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Abstract

Based on a multi-year research engagement with practice, we present a novel

solution design for frontlog scheduling in aircraft line maintenance and offer

theoretical insights into buffer management in operations. The field problem

of the case airline was to improve departure reliability for long-haul aircraft

without increasing maintenance resources, and without using backup aircraft.

Frontlog scheduling is the purposeful introduction of over-maintenance as a

buffer of maintenance tasks that can be opportunistically postponed. A

detailed simulation of the solution introduced in the airline's operations indi-

cates a performance frontier shift, concurrently improving departure reliabil-

ity, and reducing maintenance cost. We position the novel practice in

operations and maintenance management literature, arguing that the frontlog

creates a new type of time buffer, available in contexts where capacity serves

predictable as well as unpredictable demand. Further theoretical elaboration

leads us to reconceptualize buffer management along time and capacity

dimensions, reducing inventory to a special case of time buffering.

KEYWORD S

aircraft line maintenance, buffer management, design science, frontlog scheduling, performance
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1 | INTRODUCTION

Basic research is the source of novelty and innovation in
the established, linear approach to research and develop-
ment (Stokes, 2011). However, researchers in operations
management (OM) can potentially reverse this linear pro-
cess of creating knowledge through engaging with prac-
tice in design exploration (Holmström, Ketokivi, &
Hameri, 2009) and interventions (Oliva, 2019). In
Pasteur's quadrant of knowledge creation (Stokes, 2011),
these types of engagements reveal theoretically surprising

outcomes, spurring researchers to develop theory and
establish new research directions. In this article, we
describe an explorative design science research engage-
ment, which resulted in the development of a new prac-
tice for aircraft line maintenance, frontlog scheduling.
Developing the frontlog transcended practical problem
solving, resulting in novel insights into buffer manage-
ment at the core of our theoretical understanding of just-
in-time (JIT), lean, and service operations. These insights
provide a foundation for future research on responsive
and dynamic scheduling (cf. Biçer & Seifert, 2017),
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enabled by digitalization of operations (Holmström,
Holweg, Lawson, Pil, & Wagner, 2019).

Frontlog is a maintenance scheduling practice that
creates opportunities for dynamic rescheduling of
planned tasks to free up capacity for unplanned tasks.
This rescheduling option is especially attractive in air-
craft line maintenance, where unplanned tasks caused by
random technical failures may lead to (costly) grounding
of the aircraft. To illustrate the practice, consider an air-
craft that arrives at a hub location for scheduled line
maintenance. There will be several recurring planned
maintenance tasks, each with a due date based on when
it was last performed. Current scheduling practice typi-
cally seeks to maximize maintenance intervals (e.g.,
Başdere & Bilge, 2014; Sarac, Batta, & Rump, 2006).
Thus, this will be the last maintenance opportunity to
perform most of the planned tasks. Any delay will result
in a backlog that grounds the aircraft and disrupts airline
operations. However, with a frontlog, there will also be
tasks that have a due date that allows postponement to a
future maintenance opportunity, without overshooting
the due dates and grounding the aircraft. Should the air-
craft arrive with a technical fault, the frontlog serves as a
buffer of tasks that can be rescheduled, freeing up main-
tenance capacity for the emergent demand. In our design,
the share of planned tasks that can be rescheduled with-
out violating due dates becomes a decision variable for
OM, making it an alternative to maintaining slack capac-
ity or delaying the departure of the aircraft (backlog).
However, in aircraft line maintenance, the frontlog
comes with a cost: The due dates of planned tasks depend
on when they were last performed. Thus, performing
tasks before the last opportunity to do so results in over-
maintenance, which increases the total planned
workload.

In this study, to investigate the implications of the
frontlog for practice and theory, we combine explorative
design science (Holmström et al., 2009) and empirically
grounded analytics (Chandrasekaran, Linderman, &
Sting, 2018). For practice, the question is: What are the
trade-offs among over-maintenance, departure reliability,
and slack capacity when frontlog scheduling is
implemented? For theory, the questions are: What is a
frontlog? In what ways is it novel, and what are the possi-
ble theoretical implications beyond the context of aircraft
line maintenance? We approached these questions by
studying the balancing of different types of buffers as an
explicit management decision in a Nordic airline's line
maintenance organization. We were initially invited into
the maintenance organization to help improve the depar-
ture reliability of the long-haul fleet. Over the course of
the initial problem-solving project, we became aware of
the link between poor departure reliability and the

maintenance organization's practices for coping with
unplanned repairs. This awareness prompted further
investigation of how the organization created and man-
aged buffers against demand variability. As we questioned
the current practice of maximizing the maintenance inter-
val, an unconventional proposal took form (the frontlog)
which entailed using deliberate over-maintenance as a
buffer against demand uncertainty. To investigate the pro-
posed practice, we constructed an empirically grounded
discrete event simulation model. Through the model,
we explored the trade-off between over-maintenance
introduced by the frontlog and its leveling effect on the
workload. We found an opportunity for a significant
improvement in both cost efficiency and departure reli-
ability, implying a performance frontier shift. Nordic
Airline (a pseudonym for the case company) is currently
implementing the frontlog as part of a wider effort to digi-
talize operations, uncovering new design challenges in
making the frontlog buffer visible to production, and clos-
ing the digital feedback loop from production to planning.

In Section 2, we position the frontlog in the
established body of knowledge. In Section 3, we present
the research process combining exploratory design sci-
ence and empirically grounded modeling. In Sections 4
and 5, we detail our engagement with practice. We focus
on how the design emerged and how we constructed the
empirically grounded simulation model to test the design.
In Section 6, we report the four-stage evaluation process.
We also describe how Nordic Airline reacted to the
design and is proceeding toward implementing it. Finally,
based on our theoretical positioning of the frontlog, in
Section 7, we elaborate on the significance of the concept
to theory, along with implications for practice and
research methodology.

2 | LITERATURE REVIEW:
POSITIONING AND
CONCEPTUALIZING FRONTLOG

The increasing digitalization of operations is prompting
researchers to explore dynamic planning and responsive
rescheduling as feasible alternatives for responding to
demand uncertainty (cf. Biçer & Seifert, 2017). However,
we could not find previous research that described a prac-
tice similar to frontlog scheduling. Consequently, we
build our theoretical positioning and conceptualization
on several related practices and concepts. Table 1 pro-
vides an overview of the frontlog from different research
perspectives and identifies related practices and concepts.
In the literature review, we discuss the frontlog from
each perspective, starting with a review of maintenance
literature, followed by buffer management, and ending
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with scheduling. We conceptualize the frontlog as the
practice of scheduling over-maintenance in preparation
for later rescheduling to cope with unplanned additional
workload. Thus, the frontlog can be positioned as part of
the uncertainty-focused and dynamic research stream in
scheduling. However, a frontlog is more than a schedul-
ing practice. It introduces a new type of time buffer in
airline maintenance operations. This novel time buffer
leads to theoretical insights, which we elaborate in the
discussion.

2.1 | Frontlog as maintenance

When we introduced the frontlog, we conceptualized it
as a maintenance scheduling practice that creates oppor-
tunities for rescheduling. To position the frontlog as a
potentially novel practice in the context of maintenance,
we review research on maintenance timing, which is a
decision variable in operations research (OR) and OM lit-
erature. Maintenance timing forms the basis for most tax-
onomies of maintenance practices (cf. Kelly, 2006;
Khazraei & Deuse, 2011; Swanson, 2001). It is typically
referred to as policy, highlighting that timing is a mainte-
nance system design decision (Kelly, 2006). The baseline
question every maintenance system designer asks is: Can
this piece of equipment be allowed to fail? (Waeyenbergh
& Pintelon, 2002). The answer distinguishes reactive
(run-to-failure) maintenance policies from preventive
(fix-before-failure) maintenance policies. Preventive
maintenance can be divided into three types of policies:
predetermined, predictive, and proactive (Khazraei &
Deuse, 2011).

