bounds on
\sigma \mathrm{M}\mathrm{L}(f,XN ) when K is a Sobolev kernel of order \alpha and f is not necessarily in W\alpha 

2 (\Omega ). If
f \in W\alpha 

2 (\Omega ), which below corresponds to either \beta \geq \alpha or \beta < \alpha , then the results in section 3.3
can be used instead. The main result on maximum likelihood estimation is Theorem 4.9 which
provides sharp (up to logarithmic factors) asymptotics for the MLE under certain conditions
on f . Propositions 4.5 to 4.8 contain individual upper and lower bounds. The bounds are
used to discuss credible sets and asymptotic overconfidence and underconfidence in section 4.5.
The proofs of this section are provided in Appendix A.

Proposition 4.5. Let \alpha \geq \beta and \lfloor \beta \rfloor > d/2. Suppose that \Omega \subset \BbbR d satisfies Assumption 4.1

and K is a Sobolev kernel of order \alpha . If f \in W \beta 
2 (\Omega ), then there are C, h0 > 0, which do not

depend on f or XN , such that

(4.6) \sigma \mathrm{M}\mathrm{L}(f,XN ) \leq CN - 1/2q\beta  - \alpha 
XN

\| f\| 
W\beta 

2 (\Omega )

whenever hXN
\leq h0. For a quasi-uniform sequence (XN )\infty N=1 \subset \Omega this bound becomes

\sigma \mathrm{M}\mathrm{L}(f,XN ) \lesssim N (\alpha  - \beta )/d - 1/2 \| f\| 
W\beta 

2 (\Omega )
.

Proposition 4.5 holds in a slightly modified form if f \in S\beta 
 - (\Omega ) (recall S

\beta 
 - (\Omega )\cap W

\beta 
2 (\Omega ) = \emptyset ).

Proposition 4.6. Suppose that the other assumptions of Theorem 4.5 are satisfied but
f \in S\beta 

 - (\BbbR d). Then for a quasi-uniform sequence (XN )\infty N=1 \subset \Omega ,

\sigma \mathrm{M}\mathrm{L}(f,XN ) \lesssim N (\alpha  - \beta )/d - 1/2(logN)1/2.

Lower bounds require some additional assumptions and take a more cumbersome form.
Recall that the support of a function is the closed set supp(f) := \{ x \in \Omega : f(x) \not = 0\} and the
interior int(\Omega ) of \Omega \subset \BbbR d is the largest open set contained in \Omega .

Proposition 4.7. Let \alpha \geq \beta > \gamma and \lfloor \gamma \rfloor > d/2. Suppose that \Omega \subset \BbbR d satisfies Assump-
tion 4.1 and K is a Sobolev kernel of order \alpha . If supp(f) \subset int(\Omega ) and f has an extension

f0 \in W \gamma 
2 (\BbbR d) \cap S\beta 

+(\BbbR d) such that supp(f0) \subset int(\Omega ), then there are C, h0 > 0, which do not
depend on XN , such that

(4.7) \sigma \mathrm{M}\mathrm{L}(f,XN ) \geq CN - 1/2h
\gamma (1 - \alpha /\beta )
XN

\rho 
 - (\alpha  - \gamma )(\alpha  - \beta )/\beta 
XN

\| f\| 1 - \alpha /\beta 

W \gamma 
2 (\Omega )

whenever hXN
\leq h0. For a quasi-uniform sequence (XN )\infty N=1 \subset \Omega this bound becomes

(4.8) \sigma \mathrm{M}\mathrm{L}(f,XN ) \gtrsim N\gamma (\alpha /\beta  - 1)/d - 1/2 \| f\| 1 - \alpha /\beta 

W \gamma 
2 (\Omega )

.D
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Proposition 4.8. Suppose that the other assumptions of Theorem 4.7 are satisfied but
f0 \in S\beta (\BbbR d). Then for a quasi-uniform sequence (XN )\infty N=1 \subset \Omega ,

\sigma \mathrm{M}\mathrm{L}(f,XN ) \gtrsim N (\alpha  - \beta )/d - 1/2(logN)(1 - \alpha /\beta )/2.

By combining Propositions 4.6 and 4.8 we obtain a rate for f \in S\beta (\Omega ) that is sharp up
to logarithmic factors. The empirical results in section 5.1 suggest that elimination of the
logarithmic factors and the support conditions may be possible with more careful analysis.

Theorem 4.9 (asymptotics of the MLE). Let \alpha \geq \beta and \lfloor \beta \rfloor > d/2. Suppose that \Omega \subset \BbbR d

satisfies Assumption 4.1 and K is a Sobolev kernel of order \alpha . If supp(f) \subset int(\Omega ) and f
has an extension f0 \in S\beta (\BbbR d) such that supp(f0) \subset int(\Omega ), then for a quasi-uniform sequence
(XN )\infty N=1 \subset \Omega ,

N (\alpha  - \beta )/d - 1/2(logN)(1 - \alpha /\beta )/2 \lesssim \sigma \mathrm{M}\mathrm{L}(f,XN ) \lesssim N (\alpha  - \beta )/d - 1/2(logN)1/2.

In particular, for \beta = \alpha  - d/2 we have (\alpha  - \beta )/d  - 1/2 = 0 so that the MLEs are
asymptotically constant, up to logarithmic factors:

(4.9) (logN) - d/(4\alpha  - 2d) \lesssim \sigma \mathrm{M}\mathrm{L}(f,XN ) \lesssim (logN)1/2

if f \in S\alpha  - d/2(\Omega ). As discussed in section 4.2, this corresponds to the case where f has
essentially the same regularity as samples from a GP whose covariance kernel is a Sobolev
kernel of order \alpha .

4.5. Credible sets. We now use the bounds on the MLEs to prove an overconfidence result
similar to Theorem 3.2, but this time for functions outside the RKHS. First, it is instructive
to study what can happen if the scale parameter is held fixed. If K is a Sobolev kernel of
order \alpha , f \in W \beta 

2 (\Omega ) for \beta \leq \alpha , and (XN )\infty N=1 are quasi-uniform, then Theorems 4.2 and 4.4
yield

(4.10)
| I(f) - QXN

(f)| 
R\mathrm{B}\mathrm{C}(f,XN )

=
| I(f) - QXN

(f)| 
\sigma V

1/2
XN

\lesssim 
N - \beta /d \| f\| 

W\beta 
2 (\Omega )

\sigma N - \alpha /d
= \sigma  - 1N (\alpha  - \beta )/d \| f\| 

W\beta 
2 (\Omega )

.

That is, there is potential for significant overconfidence if K is smoother than f . The following
theorem shows that maximum likelihood estimation provides protection against such model
misspecification.

Theorem 4.10 (slow overconfidence at worst outside the RKHS). Let \alpha \geq \beta and \lfloor \beta \rfloor > d/2.
Suppose that \Omega \subset \BbbR d satisfies Assumption 4.1 and K is a Sobolev kernel of order \alpha . If
supp(f) \subset int(\Omega ) and f has an extension f0 \in S\beta (\BbbR d) such that supp(f0) \subset int(\Omega ), then for
a quasi-uniform sequence (XN )\infty N=1 \subset \Omega ,

| f(x) - sf,XN
(x)| 

R\mathrm{G}\mathrm{P}(x, f,XN )
\lesssim N1/2(logN)\alpha /(2\beta ) for any x \in \Omega 

and

| I(f) - QXN
(f)| 

R\mathrm{B}\mathrm{C}(f,XN )
\lesssim N1/2(logN)\alpha /(2\beta ).D
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Proof. Consider first approximation with GPs. For N such that x \in XN the standard
score in (2.9) and (2.10) is by definition equal to one. We can thus assume that x /\in 

\bigcup \infty 
N=1XN .

Then the estimates in Theorems 4.3 and 4.4 and Proposition 4.8 yield

| f(x) - sf,XN
(x)| 

R\mathrm{G}\mathrm{P}(x, f,XN )
=

| f(x) - sf,XN
(x)| 

\sigma \mathrm{M}\mathrm{L}(f,XN )PXN
(x, x)1/2

\lesssim 
N - \beta /d+1/2(logN)1/2

N (\alpha  - \beta )/d - 1/2(logN)(1 - \alpha /\beta )/2N - \alpha /d+1/2

= N1/2(logN)\alpha /(2\beta ).

The proof for integration is essentially identical.

Interestingly, the case \beta = \alpha  - d/2, which essentially corresponds to f having the same
regularity as samples from the GP, plays no special role in Theorem 4.10. We are uncertain
if this is due to an inadequacy in the analysis or if there in fact exist GP samples for which
the model is overconfident. In practice one rarely knows the exact smoothness of f (or the
function is not an element of S\beta (\Omega ) for any \beta ) and can only guess, for example, that f has
weak derivatives at least up to some order \beta . If \beta < \alpha , then nothing can be inferred about
the credible sets based on our results; if \beta \geq \alpha , then Theorem 3.2 can be used.

As our final result we present a specialization of Theorem 3.4 to Sobolev kernels. The proof
is a straightforward application of the estimates in (3.9), Proposition 3.1, and Theorem 4.4:

sup
x\in \Omega \setminus XN

| f(x) - sf,XN
(x)| 

R\mathrm{G}\mathrm{P}(x, f,XN )
\lesssim N1/2

\biggl( \int 
\Omega 
PXN

(x, x) dx

\biggr) 1/2

\leq N1/2 sup
x\in \Omega 

PXN
(x, x)1/2 \asymp N - \alpha /d+1

if the point sequence is quasi-uniform. Recall that T (L2(\Omega )) is the range of the integral
operator in (3.7).

Theorem 4.11 (asymptotic underconfidence for sufficiently regular functions). Suppose that
\Omega \subset \BbbR d is compact, K is a Sobolev kernel of order \lfloor \alpha \rfloor > d/2, and f \in T (L2(\Omega )). Then for a
quasi-uniform sequence (XN )\infty N=1 \subset \Omega such that there is x\ast \in XN for which f(x\ast ) \not = 0 for all
sufficiently large N ,

sup
x\in \Omega \setminus XN

| f(x) - sf,XN
(x)| 

R\mathrm{G}\mathrm{P}(x, f,XN )
\lesssim N - \alpha /d+1 and

| I(f) - QXN
(f)| 

R\mathrm{B}\mathrm{C}(f,XN )
\lesssim N - \alpha /d+1.

We thus have asymptotic underconfidence for approximation and integration of f \in 
T (L2(\Omega )) at least when \alpha > d. Note that for Sobolev kernels of order \alpha the range T (L2(\Omega ))
is related to the Sobolev space of smoothness 2\alpha (see, e.g., Tuo, Wang, and Wu, 2020, sec-
tion 2.3).

Theorem 4.11 can be illustrated in detail using the Brownian motion kernel
K(x, y) = min\{ x, y\} on \Omega = [0, 1]. Its RKHS consists of functions f \in W 1

2 ([0, 1]) such that
f(0) = 0. It is well known that the GP conditional mean for this kernel is the piecewiseD
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linear spline interpolant. Furthermore, for the weight w \equiv 1 in (2.3) the Bayesian quadrature
estimator is the trapezoidal rule if xN = 1 and f(0) = 0 (e.g., Karvonen, 2019, section 5.5):

QXN
(f) =

N\sum 
n=1

f(xn - 1) + f(xn)

2
(xn  - xn - 1),

where the convention x0 = 0 is used. If the equispaced points xn = n/N are used, the integral
conditional variance (2.4b) has the simple form (Ritter, 2000, p. 26)

(4.11) VXN
=

1

12

N\sum 
n=1

(xn  - xn - 1)
3 =

1

12N2
.

If f : [0, 1] \rightarrow \BbbR is twice differentiable with f \prime \prime bounded and f(0) = 0, which means that
f \in W 2

2 ([0, 1]), the standard error formula for the trapezoidal rule with equispaced points
is (Atkinson, 1989, section 5.1)

(4.12) I(f) - QXN
(f) =  - 1

12N2
f \prime \prime (\xi N ) for some \xi N \in [0, 1].