A failure can be prevented only if it is anticipated,
which is reflected in how preventive policies are
defined—based on how they anticipate failure. Pre-
determined policies (Khazraei & Deuse, 2011) include
age-, time-, and use-based maintenance, in which main-
tenance timing is based on respective proxies of the

equipment's condition. These maintenance policies result
in periodic maintenance (Blakeley, Argüello, Cao, Hall,
& Knolmajer, 2003; Grigoriev, van de Klundert, &
Spieksma, 2006): The periods or intervals are fixed and
predetermined by equipment manufacturers or regula-
tions (Öhman, Finne, & Holmström, 2015). The most
common predictive policy (Khazraei & Deuse, 2011) is
condition-based maintenance. Maintenance timing is
based on a variable that is directly related to the deterio-
ration of the equipment's condition (Jardine, Lin, & Ban-
jevic, 2006; Lee et al., 2014; Veldman, Wortmann, &
Klingenberg, 2011). Proactive maintenance denotes the
situation when the root cause of the failure can be
removed through redesign (Khazraei & Deuse, 2011),
removing the need for maintenance altogether.

Frontlog maintenance prepares for dealing with
unanticipated failures in a predominantly predetermined
maintenance system. However, is it a new type of mainte-
nance policy? Having argued that timing is the key ques-
tion in maintenance, and that maintenance research
views timing in relation to expected technical system fail-
ure, we focus on the exception found in literature. A
maintenance policy increasingly mentioned alongside
other policies, which has evaded broader academic atten-
tion, is opportunity or opportunistic maintenance (Ab-
Samat & Kamaruddin, 2014). This policy is, in our line of
argumentation, fundamentally different from the ones
noted above. The timing decision is not driven by the
equipment's condition but by the operational circum-
stances of the technical system. In the words of Ab-Samat
and Kamaruddin (2014, p. 99): “With this policy, mainte-
nance is to be performed on a given part, at a given time,
depending on the state of the rest of the system.” The
opportunity in opportunity maintenance denotes techni-
cal system downtime and is caused by an external (to
maintenance) factor, such as technical failure (Sherwin,
1999) or a production stoppage (Ab-Samat &
Kamaruddin, 2014). During the opportunity, preventive
maintenance tasks that require downtime are performed,

TABLE 1 What is a frontlog? Perspectives, related practices, and concepts

Research perspective Frontlog Related practices and concepts

Maintenance Opportunity creating maintenance: Timing of
planned tasks in aircraft maintenance creates
opportunities for later rescheduling.

Maintenance timing; opportunity
seizing maintenance; maintenance
strategy

Buffer management Time buffer: Manage the trade-off between timing
of work and capacity flexibility in aircraft line
maintenance

Flexibility; types of buffers; buffer trade-
offs

Scheduling Dynamic scheduling: Schedule over-maintenance
in preparation for later rescheduling to cope
with unplanned tasks

Uncertainty; disruption; rescheduling;
digitalization

ÖHMAN ET AL. 3



removing the need for future downtime caused by the
tasks performed in the present. A close relative of oppor-
tunity maintenance is the block replacement policy
(Dekker & Smeitink, 1991). Under this policy, mainte-
nance tasks with the same (laborious) setup process are
bundled, in effect implying that the timing decision for
maintenance of all parts is determined by the failed or
soon-to-fail part.

Despite a focus on availability rather than reliability,
previous research on opportunity maintenance1 tended
to model the operational system as having a constant cost
(cf. Dekker & Dijkstra, 1992; Dekker & Smeitink, 1994,
1991; Rust, 1987) and/or utility (cf. Radner and
Jorgenson's (1963, p. 73). In contrast, frontlog mainte-
nance builds on the idea that the availability of the tech-
nical system might be more valuable (as part of a wider
operational system) at certain points of time. This idea
questions the (sole) objective of maximizing availability.
Furthermore, frontlog maintenance differs from opportu-
nity maintenance in that it is not about seizing opportu-
nities, but about creating opportunities for later use.
Thus, the maintenance timing creates opportunity, in con-
trast to seizing opportunity (cf. Ab-Samat & Kamaruddin,
2014), which is found in the literature. We found a simi-
lar opportunity-creating practice in two healthcare papers
(Bowers & Mould, 2002; Helm, AhmadBeygi, & van
Oyen, 2011). In the first healthcare paper, elective
patients were deferred on short notice to reduce waiting
time for unplanned nonelective patients. In the second,
the problem of meeting unplanned demand was
addressed by introducing expedited scheduled demand,
shortening the waiting time for more urgent elective
patients.

Maintenance strategies (Waeyenbergh & Pintelon,
2002) relate maintenance operations to the overall busi-
ness objectives (Pinjala, Pintelon, & Vereecke, 2006).
Well-known examples of maintenance strategies are reli-
ability-centered maintenance (RCM), which aims for
uninterrupted operations while reducing maintenance
cost (Nowlan & Heap, 1978; Rausand, 1998), and total
productive maintenance (TPM) (Ahuja & Khamba, 2008;
McKone, Schroeder, & Cua, 1999), which aims to
improve productivity as part of lean manufacturing
(McKone, Schroeder, & Cua, 2001). Examples of more
recent maintenance strategies are business centered
maintenance (Kelly, 2006), output-based maintenance
(Ahmad & Kamaruddin, 2013), and value driven mainte-
nance (Rosqvist, Laakso, & Reunanen, 2009; Stenström,
Parida, Kumar, & Galar, 2013), with their respective
objectives reflected in their names. These maintenance
strategies consider maintenance timing as an instrument
for manipulating the condition of the technical system in
accordance with their respective business objectives.

Thus, frontlog is not a new maintenance strategy, but a
new timing practice among a bundle of maintenance
practices (cf. Shah & Ward, 2003) that the maintenance
organization may use when implementing its mainte-
nance strategy.

2.2 | Frontlog as buffer management

As a means of creating opportunities for responding to
future maintenance demand, frontlog can also be concep-
tualized as a time buffer, complementing capacity buffer-
ing in aircraft line maintenance. We approach the
concept of buffers in operations through the overarching
concept of flexibility (Cousens, Szwejczewski, & Sweeney,
2009; Gerwin, 1993). Buffering is a built-in characteristic
of the operational system design, distinct from the related
concepts of agility and responsiveness (Bernardes &
Hanna, 2009). The variability and demand uncertainty
that unplanned repairs cause can be seen as natural
(Hopp & Spearman, 2004), implying that they “cannot,
or only to a limited extent, be influenced or controlled”
(Roemeling, Land, & Ahaus, 2017, p. 1231). Production
systems cope with variability either through inventory
buffers, which stabilize (Bernardes & Hanna, 2009)
and protect (Hopp & Spearman, 2004) the production
system, or through flexible production resources
(D'Souza & Williams, 2000; Zhang, Vonderembse, &
Lim, 2003).