Because such a function is in the RKHS, Proposition 3.1 gives \sigma \mathrm{M}\mathrm{L}(f,XN ) \asymp N - 1/2. This
and the estimates (4.11) and (4.12) thus yield

(4.13)
| I(f) - QXN

(f)| 
R\mathrm{B}\mathrm{C}(f,XN )

=
| I(f) - QXN

(f)| 
\sigma \mathrm{M}\mathrm{L}(f,XN )V

1/2
XN

\leq 
supx\in [0,1] | f \prime \prime (x)| \surd 
12N\sigma \mathrm{M}\mathrm{L}(f,XN )

\lesssim N - 1/2,

which is the statement of Theorem 4.11 with \alpha = 1 and d = 1. If we further assume that
there is C > 0 such that f \prime \prime (x) > C for all x \in [0, 1] (i.e., f is strictly convex), then (4.12)
implies that | I(f) - QXN

(f)| \asymp N - 2, and the standard score (4.13) hence has a lower bound
of matching order N - 1/2.

5. Numerical illustration. This section numerically investigates the sharpness of the re-
sults in section 4. Examples in section 5.1 verify that the bounds on \sigma \mathrm{M}\mathrm{L}(f,XN ) in Theo-
rem 4.9 are valid. Section 5.2 contains limited evidence that the bounds in section 4.5 are not
tight: the credible sets do not appear to contract with a rate O(N - 1/2) faster than the true
error.

5.1. Maximum likelihood estimation. In these examples we illustrate the behavior of
the MLE \sigma \mathrm{M}\mathrm{L}(f,XN ) using the Mat\'ern kernel K\nu ,\ell in (4.2). Recall that the RKHS of K\nu ,\ell is
norm-equivalent to the Sobolev space W\alpha 

2 (\BbbR d) with \alpha = \nu + d/2. We select \Omega = [0, 1]d and
use test functions constructed out of Mat\'ern kernels of smoothness \eta :

(5.1) f(x) =
m\sum 
i=1

aiK\eta ,\ell (x, zi) with some ai \in \BbbR and zi \in [0, 1]d.

By (4.3), the Fourier transform of such a function satisfies | \widehat f(\xi )| 2 \propto (2\eta /\ell 2 + \| \xi \| 2) - (2\eta +d).
The function is thus an element S2\eta +d/2(\BbbR d) and, except for the support condition supp(f) \subset D
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Figure 1. MLEs \sigma \mathrm{M}\mathrm{L}(f,XN ) (gray) and theoretically predicted rates Nr with r = \nu  - 3/2 (dashed black)
when d = 1, as a function of the size N of the point set. Above: nonnested uniform point sets (5.3) for
N = 2, . . . , 300. Below: nested van der Corput points (5.4) for N = 2, . . . , 500. The function f is of the
form (5.1) with \eta = 0.5. The GP covariance kernel is a Mat\'ern (4.2) with smoothness \nu .

(0, 1)d, satisfies the assumptions of Theorem 4.9 with \beta = 2\eta +d/2. For a quasi-uniform point
sequence we therefore expect that (possibly up to logarithmic factors)

(5.2) \sigma \mathrm{M}\mathrm{L}(f,XN ) \asymp N (\nu  - 2\eta )+/d - 1/2 if \nu \geq 2\eta and \sigma \mathrm{M}\mathrm{L}(f,XN ) \asymp N - 1/2 if \nu < 2\eta .

MLE when d = 1. In the first example we set d = 1, \ell = 0.2, \eta = 0.5, m = 3, (a1, a2, a3) =
(1, 0.5, 0.2), and (z1, z2, z3) = (0.2, 0.55, 0.78). Figure 1 displays the behavior of the MLEsD
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and the predicted theoretical rates (5.2) for different values of the smoothness parameter \nu of
the Mat\'ern kernel. On the first and second row of Figure 1 the point sets are the nonnested
uniform grids

(5.3) XN =

\biggl\{ 
0,

1

N  - 1
, . . . ,

N  - 2

N  - 1
, 1

\biggr\} 
with fill-distances hXN

= 1/(N  - 1). The MLEs exhibit wild oscillations which seem to be
related to placement of the evaluation points in relation to the points zi defining f . Never-
theless, it is clear that the rates predicted by (5.2) are realized in all cases. On the third and
fourth row of Figure 1 the point sets are nested: XN consists of the first N elements of the
low-discrepancy van der Corput sequence

(5.4) 0, 0.5, 0.75, 0.125, 0.625, 0.375, 0.875, . . . .

Because the fill-distances and separation radii of these sets are not equal, the MLEs exhibit
sudden increases intercepted by periods of decay contributed by the N - 1/2 term in (4.6)
and (4.7). However, overall behavior of \sigma \mathrm{M}\mathrm{L}(f,XN ) appears to be compatible with the
rate (5.2). Even though the plots are seemingly similar, \sigma \mathrm{M}\mathrm{L}(f,XN ) grows much faster for
larger \nu as attested by changing y-scaling of the figures.

MLE when d = 2. In the second example we set d = 2, \ell = 0.8, \eta = 0.75, m = 3,
(a1, a2, a3) = (1, 0.5, 0.2), and (z1, z2, z3) = ((0.1, 0.1), (0.5, 0.1), (0.725, 0.565)). The results
are displayed in Figure 2. The point sets are now Cartesian products of the point sets used
in the previous one-dimensional example. The MLEs again appear to behave as predicted
by (5.2).

5.2. Credible sets. The uncertainty quantification provided by GPs, as measured by the
true function or its integral being contained in the credible sets (2.8), has been empirically
assessed by various authors in a number of problems of varying character (Karvonen, Oates,
and S\"arkk\"a, 2018, Briol et al., 2019, Rathinavel and Hickernell, 2019). The theoretical results
that we report may help to explain such empirical results previously observed.