In manufacturing, there are three types of buffers:
inventory, capacity, and time (Hopp & Spearman, 2008;
Newman, Hanna, & Maffei, 1993). These buffers differ,
meaning that buffer management practices and the
research related to them are generally discussed in terms
of one type, or at most two types, of buffers. In
manufacturing research, inventory management prac-
tices (cf. Williams & Tokar, 2012) have attracted the lion's
share of scholarly interest, with the oldest (still relevant)
models originating in the early 20th century (Hopp &
Spearman, 2008). In contrast, research on capacity man-
agement practices is predominant in the context of ser-
vices, where the characteristics of services (cf. Moeller,
2010) make inventory buffers inapplicable (Akkermans &
Voss, 2013). Without inventories, natural demand vari-
ability, to the extent it cannot be contained through
demand management (cf. Klassen & Rohleder, 2002), is
absorbed either by a capacity buffer or a backlog (time,
according to Hopp & Spearman, 2008), where demand
waits for available capacity (Akkermans & Vos, 2003). In
manufacturing, the time buffer is typically discussed in
terms of lead time (Caputo, 1996) and order books (e.g.,
Hedenstierna et al., 2019). With a few exceptions (cf. Ray
& Jewkes, 2003; Zijm & Buitenhek, 1996), time tends to
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figure as the dependent variable, or as a constraint in
inventory and capacity decisions, in manufacturing as
well as in services (Anderson, Morrice, & Lundeen,
2005). Despite the name, the substantial literature on
time-based manufacturing (TBM) is no exception, as it is
contextualized in a fast and responsive manufacturing
system (Rondeau, Vonderembse, & Ragu-Nathan, 2000)
with associated practices (cf. Koufteros, Vonderembse, &
Doll, 1998; Tu, Vonderembse, Ragu-Nathan, & Sharkey,
2006). In such a system time is seen as something that
must be minimized, rather than being a buffer to be
managed.

Research on buffer management typically concen-
trates on finding the optimal size and location of one type
of buffer, such as inventory (cf. Askin & Krishnan, 2009;
Mertins & Lewandrowski, 1999; Yang, Hsieh, & Cheng,
2011). A sub-stream of research seeks to balance two
buffers with respect to a third. An interesting aspect of
this stream is that the third buffer is typically portrayed
as rigid (Rappold & Yoho, 2008), “given” (Betts & John-
ston, 2005), or inapplicable (Roemeling et al., 2017). Such
proclamations are no doubt well-grounded in their con-
texts. For example, in healthcare, inventories are often
deemed inapplicable, “since patients are themselves
transformed in the healthcare process, it is impossible to
stock the transformed resource, the patients” (Roemeling
et al., 2017, p. 4803).

Research on aircraft line maintenance focuses on
capacity buffers. In coping with uncertainty while pursu-
ing effectiveness, airlines combine robustness of planning
(Ahmed & Poojari, 2008), and responsiveness of execu-
tion (Callewaert, Verhagen, & Curran, 2018). Buffer man-
agement is almost exclusively viewed as a resource
allocation or capacity problem. Further, buffer manage-
ment in this context is characterized as challenging due
to the inherent complexity and criticality (implying high
costs for a backlog buffer) of aircraft maintenance (Gupta
& Lulli, 2014). As exceptions, we note Dijkstra, Kroon,
Salomon, van Nunen, and Van Wassenhove (1994), who
mentioned workload smoothing as part of coping with
demand variability, but did not identify any related prac-
tices. Beliën, Cardoen, and Demeulemeester (2012) con-
sidered workload smoothing, but only within a
maintenance window (usually defined as the time
between an aircraft's arrival and departure). Thus, to the
best of our knowledge, the (over-) reliance on capacity
buffering has not been questioned in aircraft line mainte-
nance research. Arguments for relying on capacity buffer-
ing boil down to maximizing aircraft availability (and by
extension, the potential for revenue generation), advocat-
ing just-in-time maintenance. A good example can be
found in the work of Boeret (1977), who described a sim-
ulation model with a scheduling heuristic to alleviate the

maintenance planning work (which, at the time, was
cumbersome and time-consuming) to reduce the number
of flying hours lost because of maintenance that was per-
formed before it was due.

To conclude, positioning the frontlog as a buffer and
a scheduling practice to manage the trade-offs between
time and capacity in aircraft line maintenance is novel. It
responds to largely unheeded calls for OM research that
explores the interrelationship between different types of
buffers (Hopp & Spearman, 2004; Thürer, Tomaševi�c, &
Stevenson, 2017).

2.3 | Frontlog as scheduling

For an in-depth understanding of the role of a frontlog in
managing operational buffer trade-offs, we turn to sched-
uling. From the perspective of scheduling, we conceptual-
ize a frontlog as intentional scheduling of over-
maintenance (slack) in preparation for later dynamic res-
cheduling for coping with an unplanned additional work-
load. Scheduling has been defined as “allocating a set of
resources over time to perform a set of tasks” (McKay &
Wiers, 1999, p. 242). This makes scheduling the nexus of
buffer management. Scheduling is also the activity
through which shifts in buffer trade-offs are operationally
achieved, in manufacturing (Berglund & Karltun, 2007)
and services (cf. Klassen & Rohleder, 1996; Laganga,
2011). Most scheduling research ignores uncertainty, typ-
ically in favor of mathematical tractability (McKay &
Wiers, 1999). However, a stream of scheduling research
focuses explicitly on uncertainty, and how it can be miti-
gated (Akkan, 2015; Black & McKay, 2012). With a few
exceptions (cf. Biçer & Seifert, 2017), recent research in
this stream has focused on disruptions (Akkan, 2015) or
disturbances (Cho & Lazaro, 2010). Previous contribu-
tions distinguished between internal and external uncer-
tainties (cf. Bean, Birge, Mittenthal, & Noon, 1991;
Mehta & Uzsoy, 1998; Smith, Ow, Potvin, Muscettola, &
Matthys, 1990).

In the manufacturing stream of research, as in the
context where frontlog was developed, external uncer-
tainty is manifested as an unplanned additional work-
load—additional to the planned workload of the given
(and finite) capacity. Two distinct research themes for
coping with such uncertainty have emerged: develop-
ment of robust schedules, which are less sensitive to dis-
ruptions, and development of approaches for
rescheduling in response to disruptions (Akkan, 2015, p.
199). Robust schedules typically involve introducing
slack, in terms of capacity (Bourland & Yano, 1994) and
time (Lu, Cui, & Han, 2015; Siedlak, Pinon, Robertson, &
Mavris, 2018), through which the schedule can recover
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from disruptions (Bean et al., 1991). However, research
on how to determine the amount of slack and how it
should be introduced in schedules remains scarce
(Akkan, 2015). Further, we note recent developments in
dynamic scheduling, for example, in response to an
evolving demand forecast (Biçer & Seifert, 2017). This
stream of research sees scheduling as a continuous (auto-
mated) activity, which is done whenever relevant new
information becomes available, raising its prospects in
the increasing digitalization of operations (cf. Holmström
et al., 2019).

Maintenance is challenging from a scheduling per-
spective, due to inherent uncertainties and complex
dependencies (Paz & Leigh, 1994). There are two basic
approaches to scheduling maintenance. The first
approach is to schedule planned maintenance, while
reserving enough slack capacity to accommodate
unplanned demand (cf. Alfares, 1999). In research related
to this approach, the use of slack capacity is typically
reflected in assumptions such as “an ample supply of
space and labor are usually available” (Sriram &
Haghani, 2003, p. 38). The second approach is to intro-
duce unplanned demand through dynamic list schedul-
ing (Paz & Leigh, 1994), where planned and unplanned
work is scheduled based on prioritization rules (cf. Safaei,
Banjevic, & Jardine, 2011). This implies the use of a time
buffer. Naturally, the latter approach is more challenging
if planned work cannot be readily postponed (cf.
Angalakudati et al., 2014). As in manufacturing, further
research on scheduling under uncertainties and dynamic
scheduling has been called for in maintenance (Froger,
Gendreau, Mendoza, Pinson, & Rousseau, 2016; Van den
Bergh, De Bruecker, Beliën, & Peeters, 2013) and in
healthcare (Helm et al., 2011).

The prevailing capacity-focused buffer management
mind-set in aircraft line maintenance leaves dynamic
approaches largely unexplored. Van den Bergh et al.
(2013) noted that although maintenance scheduling prob-
lems in military and commercial aviation have received
academic attention, researchers have focused on (deter-
ministic) analytical models rather than on simulation.
The literature acknowledges uncertainties, such as del-
ayed flight arrivals, failure rates (emergent demand for
maintenance), extended repair times, and workforce
availability. However, these inherently dynamic uncer-
tainties are typically not considered in the models. Some
exceptions can be found in military aviation (Adamides,
Stamboulis, & Varelis, 2004; Guarnieri, Johnson, &
Swartz, 2005; Mattila & Virtanen, 2014; Mattila, Virtanen,
& Raivio, 2008), engine maintenance (Gatland, Yang, &
Buxton, 1997), and part repairs (Cobb, 1995; Kilpi, Töyli,
& Vepsäläinen, 2009).

3 | METHODOLOGY

In this section, we describe the explorative design science
(Holmström et al., 2009) research process that created the
frontlog practice, including how we anticipate the imple-
mentation outcomes and evaluate our design in the case
setting. Normal design science research (van Aken,
Chandrasekaran, & Halman, 2016) is focused on improv-
ing practice, emphasizing field testing, and implementa-
tion. Explorative design science shares the interest in
improving practice, however, the focus is on reframing a
field problem (e.g., Groop, Ketokivi, Gupta, &
Holmström, 2017), or on exploring alternative ways of
operation, for example, through novel technologies (e.g.,
Hedenstierna et al., 2019). In explorative design science
research, modeling and simulation play important roles,
taking the place of implementation in exploring out-
comes (Hedenstierna et al., 2019). Furthermore, theory
and theorizing are methods for anticipating how a solu-
tion that is not yet field tested should best be tested and
further developed for transferability and application to
settings beyond where it was designed.

The explorative research process of this article is pres-
ented in Figure 1. The research started from the field
problem of the case company, Nordic Airline. Through
design exploration and modeling, the effects of changing
the scheduling principles of line maintenance could be
explored, resulting in the proposal of a new type of
buffer, of interest to OM theory. The major milestones
and events in the research process consisted of reframing
the departure reliability problem as a rescheduling prob-
lem (shifting focus from the engagement in practice to
design exploration and modeling); articulating the solu-
tion as a frontlog buffer in contrast to a backlog (shifting
focus from design and modeling to theoretical search and
theorizing); and results from a detailed simulation that
indicated the potential to both improve departure reli-
ability and maintenance cost efficiency (shifting attention
back to implementation and overcoming obstacles to
implementation).

The research engagement with Nordic Airline began
in 2014 as part of a large strategic research initiative
bringing together academic researchers and industry
funded by the funding agency for technology and innova-
tion. The management of the maintenance organization
was seeking ways to improve the departure reliability of
their long-haul fleet and invited the academic researchers
to join the search. The airline operates a hub-and-spoke
network with a geographic advantage in connecting Asia
and Europe, emphasizing the strategic importance of the
long-haul fleet and, by extension, departure reliability.
The geographic advantage of the airline's hub translates

6 ÖHMAN ET AL.



to one of the highest fleet utilizations for long-haul air-
craft, where the aircraft spend more time in the air than
on the ground. Because of the high fleet utilization, the
typical maintenance window at the hub is limited to a
few hours per day, between when the aircraft arrives at
the hub and heads back to its Asian destination. The air-
line refers to this as turnaround maintenance, and
increasing resource flexibility in this operation was the
initial focus of the research.

By the end of the initial engagement in 2015, through
exploring contradictory goals using thinking process tools
(Groop et al., 2017), the possibility of change in mainte-
nance scheduling was identified as a potential solution.
The possibility was first investigated in the context of the
existing line maintenance planning process, with the pur-
pose of reducing workload variability in turnaround
maintenance operations. The finding was that, for the
long-haul fleet, part of the scheduled workload could be
planned so that it later could be postponed opportunisti-
cally, in effect purposefully introducing over-mainte-
nance. Elaborating the effect of this change on
maintenance cost was the third phase of the research pro-
cess, the detailed simulation, which was initiated in May
2016. The fourth stage of the research process was to
identify what this new maintenance practice was, from a
theoretical perspective, and conducted for writing this
research article, which began in early 2017. This theoriz-
ing consisted of contrasting both our design and our

findings against a wide body of academic operations and
maintenance management literature. Currently, the
introduction of the proposed solution in practice is pro-
gressing as part of a wider digitalization effort, with ongo-
ing negotiation of a potential role of the researchers in
the project. The data collected for the research through
engagement in practice and for modeling are summa-
rized in Table 2.

Engaging with the case company to address their ini-
tial field problem initiated a process of framing and
reframing (Simon, 1996) that presented an opportunity to
innovate aircraft line maintenance operations. Being
attentive to frames held by issue stakeholders (Coghlan &
Brannick, 2001) creates the opportunity to reframe field
problems in novel ways for the purpose of explorative
design (Groop et al., 2017). The modeling phase of the
research first studied the relationship between over-
maintenance and workload variance in a deterministic
setting, focusing solely on scheduled maintenance
(Öhman, Laine & Holmström, 2016. For the initial study,
we conducted five semi-structured interviews (each last-
ing 1–2 hr) with maintenance planners for long-haul and
short-haul fleets and operations, production, and
resource planning managers. Through these interviews,
we gained an in-depth understanding of the case comp-
any's maintenance planning function. We also uncovered
heuristics and principles not visible in the operational
documentation. The study showed promising results: A

FIGURE 1 Explorative design research process
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1% increase in the total planned workload could result in
up to a 6% reduction in workload variance. However, we
concluded that the real impact could not be evaluated
while the natural demand variability caused by the emer-
gent workload was neglected.

Through the engagement with practice and the initial
modeling phase, we developed a rich, in-depth under-
standing of the case company context (cf. Forrester,
1992), based on both qualitative and quantitative data
(Table 2). This understanding was crucial in empirical
grounding of the simulation model presented here, and it
allowed us to formulate the good problem, which is the
key to success in any simulation project (Law, 2003). The
simulation model then allowed us to explore the effect of
the proposed buffer management approach in a stochas-
tic setting.

4 | ENGAGEMENT WITH
PRACTICE

Reflecting management's vision of how the process
should work, the research project was initially named
“pit-stop.” Two months into the project a workshop was
conducted with the maintenance organization of the air-
line, during which the first impressions and initial prob-
lem framings were discussed. At that point, the analysis
was still unstructured and consisted of observations on
recurring themes and apparent conflicting views in the
data. The agenda of the researcher-facilitated workshop

was to present and discuss alternative representations of
what caused the field problem of poor departure reliabil-
ity in the long-haul fleet, complementing and possibly
challenging the initial case company framing. What had
initially been framed (by management) as limited visibil-
ity into, and control of turnaround work, was now also
explored as an issue of unclear roles within the organiza-
tion, as well as problematic short-term scheduling princi-
ples. Further, the initial research had raised doubts about
the extent to which problems with the departure reliabil-
ity were attributable to maintenance. Based on the work-
shop, a second round of data gathering, aimed at getting
more in-depth insights into the daily work of the turn-
around crews and into the reasons for delays in the long-
haul fleet, was initiated.

The second phase of data gathering lasted approxi-
mately a month, during which data were gathered
through observation of the turnaround crews. Further,
the case company provided extensive records of flight
delays, enabling quantitative analysis of the causes. The
data were analyzed using thinking process tools, based
on the theory of constraints (Davies, Mabin, &
Balderstone, 2005; Goldratt, 1990) with the purpose of
framing and reframing to guide explorative design
(Groop et al., 2017). We constructed a current reality tree,
where the primary undesirable effect was sub-par depar-
ture reliability. The delay data also enabled a relative
comparison of most of the effects leading to a delay,
based on which the impact of the suggested improve-
ments could be evaluated. Further, the problems of

TABLE 2 Data collected throughout the research process

Data Engagement with practice Design exploration and modeling

Semi-structured interviews 11 interviews, each lasting 0.5–2.5 hr (e.g.,
head of line maintenance, head of
maintenance planning, production manager,
duty manager, and lead mechanic)

5 interviews, each lasting 1–2 hr (e.g.,
resource planning manager, production
planning manager, long-haul planner,
short-haul planner)

Observation 8 observations, a total of 33 hr (Maintenance
Control Center, long-haul turnaround crew,
short-haul turnaround crew)

Documentation Maintenance process descriptions
Regulatory compliance documentation
Reports (fleet performance, workforce, delays)
Excerpts of documents used in operations
(planning sheets, work instructions, etc.)