In this example we study asymptotic overconfidence and underconfidence on \Omega = [0, 1] \subset \BbbR 
using the released once integrated Brownian motion kernel

(5.5) K(x, y) = 1 + xy +
1

3
min\{ x, y\} 3 + 1

2
| x - y| min\{ x, y\} 2

whose RKHS is W 2
2 ([0, 1]) (in the parlance of section 4, \alpha = 2). The term 1 + xy ``releases""

the standard integrated Brownian motion by removing the requirement that f(0) = f \prime (0) = 0.
See van der Vaart and van Zanten (2008, section 10) and Karvonen (2019, section 2.2.3) for
details about integrated Brownian motion kernels. For simplicity we only consider Bayesian
quadrature for the computation of unweighted Lebesgue integrals on [0, 1]. Our integrands
are of the form (5.1) with fixed m = 3, \ell = 0.7, (a1, a2, a3) = (1, 2, 0.5), and (z1, z2, z3) =
(0.125, 0.5, 0.75). Six different smoothness parameters are used: \eta = n/4 for n = 1, . . . , 6.
As described in section 5.1, this implies that the integrands are elements of S\beta ([0, 1]) with
\beta = 2\eta + 1/2 = (n + 1)/2 for n = 1, . . . , 6. For each N \geq 1 the point set XN consists of the
N first elements in the van der Corput sequence (5.4).D
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Figure 2. MLEs \sigma \mathrm{M}\mathrm{L}(f,XN ) (gray) and theoretically predicted rates Nr with r = \nu /2 - 5/4 (dashed black)
when d = 2, as a function of the size N of the point set. Above: Cartesian products of nonnested uniform point
sets (5.3) for N = 22, . . . , 502. Below: nested van der Corput points (5.4) for N = 22, . . . , 702. The function f
is of the form (5.1) with \eta = 0.75. The GP covariance kernel is a Mat\'ern (4.2) with smoothness \nu .

The results are depicted in Figure 3. In the right-hand panel we see that asymptotic
overconfidence appears to occur when f is less smooth than the RKHS (\eta = 0.25 and \eta = 0.50),
though it is not clear with which rate this happens. When \eta = 0.75, which corresponds to f
being on the boundary of the RKHS, credible sets appear to be either slowly asymptotically
overconfident or asymptotically honest. When f \in W 2

2 ([0, 1]) (\eta = 1.00 and \eta = 1.25) the
GP model appears to be asymptotically honest. Note that in all cases the relevant theoreticalD
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Figure 3. Behavior of the integration error ( left), MLE of the kernel scale parameter ( center), and the
standard score in (2.9) and (2.10) ( right) for a function f of the form (5.1) with \eta = n/4, n = 1, . . . , 6,
corresponding to f \in S\beta ([0, 1]) for \beta = (n + 1)/2, n = 1, . . . , 6. The functions are evaluated at the nested
van der Corput points (5.4) for N = 1, . . . , 256. The GP covariance kernel is the released integrated Brownian
motion kernel (5.5) whose RKHS is W 2

2 ([0, 1]).

result, Theorem 4.10, only guarantees overconfidence, if it happens, it cannot happen too fast
in that | I(f) - QXN

(f)| /R\mathrm{B}\mathrm{C}(f,XN ) = O(N1/2(logN)1/\beta ).

6. Conclusion. In this article we analyzed the asymptotic behavior, as the number of
data points grows, of MLEs of the scale parameter of a GP in the context of approximation
and integration of a function that is exactly observed. The results on maximum likelihood
estimation were then used to show that in some settings the GP model can become at worst
slowly overconfident.

Similar analysis of other common kernel parameters, in particular the length-scale param-
eter of a stationary kernel, and their effect on uncertainty quantification would be a logical
next step. Some work exists in the setting of the white noise model Szab\'o, van der Vaart,
and van Zanten (2015), Hadji and Szab\'o (2019). However, such an analysis is greatly compli-
cated by the lack of a closed-form expression like (2.6) for more general maximum likelihood
estimators. For the length-scale parameter there is some evidence that its MLE can converge
to a constant \ell \infty \in (0,\infty ) even when the GP model is misspecified Karvonen, Tronarp, and
S\"arkk\"a (2019). Although proper selection of this parameter is often a prerequisite for an
accurate and meaningful uncertainty quantification when N is small, it would follow that the
parameter has no effect on asymptotic overconfidence or underconfidence of the model. Teck-
entrup (2019) has recently proved approximation error bounds for GPs over compact sets of
kernel parameters by assuming that the associated RKHS norm-equivalence constants can be
uniformly bounded. If the existence of a limit \ell \infty could be established, it is likely that results
in Teckentrup (2019) could be leveraged to extend the results in section 4.5 to simultaneous
maximum likelihood estimation of the scale and length-scale parameters.D
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There are also other popular approaches to kernel parameter selection. In marginalization,
or full Bayes, the scale parameter is treated as random and assigned an improper prior with
density p(\sigma 2) \propto 1/\sigma 2 before being marginalized out (see MacKay, 1996). If N \geq 3, the
conditional process becomes a Student's t process with N degrees of freedom, whose mean
function is still sf,X but whose covariance function is now (fTXK

 - 1
X fX/(N  - 2))PX(x, y). The

Student's t distribution converges to a Gaussian when its degrees of freedom increases, which
implies that the resulting posterior is indistinguishable from the one obtained using maximum
likelihood in the large N limit. As a consequence, the asymptotic results of this article apply
equally to the case where \sigma is marginalized. Cross validation offers more possibilities, both
rooted (Fong and Holmes, 2019) and not rooted (e.g., Rathinavel and Hickernell, 2019, section
2.2.3) in the GP model, to some of which our results on maximum likelihood may be relevant.
An empirical investigation on cross validation has been performed in Bachoc (2013).

Appendix A. Proofs for sections 4.3 and 4.4. This appendix contains proofs for the
results in sections 4.3 and 4.4. Unlike in the statements of the results, here various constants
are tracked carefully because these constants need to be controlled in the proofs of Theorem 4.3
and Propositions 4.6 and 4.8.

Lemma A.1. Suppose that \alpha \geq \beta > d/2 and \Omega \subset \BbbR d satisfies Assumption 4.1. If f \in 
W \beta 

2 (\Omega ) and X \subset \Omega is a finite set of points, then there is f\beta \in W\alpha 
2 (\Omega ) such that f\beta | X = f | X ,

(A.1) \| f  - f\beta \| W\beta 
2 (\Omega )

\leq 5 \| f\| 
W\beta 

2 (\Omega )
, and \| f\beta \| W\alpha 

2 (\Omega ) \leq C\beta q
\beta  - \alpha 
X \| f\| 

W\beta 
2 (\Omega )

,

where the constant C\beta > 0 does not depend on f or X and varies continuously with \beta .