Fleet composition

Database extracts Technical flight delays (9 months) Aircraft maintenance programs
Maintenance event records (12 months)
Traffic program data (12 months)

Other Notes from workshops
Notes from informal discussions

Ad hoc discussions to clarify issues that
emerged during modeling

Notes from meetings and results
presentations
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short-term scheduling principles were found to be
grounded in conflicting mind-sets within the organiza-
tion. This conflict was approached through an evaporat-
ing cloud analysis (included in Figure 2). The history of
the maintenance organization offered at least a partial
explanation for the conflict. At the time of the study, the
maintenance organization was recovering from a recent
restructuring that had included considerable downsizing
of the maintenance technician workforce. In our interpre-
tation, maintenance resources, which had been relatively
abundant, were suddenly scarce. The issue of unclear
roles, mentioned above, which further complicated the
situation, was rooted in responsibility for turnaround
workload management and resource management being
housed in different parts of the organization. One visible
symptom of the situation was that the 2-week operational
planning horizon tended to show a good match of work-
load and resources, apart from the upcoming 48 hr, for
which the workload overshot the planned capacity,
which was a situation that persisted. Another symptom
was recorded in an early research log entry following a
tour of operations: “… just about everyone I've talked to
has been busy counting resources—by hand, on paper!”

The bottom line of the analysis was that
unpredictable turnaround workload, combined with the
tight maintenance windows of the long-haul fleet, was
the root cause of the sub-par departure reliability. The
results of the analysis were discussed at the workshop
which concluded the second cycle of engagement with
practice. The management of the maintenance organiza-
tion insisted that the primary means for remedying the
problem should still be through improving resource flexi-
bility and agility, instead of systematically (albeit selec-
tively) postponing (deferring) repairs. The preference was
to improve the capacity flexibility over changing the
scheduling. At that point in time, the solution based on
over-maintenance and rescheduling was not taken into
consideration, as the high fleet utilization seemed to
imply that any increase in the maintenance workload
would only worsen the situation. Thus, it seems natural

that the organization would focus its development efforts
on increasing resource flexibility and agility, that is, the
responsiveness of the capacity buffer.

At that stage of the research, a set of action points,
ranging from partial reorganization of the turnaround
work to introduction of technology (aimed at improving
resource flexibility and information flow in the turn-
around process), was proposed. Most of these points were
implemented in some form during or after the project.

However, we, the researchers, were still bothered by
the case company seeing workload variability as some-
thing that “you just have to live with,” reminding us of
how the bullwhip effect was perceived before solutions
for containing it emerged (Geary, Disney, & Towill,
2006). Therefore, we asked whether resource-focused
buffering really was the only cost-effective alternative in
the case company context. The arguments for avoiding
a backlog were sound: Postponing scheduled work typ-
ically requires explicit approval from the aviation
authorities, and postponing emergent work (even if it
could be done within regulatory limits) typically
implied increased risks and/or aircraft operating costs.
Against this backdrop, the idea of scheduling work ear-
lier than necessary, as part of deliberate active buffer
management, emerged.

5 | DESIGN EXPLORATION AND
MODELING

The initial design idea for design exploration was that a
portion of planned maintenance tasks could be deliber-
ately scheduled so that there would be at least one
upcoming maintenance window during which the work
could be performed without violating its regulated due
date. Thus, if additional workload emerged during a turn-
around, many tasks could be postponed without addi-
tional effort, risk, or cost. Technically, this could be
characterized as a frontlog of tasks rather than a backlog,
as this entails doing work before demand is imminent,

FIGURE 2 Evaporating cloud analysis of

the mind-set conflict
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rather than tending to it after it is due. As the due date of
recurring work is defined based on the last time the work
was performed, we were also dealing with a trade-off:
The benefits of an excessive frontlog buffer are out-
weighed by the costs of the increased average workload.

The relevant events for exploring and modeling the
solution design—the frontlog—are the departure and
landing of an aircraft and the beginning and ending of a
maintenance work package (Figure 3), which need to be
processed concurrently for all aircraft in chronological
order. All operations concerning flights, maintenance,
and changes in aircraft states take place during these
events. From the perspective of a single aircraft, the chain
of events is typically consecutive take-off and landing
events that are occasionally interrupted by maintenance
events. A more detailed description of what happens dur-
ing these events is provided in Table 3.

For every aircraft, a maintenance schedule is needed
that contains the next planned execution time for every
recurring and pending emergent maintenance task in the
future. The maintenance schedule is created (and recre-
ated) by the maintenance scheduling algorithm (Appen-
dix C), which also specifies the decision variable that
determines the target frontlog buffer. The frontlog buffer
is then created through scheduling recurring mainte-
nance tasks earlier than the last opportunity to per-
form them.

5.1 | Detailed simulation

The discrete event simulation model describes aircraft
operation and maintenance (Figure 4) in a hub-and-
spoke context. The focus of the model is maintenance

FIGURE 3 Life of a single aircraft

as discrete events

TABLE 3 Air fleet operations and scheduling events

Event Description

Take-off The time when the flight is scheduled to depart (if the aircraft is delayed, take-off is postponed accordingly). The flight
hours are recorded for the aircraft until landing. Emergent failures are recorded during the flight.

Landing The time when the flight lands (including possible delays). At this time, the scheduling process considers every
maintenance need of the aircraft, schedules unallocated recurring maintenance tasks, and checks whether the
aircraft is fit for the next flight. If not, rescheduling of maintenance is triggered.

Start
maintenance

This is when scheduled maintenance tasks (recurring and emergent) are executed with the corresponding changes
made to the aircraft's maintenance status (latest execution updated for recurring tasks). Further emergent
maintenance tasks can be found during the maintenance and inspection tasks. Any emergent maintenance tasks
trigger a rescheduling procedure for the finding. If feasible, the emergent task is completed right away in the
ongoing maintenance event, and if not, the maintenance scheduling algorithm is triggered. This continues until
there are no more scheduled tasks.

End
maintenance

An event that completes maintenance work. Here, the maintenance scheduling algorithm is always triggered:
Planning future maintenance, including the frontlog.
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scheduling and rescheduling, as this is where the frontlog
buffer is introduced into the maintenance operations. In
effect, this includes simulating maintenance routing
(known as tail assignment in the maintenance organiza-
tion), identifying suitable ground times for maintenance
work packages (bundles of maintenance tasks to be per-
formed during a given maintenance event), and popula-
tion of these packages with maintenance tasks.2 The
empirically grounded model reflects the empirical con-
text of the study. Five aircraft fleets (which we call E90,
A32s, A330, A340, and A350) operate from a central hub,
from which the aircraft make roundtrips to their destina-
tions. Maintenance operations are performed only at the
hub, reflecting operations at Nordic Airline (at the time
of the research). Outstation maintenance is exceptional
and typically occurs only due to critical outstation
failures.

The model was programmed in Python using NumPy
(www.numpy.org) in addition to standard libraries. In
the remainder of this section, we describe the function of
the model: how the model is initialized (Section 5.2) and
how the simulation progresses (Section 5.3). Further, we
present the measures taken to validate the model (Section
5.4). The results are presented in Section 5.5, in which
the relationship between the simulation output (i.e., the
workload variance) and the decision variable (i.e., the

frontlog buffer) is presented and evaluated based on cost
data provided by the airline.

5.2 | Input data and model initialization

Model initialization begins by loading data (Table 4) and
building the required flight and maintenance schedules.
This brings the simulation into its beginning state, in
which each aircraft exists as an individual entity, with its
own planned flights and assigned future recurring main-
tenance tasks. Maintenance routing is naturally non-
trivial with respect to detailed maintenance scheduling,
as it determines the available maintenance opportunities.