Proof. For any band limited f\sigma with band limit \sigma \geq 1 we have

\| f\sigma \| 2W\alpha 
2 (\BbbR d) =

\int 
\| \xi \| \leq \sigma 

\bigl( 
1 + \| \xi \| 2

\bigr) \alpha | \widehat f\sigma (\xi )| 2 d\xi 
\leq (1 + \sigma 2)\alpha  - \beta 

\int 
\| \xi \| \leq \sigma 

\bigl( 
1 + \| \xi \| 2

\bigr) \beta | \widehat f\sigma (\xi )| 2 d\xi 
= (1 + \sigma 2)\alpha  - \beta \| f\sigma \| 2W\beta 

2 (\BbbR d)

\leq 2\alpha  - \beta \sigma 2(\alpha  - \beta ) \| f\sigma \| 2W\beta 
2 (\BbbR d)

.

(A.2)

Let f0 \in W \beta 
2 (\BbbR d) be any extension of f . By Theorem 3.4 in Narcowich, Ward, and Wendland

(2006) there exists f\beta \in W\alpha 
2 (\BbbR d) with bandwidth \sigma = \kappa \beta q

 - 1
X such that f\beta | X = f | X and

(A.3) \| f0  - f\beta \| W\beta 
2 (\BbbR d)

\leq 5 \| f0\| W\beta 
2 (\BbbR d)

.

The constant \kappa \beta > 0 depends only on d and \beta and can be selected such that \sigma = \kappa \beta q
 - 1
X \geq 1

for any points X \subset \Omega . That it varies continuously with \beta is ascertained by observing that,
according to the proof of Lemma 3.3 in Narcowich, Ward, and Wendland (2006), it is a
continuous combination of the constants C\beta ,d = \Phi \beta (0) +

\sum \infty 
n=1 3d(n + 2)d - 1\Phi \beta (n), whereD
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\Phi \beta (x) = (1 + x2) - \beta for x \in \BbbR , and c\beta ,d, given in Wendland (2005, Theorem 12.3), which are
continuous functions of \beta . The second claim follows from (A.2) and (A.3):

\| f\beta \| W\alpha 
2 (\BbbR d) \leq 2(\alpha  - \beta )/2\sigma \alpha  - \beta \| f\beta \| W\beta 

2 (\BbbR d)
\leq 2(\alpha  - \beta )/2\sigma \alpha  - \beta 

\bigl( 
\| f0\| W\beta 

2 (\BbbR d)
+ \| f0  - f\beta \| W\beta 

2 (\BbbR d)

\bigr) 
\leq 6\times 2(\alpha  - \beta )/2\kappa \alpha  - \beta 

\beta q\beta  - \alpha 
X \| f0\| W\beta 

2 (\BbbR d)
.

That is, C\beta = 6\times 2(\alpha  - \beta )/2\kappa \alpha  - \beta 
\beta . The Sobolev norms over \BbbR d in the inequalities can be replaced

with norms over \Omega because the inequalities are valid for any extension of f .

Theorem A.2 (Wendland and Rieger (2005, Theorem 2.6)). Let \alpha \geq \beta , \lfloor \beta \rfloor > d/2, and
p \in [1,\infty ]. Suppose that \Omega \subset \BbbR d satisfies Assumption 4.1 and K is a Sobolev kernel of order

\alpha . If f \in W \beta 
2 (\Omega ), then there are constants C\beta , h0,\beta > 0 such that

\| f  - sf,X\| Lp(\Omega ) \leq C\beta h
\beta  - d(1/2 - 1/p)+
X \| f  - sf,X\| 

W\beta 
2 (\Omega )

whenever hX \leq h0,\beta , where (x)+ := max\{ x, 0\} . The constant C\beta depends on d, \Omega , p, and \lfloor \beta \rfloor 
and h0,\beta on d, \Omega , and \lfloor \beta \rfloor .

Proof. The result as stated here follows by setting k = \lfloor \beta \rfloor , s = \beta  - \lfloor \beta \rfloor , p = 2, q = p,

m = 0, and u = f  - sf,X \in W \beta 
2 (\Omega ) in Theorem 2.6 of Wendland and Rieger (2005).

Proof of Theorem 4.2. Theorem A.2 with \beta = \alpha and p = 2, the norm-equivalence (4.1),
and \| g  - sg,X\| \scrH K(\Omega ) \leq \| g\| \scrH K(\Omega ) for any g \in \scrH K(\Omega ) give \| g  - sg,X\| W\alpha 

2 (\Omega ) \leq 
C - 1
K C \prime 

K \| g\| W\alpha 
2 (\Omega ) and, if hX \leq h0,\alpha ,

\| g  - sg,X\| L2(\Omega ) \leq C\alpha h
\alpha 
X \| g  - sg,X\| W\alpha 

2 (\Omega ) \leq C - 1
K C \prime 

KC\alpha h
\alpha 
X \| g\| W\alpha 

2 (\Omega ) .

Lemma 2.1 in Narcowich, Ward, and Wendland (2006) therefore holds with the mapping
Tg = g  - sg,X and constants \tau = \alpha , C1 = C - 1

K C \prime 
KC\alpha h

\alpha 
X , and C2 = C - 1

K C \prime 
K . It follows that

\| Tg\| 
W\beta 

2 (\Omega )
= \| g  - sg,X\| 

W\beta 
2 (\Omega )

\leq C
1 - \beta /\alpha 
1 C

\beta /\alpha 
2 \| g\| W\alpha 

2 (\Omega ) = C - 1
K C \prime 

KC
1 - \beta /\alpha 
\alpha h\alpha  - \beta 

X \| g\| W\alpha 
2 (\Omega )

for g \in W \beta 
2 (\Omega ) and hX \leq h0,\alpha . Select now g as the function f\beta \in W\alpha 

2 (\Omega ) in Lemma A.1
and let C \prime 

\beta be the constant in (A.1). Then, exploiting the fact that f\beta | X = f | X and thus
sf\beta ,X = sf,X ,

\| f  - sf,X\| 
W\beta 

2 (\Omega )
\leq \| f  - f\beta \| W\beta 

2 (\Omega )
+ \| f\beta  - sf\beta ,X\| 

W\beta 
2 (\Omega )

+ \| sf\beta ,X  - sf,X\| 
W\beta 

2 (\Omega )

\leq 5 \| f\| 
W\beta 

2 (\Omega )
+ C - 1

K C \prime 
KC

1 - \beta /\alpha 
\alpha h\alpha  - \beta 

X \| f\beta \| W\alpha 
2 (\Omega )

\leq 
\bigl( 
5 + C - 1

K C \prime 
KC

1 - \beta /\alpha 
\alpha C \prime 

\beta \rho 
\alpha  - \beta 
X

\bigr) 
\| f\| 

W\beta 
2 (\Omega )

.

Since the mesh ratio satisfies \rho X \geq 1, we can write this as \| f  - sf,X\| 
W\beta 

2 (\Omega )
\leq 

C\ast 
\beta \rho 

\alpha  - \beta 
X \| f\| 

W\beta 
2 (\Omega )

for a constant C\ast 
\beta > 0 varying continuously with \beta . Finally, Theorem A.2D
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yields

\| f  - sf,X\| Lp(\Omega ) \leq C\beta h
\beta  - d(1/2 - 1/p)+
X \| f  - sf,X\| 

W\beta 
2 (\Omega )

\leq C\beta C
\ast 
\beta h

\beta  - d(1/2 - 1/p)+
X \rho \alpha  - \beta 

X \| f\| 
W\beta 

2 (\Omega )

(A.4)

if hX \leq min\{ h0,\alpha , h0,\beta \} . The claims of Theorem 4.2 follow from the above inequality with p =
1 and p = \infty , the inequality | I(f) - QX(f)| \leq supx\in \Omega w(x) \| f  - sf,X\| L1(\Omega ) (w is the weight

function from section 2.2), and that \rho XN
is bounded for quasi-uniform (XN )\infty N=1 \subset \Omega .

Note that for any bounded set B \subset [\lceil d/2\rceil ,\infty ) the constants related to (A.4) satisfy

(A.5) sup
\beta \in B

C\beta C
\ast 
\beta <\infty and inf

\beta \in B
min\{ h0,\alpha , h0,\beta \} > 0

because, as remarked in the proof, C\ast 
\beta is a continuous function of \beta and C\beta and h0,\beta , which

are the constants in Theorem A.2, depend on \lfloor \beta \rfloor and can thus take only a finite number of
distinct values for \beta \in B. This observation is used in the next proof.

Proof of Theorem 4.3. The proof is based on the fact that S\beta 
 - (\BbbR d) \subset W \gamma 

2 (\BbbR d) for every

\beta > \gamma and given here only for approximation. Let f0 \in S\beta 
 - (\BbbR d) \cap W \gamma 

2 (\BbbR d) be an extension of

f \in S\beta 
 - (\Omega ). For a quasi-uniform sequence (XN )\infty N=1 \subset \Omega it follows from (A.4) and (A.5) that

(A.6) sup
x\in \Omega 

| f(x) - sf,XN
(x)| \leq CN - \gamma /d+1/2 \| f\| W \gamma 

2 (\Omega ) \leq CN - \gamma /d+1/2 \| f0\| W \gamma 
2 (\BbbR d)

for every \gamma \in B := [\lceil d/2\rceil , \beta ) and all N \geq N0, where

C := sup
\gamma \in B

C\gamma C
\ast 
\gamma <\infty and N0 :=

\biggl( 
C\mathrm{q}\mathrm{u} inf

\gamma \in B
min\{ h0,\alpha , h0,\gamma \} 

\biggr)  - d

are independent of \gamma and C\mathrm{q}\mathrm{u} > 0 is a constant such that C - 1
\mathrm{q}\mathrm{u} N

 - 1/d \leq hXN
\leq C\mathrm{q}\mathrm{u}N

 - 1/d for all
N \geq 1 (the existence of which follows from quasi-uniformity). Set \gamma = \gamma N := \beta  - 1/ logN \rightarrow \beta .

Because f0 \in S\beta 
 - (\BbbR d), a spherical coordinate transform gives, with constants C1, C2 > 0 that

depend on \gamma and \beta , d, and f0 and remain bounded away from zero and infinity as \gamma \rightarrow \beta ,

\| f0\| 2W \gamma 
2 (\BbbR d) =

\int 
\BbbR d

\bigl( 
1 + \| \xi \| 2

\bigr) \gamma | \widehat f0(\xi )| 2 d\xi \leq C1

\int 
\| \xi \| \geq 1

\| \xi \| 2(\gamma  - \beta ) - d d\xi = C1C2

\int \infty 

1
r2(\gamma  - \beta ) - 1 dr

=
C1C2

2(\beta  - \gamma )
.

By inserting \gamma = \gamma N = \beta  - 1/ logN into (A.6) and exploiting the estimate above we thus get

sup
x\in \Omega 

| f(x) - sf,XN
(x)| \lesssim N - \gamma N/d+1/2 \| f\| W \gamma N

2 (\BbbR d) \lesssim N - \beta /d+1/2N1/(d \mathrm{l}\mathrm{o}\mathrm{g}N)(logN)1/2

= e1/dN - \beta /d - 1/2(logN)1/2,

as claimed.D
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Proof of Theorem 4.4. The rates supx\in \Omega PXN
(x, x)1/2 \asymp N - \alpha /d+1/2 and V

1/2
XN

\asymp N - \alpha /d

follow the worst-case interpretation (3.2) of the standard deviations, Theorem 4.2 with \beta = \alpha ,
and standard results on fundamental lower bounds for the rate of convergence of approxima-
tion and integration algorithms in Sobolev spaces, which can be found in Novak (1988, sec-
tions 1.3.11 and 1.3.12), Ritter (2000, section 1.2, Chapter VI), and Novak and Wo\'zniakowski
(2008, section 4.2.4). We are left to prove the lower bound PXN

(x, x)1/2 \gtrsim N - \alpha /d+1/2 for
fixed x. Although this lower bound is more or less standard (e.g., Schaback, 1995), we have
not found the exact version given here in the literature.

By (3.2) the conditional standard deviation has the worst-case interpretation

PXN
(x, x)1/2 = sup

\| g\| \scrH K (\Omega )\leq 1
| g(x) - sg,XN

(x)| .