In the studied company, the traffic plan contains
predesignated maintenance blocks, which ensure that the
plan (at the fleet level) can accommodate recurring main-
tenance tasks that require exceptionally long ground
times. Further, if an engine needs to be changed, the
required ground time is jointly planned by traffic and
maintenance planning. For the remaining workload,
however, maintenance planning treats the flight schedule
as given. In practice, changes (apart from the above)
requested by maintenance are extremely rare. Thus,
maintenance routing produces a feasible flight schedule
when all planned flights can be completed without

FIGURE 4 Basic structure of the

simulation model
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violating scheduled maintenance constraints. The simula-
tion model allows for aircraft to be swapped between
flights during the simulation. However, as this rarely
occurs in reality, it should occur rarely in the simulation.

The maintenance routing algorithm (Appendix A)
processes each flight of the flight schedule in chronologi-
cal order and assigns an aircraft to each flight. In addi-
tion to the planned flight origin and destination, the
flight schedule has an assigned fleet and seat configura-
tion for each flight. The maintenance routing algorithm
considers the constraints set by the flight schedule while
ensuring that no recurring maintenance task will expire
during the flight or during the return flight if the aircraft
is destined for an outstation. Further, the algorithm
ensures that each aircraft departs from the station the air-
craft has landed at and that there is sufficient time (set at

1 hr) between landing and the next departure. During the
assignment process, the maintenance routing algorithm
also assigns potential maintenance windows where it
detects sufficient ground time at the hub. These potential
maintenance windows comprise all the positions in
which the aircraft can possibly undergo maintenance.
Most are later removed. Once maintenance routing has
produced a viable flight schedule, the initialization pro-
cess continues with the maintenance window algorithm.

The maintenance window algorithm (Appendix B)
reduces the potential maintenance windows to actual
maintenance windows. The algorithm also ensures that
the maintenance windows (from a fleet perspective, as
the fleets share maintenance resources) are evenly dis-
tributed over time, which is a prerequisite for creating a
uniform workload in the task scheduling phase. The des-
ignated maintenance windows (referred to as work pack-
ages) are yet to be populated with recurring maintenance
tasks by the subsequent maintenance scheduling algo-
rithm (Appendix C).

Each type of aircraft has several hundred different
recurring maintenance tasks that must be executed peri-
odically at different intervals, defined by the time, flight
hours, or flight cycles elapsed since the last execution. To
generate the initial state of the recurring maintenance
tasks, the maintenance scheduling algorithm iterates
through all recurring maintenance tasks of an aircraft.
The algorithm sets a random previous execution time so
that the due date of the recurring task is some time after
the first planned maintenance window. The maintenance
scheduling algorithm then calculates the projected distri-
bution of work hours for the planning period (taking into
account task recurrence). Then, the algorithm re-ran-
domizes the previous maintenance execution dates until
the resulting daily workload variance (of the recurring
maintenance tasks) for the planning period is less than
20%. (This was found to represent a near-minimum value
for workload variance, with the given flight schedule,
which was certain to result in a valid maintenance sched-
ule.) Together, the maintenance routing, maintenance
window, and maintenance scheduling algorithms create
a unique and realistic initial state for the simulation, with
a complete flight and maintenance plan.

5.3 | Simulation

Based on the successful initialization of the simulation,
every flight has an aircraft assigned to it, and every air-
craft has designated maintenance windows that are popu-
lated with recurring maintenance tasks for up to 2
months of simulation time (reflecting the practice at the
Nordic Airline). The simulation then starts executing

TABLE 4 Simulation input data

Data source
Extracted
information Used for

Traffic
program

Departure stations,
destination
stations, take-off
time, arrival time,
assigned fleet, and
seat configuration

Creation of the
flight schedule
which serves as
input to the
maintenance
routing process

Fleet
composition

Aircraft type, seat
configurations,
registration
number

Creating the fleets of
aircraft which are
assigned to the
flight schedule
during the
maintenance
routing process

Aircraft
maintenance
programs

Aircraft type,
maintenance task
recurrence (time
and/or flight
hours/cycles), and
expected duration
of the
maintenance task

Establishing
(recurring) aircraft
maintenance
needs for
populating
maintenance work
packages and
monitoring
airworthiness

Maintenance
event
records

Aircraft type,
originating
maintenance
events for
emergent findings,
distribution for
occurrence of
emergent failures,
and distribution
for duration of
repairs of
emergent failures

Generating
emergent failures
in the course of
the simulation
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flights and performing maintenance in the order they
were scheduled. Based on distributions for occurrence,
duration, and criticality (derived from actual mainte-
nance records), the simulation also starts generating
emergent maintenance tasks that (a) may be accommo-
dated by the current plan, (b) may require rescheduling
of planned work, or (c) may lead to the use of more
expensive overtime work and cause a departure delay.

The frontlog buffer is then created through schedul-
ing recurring maintenance tasks earlier than the last
opportunity to do so. This represents the trade-off where
the workload that can be readily postponed is created at
the expense of a slight increase in the total average work-
load. Owing to this trade-off, we determined that the
frontlog buffer (that is, the decision variable) was best
expressed through the percentage of additional average
workload the buffer creates.

While constructing the simulation model, we deter-
mined that the best recurring maintenance tasks with
which to build the frontlog buffer were those with long
and predictable intervals. The reason was quite obvious:
The portion of unused maintenance intervals was the
smallest for these tasks. Further, the long intervals meant
that the tasks had more possible work packages in which
the tasks could be executed, as their repeat intervals
spanned several work packages. Short interval tasks, in
some cases, would have to be executed in every or every
other work package. Although we favored longer, predict-
able interval tasks when building the frontlog, this was not
a constraining factor in our model, that is, we made sure
to have designated enough buffer tasks for us to be able to
test a sufficient range of different frontlogs (ranging from
�0% to 17%, measured as additional total workload).

Scheduling a recurring maintenance task requires
knowledge of the task's due date, based on which the
next execution of the task is planned to the last work
package before it expires. Depending on aircraft utiliza-
tion (which varies between fleets), these work packages
reflect maintenance windows ranging from short apron
services lasting a few hours to longer hangar services.
Considering task-related constraints (e.g., that some tasks
cannot be performed on the apron, and some tasks can-
not be performed in the same work package due to regu-
lations), the last possible work package is appointed for
each recurring maintenance task. The maintenance
scheduling algorithm then applies the sought frontlog
buffer by moving recurring maintenance tasks to earlier
work packages, while minding constraints, until the total
workload in the schedule has risen by the amount set by
the decision variable.

Emergent maintenance tasks are scheduled in a simi-
lar vein. However, they typically need to be addressed
immediately, thus adding work to ongoing or upcoming

work packages. The frontlog buffer is used whenever the
additional workload exceeds the average additional work-
load (in relative terms). Whenever an emergent mainte-
nance task pushes the additional workload above the
average, a recurring maintenance task designated for the
frontlog buffer is postponed. This brings the relative
amount of the additional workload back below the aver-
age. The frontlog buffer is consumed until no more emer-
gent workload occurs or until the buffer is depleted. If
further emergent workload appears, it is absorbed by
what could be characterized as overcapacity, as shifts are
able to accommodate up to 15% additional workload com-
pared to the planned workload (determined based on
maintenance event records). However, any emergent
workload beyond this will delay the affected aircraft, basi-
cally utilizing a backlog buffer and potentially an overtime
capacity buffer (as the workload capacity on a delayed air-
craft will be arranged if the capacity is not available).

5.4 | Model validation

During the iterative process of constructing the simula-
tion model, we validated it several times against the
available maintenance records and against the airline
management's perception (cf. Den Hengst, De Vreede, &
Maghnouji, 2007). As for the initialization of the model,
the airline management verified that the resulting sched-
ule and maintenance windows with respective work
packages corresponded well with the maintenance rou-
ting performed by the organization. The main form of
validation was achieved by creating an operational plan-
ning view (Figure 5) provided by the simulation. The
result was recognized by the managers as identical to
what they saw in their daily work.

As the airline operates a hub-and-spoke network with
long-haul Asian flights feeding short-haul flights to Euro-
pean destinations, the maintenance workload has a dis-
tinct daily profile (Figure 6). Despite limited resolution,
the simulation produced a daily profile with a distinct
workload spike during the afternoon when the long-haul
flights from Asian destinations land for apron mainte-
nance before returning to their Asian destinations. Fur-
ther, the maintenance of the short-haul European
feeding traffic is concentrated during evenings and
nights, which is also visible in the daily profile.

Finally, the yearly workload produced by the simula-
tion was compared to the operational maintenance data
(extending over a 1-year period) supplied by the airline
(Figure 7). The simulation displayed a mean error of
2.14% for the total yearly workload. The substantial error
is explained by changes in fleet composition, reflected in
the operational data, as the A340 fleet was being replaced
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by the A350 fleet. In practice, this implied a reduction in
the number of A340 aircraft and a corresponding increase
in the number of A350 aircraft. However, the simulation
used stable fleets (reflecting the situation after the time
period described by the operational data). When only the
fleets that were also stable in the operational data (A32s,
A330, and E90) were considered, the mean error is
reduced to 0.38%.

5.5 | Simulation results

The impact of utilizing the frontlog buffer on the total
workload variance is depicted in Figure 8. Each data

point represents 1 year of simulated aircraft operation
and maintenance. The simulation gave slightly different
buffer variance profiles for different fleets of aircraft
(Appendix D), which was expected due to the different
operational profiles. The higher the utilization of the air-
craft, the stronger the effect of introducing a frontlog buffer.

As expected, utilizing the frontlog buffer had a con-
siderable reducing effect on the workload variance. This
means that the frontlog buffer could be expected to
improve departure reliability through functioning as a
shock absorber against the emergent workload—in accor-
dance with the airline's original objective. The question
was, however, at what cost. The frontlog buffer and the
capacity buffer (required to cope with any remaining
workload variance) had costs, which invited further anal-
ysis to arrive at an actionable managerial insight. The
cost of utilizing the frontlog buffer could be readily evalu-
ated in terms of the hours of work the buffer added on
average. Potential additional spare part costs due to the
introduction of the frontlog buffer were assumed to be
negligible, as they can be affected by appropriate selec-
tion of buffer tasks, and many recurring maintenance
tasks do not require spare parts. Further, a cost for “lost
availability” was not motivated, as introducing the fron-
tlog buffer did not affect flight plan feasibility. All
planned flights could be flown (while minding opera-
tional constraints) with all simulated buffer values.

The capacity buffering costs for coping with the
remaining workload variance were more challenging to

FIGURE 5 Operational planning

Gantt chart excerpt generated by the

simulation, where each row represents

the flights (empty blocks) and

maintenance (blocks with the diagonal

line) assigned to a specific aircraft

FIGURE 6 Daily workload profile

FIGURE 7 Simulated yearly workload (cross) and the actual

workload extracted from 1 year of operational data (line)
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evaluate. To simplify the analysis (risking a conservative
estimate), the cost of coping with the remaining variance
was reduced to two components: ad hoc capacity buffer-
ing and structural capacity buffering. Ad hoc capacity
buffering was reduced to overtime work hours that could
be determined from the simulation. According to the air-
line, overtime work was twice as expensive compared to
regularly scheduled work. Structural capacity buffering
included all contractual and permanent work organiza-
tional arrangements that were intended to concentrate
work, to accommodate spikes in the workload. The cost
of structural capacity buffering was assessed by the air-
line managers as adding a few percentage points3 to the
total workload costs and was expected to decrease in pro-
portion to the increase in the buffer when considering its
effect on the workload variance.

Through analyzing the maintenance event data sup-
plied by the airline, we determined the current
(unmanaged) frontlog, that is, the real amount of work
performed before the last opportunity to do it. When

compared to the amounts produced by the simulation,
we determined that the airline was performing mainte-
nance that corresponded to a buffer of 1%. With the cost
of capacity buffering fixed (at a baseline of 100%) at the
derived 1% buffer, we simulated 2,101 years of aircraft
maintenance and operation with different frontlog buffer
values, resulting in the relative (to baseline) yearly labor
cost impact depicted in Figure 9.

Based on the overlaps of the 99% confidence intervals
for the different buffer values in Figure 9, we concluded
that the cost-optimal frontlog buffer would be in the
range of the 5–8% of additional average total workload.
Increasing the frontlog buffer from the current 1% to the
cost-optimal 5–8% range would imply a 4–5% reduction
of yearly labor costs (seen as the deviation from the 100%
baseline). Further, increasing the frontlog buffer could
also be expected to lead to a significant improvement in
yearly labor cost predictability (for a 1% buffer, the cost
varies by approximately 94–106%; for a 5–8% buffer, the
cost varies by approximately 93–98%).

FIGURE 8 The impact of the

frontlog buffer on workload variance,

where a point represents a (1 year)

simulation run

FIGURE 9 The impact of utilizing

the frontlog buffer on yearly labor costs,

where a point represents a (1 year)

simulation run and a bar indicates the

number of simulation runs within the

buffer interval, spread evenly

throughout the interval. The red error

bars indicate the 99% confidence

interval of the mean simulated yearly

labor cost
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Based on these results, we conclude that introducing
a Frontlog buffer not only improves departure reliability
but also leads to a significant reduction in labor costs.
The cost effect presented above should be considered
conservative, as we expect that introducing the Frontlog
buffer also results in (a) a reduction in potentially costly
delays (based on the simulation) and (b) a reduction in
resource management and the planning workload (based
on the engagement with practice).

6 | EVALUATION AND
IMPLEMENTATION OF THE
FRONTLOG AT NORDIC AIRLINE

The design was evaluated in four phases (evaluations 1–4
in Figure 10). First the focus was on whether frontlog
buffering can be implemented at all, then whether it
should be done, and finally, whether Nordic Airline can
implement frontlog in their current operational system.
Although the design work was done in a single context,
and the design has not been fully implemented, we can
draw a parallel between alpha- and beta-testing (cf. van
Aken, 2004). The design first underwent an internal eval-
uation mainly within the design team, which included
the researchers and the head of maintenance planning of
Nordic Airline. After the internal evaluation, the design
underwent an external (in context) evaluation, in which
the design was presented to and evaluated by company
stakeholders who had not actively participated in the
design process. The internal evaluation was conducted
throughout the process of building the simulation model,
which resulted in iterative improvement in how well the
simulation model represented the context. The design
also developed during the internal evaluation, as we were

forced to answer questions such as “What tasks should
be used for frontlog scheduling?,” “Should the frontlog
buffer be aircraft or fleet specific?,” and “How should we
measure the frontlog buffer?”

The main forms of evaluation in Phase 1 are
described in Section 5.4 as validation of the simulation
model. Apart from several occasions when the model was
evaluated within the design team, Evaluation 1 included
an evaluation meeting at which the behavior and output
of the simulation model were discussed with a mainte-
nance planning manager and an operations manager of
the case airline. Evaluation 2 culminated in an evaluation
meeting where the cost effect was presented and dis-
cussed among the design team, the head of line mainte-
nance, and an operations manager. The cost effect was
evaluated as plausible and significant, and only minor
corrections were made in the model based on the meet-
ing. A summary of the evaluation meetings and their key
takeaways are included in Appendix E.