If there is g \in \scrH K(\Omega ) such that g| XN
\equiv 0 it follows that PXN

(x, x)1/2 \geq | g(x)| \| g\|  - 1
\scrH K(\Omega )

because in this case sg,XN
\equiv 0. We follow the proof of Theorem 1 in De Marchi and Schaback

(2010), a standard bump function argument, to construct this function. Let \phi : \BbbR d \rightarrow \BbbR be an
infinitely smooth bump function that is supported on the unit ball and satisfies supx\in \BbbR d \phi (x) =
\phi (0) = 1. Let \delta x,XN

:= mini=1,...,N \| x - xi\| be the distance between x \in \Omega and XN \subset \Omega .
Define \phi x := \phi (\cdot  - x) and gx := \phi x(\cdot /\delta x,XN

) \in W\alpha 
2 (\Omega ), which satisfies gx| XN

\equiv 0. Using the
properties of the Fourier transform, a change of variables, and the fact that \delta x,XN

\leq hXN
\leq 1

for all sufficiently large N due to quasi-uniformity we get

\| gx\| 2W\alpha 
2 (\Omega ) \leq \delta 2dx,XN

\int 
\BbbR d

\bigl( 
1 + \| \xi \| 2

\bigr) \alpha | \widehat \phi x(\delta x,XN
\xi )| 

2
d\xi = \delta dx,XN

\int 
\BbbR d

\biggl( 
1 +

\| \xi \| 2

\delta 2x,XN

\biggr) \alpha 

| \widehat \phi x(\xi )| 2 d\xi 
\leq \delta d - 2\alpha 

x,XN

\int 
\BbbR d

\bigl( 
1 + \| \xi \| 2

\bigr) \alpha | \widehat \phi (\xi )| 2 d\xi 
= \delta d - 2\alpha 

x,XN
\| \phi \| 2W\alpha 

2 (\BbbR d) .

By norm-equivalence we thus have \| gx\| \scrH K(\Omega ) \leq C\delta 
 - \alpha +d/2
x,XN

for a constant C > 0 which is
independent of x and XN . Therefore

(A.7) PXN
(x, x)1/2 \geq C - 1\delta 

\alpha  - d/2
x,XN

.

Because the point-set sequence is quasi-uniform, there is a constant C\mathrm{q}\mathrm{u} > 0 such that
C - 1

\mathrm{q}\mathrm{u} N
 - 1/d \leq qXN

for all N \geq 1. If \delta x,XN
\geq qXN

, then \delta x,XN
\geq c1N

 - 1/d and (A.7) gives

(A.8) PXN
(x, x)1/2 \geq C - 1\delta 

\alpha  - d/2
x,XN

\geq C - 1c
 - \alpha +d/2
1 N - \alpha /d+1/2,

the claimed lower bound. Assume thus that \delta x,XN
\leq qXN

. Let x\ast \in XN be a point closest to
x /\in XN . Then 2qXN

\leq \| x\ast  - x\| + \| x - x\prime \| = \delta x,XN
+ \| x - x\prime \| for any x\prime \in XN \setminus \{ x\ast \} . If N

is such that \delta x,XN
< \delta x,XN - 1

there is x\prime such that \| x - x\prime \| = \delta x,XN - 1
. For such N we thus

have 2qXN
\leq \delta x,XN

+ \delta x,XN - 1
, which together with \delta x,XN

\geq qXN
and quasi-uniformity, yields

\delta x,XN - 1
\geq C - 1

\mathrm{q}\mathrm{u} N
 - 1/d \geq 2 - 1/dC - 1

\mathrm{q}\mathrm{u} (N  - 1) - 1/d

for N \geq 2. Again, a lower bound of the form (A.8) thus holds. This completes the proof.D
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Proof of Proposition 4.5. For any distinct points X \subset \Omega Lemma A.1, sf,X = sf\beta ,X , the
minimum-norm property of the GP conditional mean, and the norm-equivalence (4.1) yield

\| sf,X\| \scrH K(\Omega ) = \| sf\beta ,X\| \scrH K(\Omega )
\leq \| f\beta \| \scrH K(\Omega ) \leq C \prime 

K \| f\beta \| W\alpha 
2 (\Omega ) \leq C \prime 

KC\beta q
\beta  - \alpha 
X \| f\| 

W\beta 
2 (\Omega )

.

The claims follow from (3.4) and the fact that qXN
\gtrsim N - 1/d for quasi-uniform points.

Proof of Proposition 4.6. The proof is similar to that of Theorem 4.3. The use of Theo-
rem 4.2 is replaced with Proposition 4.5 which implies that

\sigma \mathrm{M}\mathrm{L}(f,XN ) \leq C\gamma N
(\alpha  - \gamma )/d - 1/2 \| f0\| W \gamma 

2 (\BbbR d) ,

where f0 \in S\beta 
 - (\BbbR d) \cap W \gamma 

2 (\BbbR d) is an extension of f and C\gamma again satisfies sup\gamma \in [\lceil d/2\rceil ,\beta )C\gamma <
\infty .

Proof of Proposition 4.7. This proof is adapted from the proof of Theorem 8 in van der
Vaart and van Zanten (2011). Let X \subset \Omega be any distinct points. By Theorem 4.2 there are
C\gamma , h0,\gamma > 0 such that for hX \leq h0,\gamma ,

(A.9) \| f  - sf,X\| L2(\Omega ) \leq C\gamma h
\gamma 
X\rho 

\alpha  - \gamma 
X \| f0\| W \gamma 

2 (\BbbR d) =: \varepsilon X .

In the proof of Theorem 4.3 it is shown that C\gamma and h0,\gamma are bounded away from zero and
infinity if \gamma remains in a bounded interval. Because the support of f0 is compact and contained
in the interior of \Omega , there is a nonnegative bump function \phi : \BbbR d \rightarrow \BbbR such that \phi | \mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(f0) \equiv 1,

\phi | \BbbR d\setminus \mathrm{i}\mathrm{n}\mathrm{t}(\Omega ) \equiv 0, supx\in \Omega \phi (x) = 1, and | \widehat \phi (\xi )e\| \xi \| u | \rightarrow 0 as \| \xi \| \rightarrow \infty for some u > 0. Let

sf,X,0 \in W\alpha 
2 (\BbbR d) be an extension of sf,X \in W\alpha 

2 (\Omega ). By Parseval's identity and f0 = f0\phi ,

(A.10) \| \widehat f0  - \widehat sf,X,0 \ast \widehat \phi \| L2(\BbbR d) = \| f0  - sf,X,0\phi \| L2(\BbbR d) \leq \| f  - sf,X\| L2(\Omega ) \leq \varepsilon X .

For R > 0 let 1cR be the indicator function of the set \{ x \in \BbbR d : \| x\| > R\} . Because

f0 \in S\beta 
+(\BbbR d), for sufficiently large R we have

\| \widehat f01c2R\| 2L2(\BbbR d) =

\int 
\| \xi \| >2R

| \widehat f0(\xi )| 2 d\xi \geq Cf

\int 
\| \xi \| >2R

\| \xi \|  - 2\beta  - d d\xi \geq Cf
\widetilde CR - 2\beta =: C1R

 - 2\beta ,

where Cf > 0 depends on f0 and \widetilde C > 0 on \beta and d. The reverse triangle inequality and (A.10)
thus yield

\| (\widehat sf,X,0 \ast \widehat \phi )1c2R\| L2(\BbbR d) \geq \| \widehat f01c2R\| L2(\BbbR d)  - \| ( \widehat f0  - \widehat sf,X,0 \ast \widehat \phi )1c2R\| L2(\BbbR d) \geq C1R
 - \beta  - \varepsilon X .

By Lemma 16 in van der Vaart and van Zanten (2011),

(A.11) \| \widehat sf,X,01
c
R\| L2(\BbbR d) \| \widehat \phi (1 - 1

c
R)\| L1(\BbbR d) \geq C1R

 - \beta  - \varepsilon X  - \| \widehat sf,X,0\| L2(\BbbR d) \| \widehat \phi 1cR\| L1(\BbbR d) .

Let m(\xi ) := (1 + \| \xi \| 2)\alpha /2 so that \| sf,X,0\| W\alpha 
2 (\BbbR d) = \| \widehat sf,X,0m\| L2(\BbbR d). We engage in a slightD
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abuse of notation by also writing m(r) = (1 + r2)\alpha /2 for r \in \BbbR . By the definition of the
Sobolev norm,

\| \widehat sf,X,01
c
R\| L2(\BbbR d) = \| \widehat sf,X,0m1

c
Rm

 - 1\| L2(\BbbR d) \leq m(R) - 1 \| sf,X,0\| W\alpha 
2 (\BbbR d)

and \| \widehat sf,X,0\| L2(\BbbR d) \leq \| sf,X,0\| W\alpha 
2 (\BbbR d). Set R = C

1/\beta 
1 (2\varepsilon X) - 1/\beta and use these estimates to

rearrange (A.11) as\Bigl[ 
m(R) - 1 \| \widehat \phi (1 - 1

c
R)\| L1(\BbbR d) + \| \widehat \phi 1cR\| L1(\BbbR d)

\Bigr] 
\| sf,X,0\| W\alpha 

2 (\BbbR d) \geq C1R
 - \beta  - \varepsilon X = \varepsilon X .

By construction, \widehat \phi \in L1(\BbbR d) and \| \widehat \phi 1cR\| L1(\BbbR d) \leq C2e
 - dRu

for some constant C2 > 0. Let

C3 > 0 be a constant such that C2e
 - dru \leq C3m(r) - 1 for all r \geq 0. Then

\| sf,X,0\| W\alpha 
2 (\BbbR d) \geq \varepsilon X

\Bigl[ 
m(R) - 1 \| \widehat \phi (1 - 1

c
R)\| L1(\BbbR d) + \| \widehat \phi 1cR\| L1(\BbbR d)

\Bigr]  - 1

\geq \varepsilon X

\Bigl[ 
m(R) - 1 \| \widehat \phi \| L1(\BbbR d) + C2e

 - dRu
\Bigr]  - 1

\geq \varepsilon X

\Bigl[ 
m(R) - 1

\bigl( 
\| \widehat \phi \| L1(\BbbR d) + C3

\bigr) \Bigr]  - 1

\geq C4\varepsilon 
1 - \alpha /\beta 
X ,

where C4 = 2 - 1/\beta C
1/\beta 
1 (\| \widehat \phi \| L1(\BbbR d)+C3)

 - 1 does not depend on \gamma . The definition of \varepsilon X in (A.9)
therefore gives

\| sf,X,0\| W\alpha 
2 (\BbbR d) \geq C4

\bigl( 
C\gamma h

\gamma 
X\rho 

\alpha  - \gamma 
X \| f0\| W \gamma 

2 (\BbbR d)

\bigr) 1 - \alpha /\beta 

= C4C
1 - \alpha /\beta 
\gamma h

\gamma (1 - \alpha /\beta )
X \rho 

 - (\alpha  - \gamma )(\alpha  - \beta )/\beta 
X \| f0\| 1 - \alpha /\beta 

W \gamma 
2 (\BbbR d)

.

If (XN )\infty N=1 is a quasi-uniform sequence, \rho XN
remains bounded and hXN

\gtrsim N - 1/d. Thus

\| sf,XN ,0\| W\alpha 
2 (\BbbR d) \gtrsim N\gamma (\alpha /\beta  - 1)/d \| f0\| 1 - \alpha /\beta 

W \gamma 
2 (\BbbR d)

.

The claims now follow from the norm-equivalence of\scrH K(\Omega ) andW\alpha 
2 (\Omega ), the Sobolev extension

theorem (Grisvald, 1985, Theorem 1.4.3.1), and (3.4).

Proof of Proposition 4.8. Let \gamma N = \beta  - 1/ logN . The arguments in the proof of Theo-
rem 4.6, the Sobolev extension theorem, and (4.8) yield

\sigma \mathrm{M}\mathrm{L}(f,XN ) \gtrsim N\gamma N (\alpha /\beta  - 1)/d - 1/2 \| f0\| 1 - \alpha /\beta 

W
\gamma N
2 (\BbbR d)

\gtrsim N (\alpha  - \beta )/d - 1/2N (1 - \alpha /\beta )/(d \mathrm{l}\mathrm{o}\mathrm{g}N)(logN)(1 - \alpha /\beta )/2

= e(1 - \alpha /\beta )/dN (\alpha  - \beta )/d - 1/2(logN)(1 - \alpha /\beta )/2,

which is the claimed bound.
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