Evaluation 3 culminated in a meeting where results
were presented to key organizational stakeholders. The
results were, in general, not questioned, with the excep-
tion of the vice president (VP) of technical operations,
who noted that aircraft generate revenue when in the air.
Thus, focusing on labor costs in the analysis may not pro-
vide a complete picture. In response, we emphasized that
all planned flights in the current traffic program (which
was an input to the simulation model) were successfully
executed with all buffer values. In a broader sense, we
interpreted this comment as an expression of the mind-
set emphasizing capacity buffering, which we also found
in aircraft line maintenance literature.

Evaluation 4 was initiated after the head of mainte-
nance planning—whom we considered part of the design
team—moved to a new position within Nordic Airline. In
addition to discussions with airline representatives, we
collected evaluation data at three distinct events where
implementation challenges were discussed. The first was
a meeting (in September 2017), where we presented the
design to the new head of maintenance planning and sev-
eral members of the maintenance planning team. The
second was a written implementation update (in Decem-
ber 2018), provided by the new head of maintenance
planning. Finally, in November 2019, we met with the
new head of maintenance planning, the business devel-
opment manager, and the process development (lean)
manager to gain a more in-depth understanding of the
reasons for the slow progress in implementation. These
reasons can be summarized in terms of two aspects. First,
after the research was conducted, Nordic Airline
launched a major digitalization initiative, along with
changes in the organization and operational IT systems,
which had been business development priorities. Second,

Evaluation 1
Can it be done?

Evaluation of model 
representability: the 

model represents reality 
in terms of operational 

behavior and the design 
is plausible

Internal
(Design team)

External
(Context stakeholders)

Implementation

Outcome

Evaluation 2
Should it be done?
Evaluation of model 
representability: the 

model represents reality 
in terms of costs, and the 

resulting savings are 
plausible

Evaluation 3
Should we do it?

Evaluation of design 
implementability: it is 

plausible that the design 
would result in the 

savings proposed by the 
model

Evaluation 4
Can we do it?

Evaluation of design 
implementability: the 

design is implementable, 
but requires supporting 

organizational and 
technological changes 

FIGURE 10 Evaluation of the frontlog design
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although the initiative and changes had addressed some
of the challenges related to frontlog implementation,
Nordic Airline still saw several challenges with introduc-
ing frontlog, both operational and organizational. We dis-
cuss these challenges in the following subsection.

Based on Evaluation 4, at the time this article was
written, eight implementation challenges (IC) must still
be addressed by the airline. As indicated in Figure 11,
these challenges are related to the production planning
system, and to closing the digital feedback loop between
planning and production. As a frontlog measure is part of
the simulation model, the lack of such a measure in the
planning system (IC1) may seem trivial. However, the
frontlog measure in the simulation was constructed to
analyze its cost effect in terms of buffer trade-offs. Thus,
the measure was not designed for decision making in
planning. As a managed frontlog would make replanning
frequent, Nordic Airline also saw the need to increase
automation in planning (IC2), implying the introduction
of a form of a dynamic scheduling solution (cf. Biçer &
Seifert, 2017). However, automation is difficult, as res-
cheduling must consider many nontechnical constraints
and principles. For which the airline currently relies on
the maintenance planners’ tacit knowledge.

Challenges 3 and 4 are related to how production is
managed, after the maintenance plan is released to pro-
duction. The mind-sets of the organizational units
involved in production management complicate
maintaining a planned frontlog. Currently, with an
unplanned frontlog, production management postpones
many non-due tasks on light grounds (IC3). The fourth
challenge is related to the third, and could be described
as a current lack of holistic understanding of how differ-
ent parts of production (and planning) hedge against
(natural and artificial) variability (IC4). An example is a

task that normally takes 1 hr to complete, but under spe-
cific (but infrequent) circumstances takes 3 hr. When
such a task is always scheduled for a duration of 3 hr, it
indicates the lack of a big picture view on what buffers
are available and for what type of variability they
are used.

Challenges 5–7 are related to the digital feedback loop
from operations to planning. Nordic Airline has made
considerable advances in tracking task progress as part of
their digitalization initiative. However, the airline is still
far from real-time visibility (IC6). Visibility into opera-
tions is seen as a prerequisite for frontlog management at
the fleet level. Working toward real-time visibility
includes addressing negative attitudes toward collecting
information on how work is progressing (IC5). Further,
closing the feedback loop requires systems integration
(IC7). Finally, throughout the fourth evaluation phase
there were heated discussions on how the behavior of
traffic planning affects frontlog implementation (IC8).
Traffic planning decisions affect available maintenance
windows and aircraft usage. Therefore, a change in fleet
routing might move a planned frontlog from where it is
likely to be needed to where it is less likely to be needed.

7 | DISCUSSION

Aircraft line maintenance is a context where technical
failures create additional demand on short notice, and
failure to meet that demand results in costly delays. It is
also a context where demand uncertainty is predomi-
nantly addressed through resource flexibility. These were
the circumstances for which we found that the proposed
frontlog buffer would not only improve departure reli-
ability but also reduce maintenance costs. Next, we

FIGURE 11 Implementation

challenges
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discuss how these circumstances were also fortunate for
theoretical conceptualization and elaboration of buffer
management.

7.1 | Conceptual and theoretical
elaboration

The conventional approach to aviation maintenance in
practice and academia (cf. Başdere & Bilge, 2014; Boeret,
1977; Sarac et al., 2006) can be described as JIT mainte-
nance, where tasks should not be performed too late or
too early. However, with random failures creating addi-
tional tasks, the conventional approach leads to over-
reliance on capacity buffering for coping with the
unplanned demand. In the aviation context, introducing
frontlog scheduling creates a time buffer, which can com-
plement and substitute for the capacity buffer in dealing
with unplanned demand. Based on the impact of intro-
ducing the additional buffer in the airline context, we
also arrive at novel theoretical insights into the manage-
ment of uncertainty in operations.

To effectively cope with demand uncertainty, buffer
trade-offs can be reduced to two dimensions with respect
to demand: time and capacity. Where demand is predict-
able and has a due date, production can be performed
before demand is imminent, resulting in a (perishable)
frontlog buffer. Performing production after demand
results in a backlog. To advance the research on buffer
trade-offs, we point out that there is no need for the con-
ceptual introduction of a third dimension, such as inven-
tory. Instead, we can view inventories in manufacturing

as a special case of a speculative time buffer, which we
have denoted as the frontlog. Where demand can be
expected, and the product is not immediately perishable,
slack capacity can be used ahead of that demand to create
a buffer. Just as in our case, the use of slack capacity to
build the inventory removes the need to dedicate capacity
for the point in time when demand is realized. This
freed-up capacity can then be used to meet uncertain,
urgent demand (cf. Biçer & Seifert, 2017). If no uncertain,
urgent demand appears, then the capacity can again be
used ahead of demand to buffer against future demand
uncertainty. In other words, scheduling becomes a con-
tinuous activity to maintain a future rescheduling option,
which we call the frontlog buffer. Reconceptualizing
physical inventory as a frontlog time buffer, we make the
conceptual argument (in contrast to Hopp and Spearman
(2008) that there are only two types of buffers, time and
capacity.

Through this reconceptualization, we see temporal
buffering as a continuum, where the frontlog (temporal
slack) crosses over to the backlog (temporal flexibility).
Further, we view capacity buffering as a continuum rang-
ing from overcapacity (capacity slack) to overutilization
(capacity flexibility). This way, we can arrive at a generic,
demand-centric two-dimensional representation of
buffers in operations, against which specific situations
can be mapped (Figure 12), corresponding to the alterna-
tives upheld and available to specific operations. Map-
ping the current and suggested buffer management
approaches of Nordic Airline on the chart illustrates the
strategic nature of the proposed shift between buffers
leading to the improvement observed in the simulation

FIGURE 12 Conceptualization of

buffer management options in

operations
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study. This shift is compared to Toyota's strategic shift
from (over-)emphasis on frontlog (inventory) buffering to
a balanced approach (Hopp & Spearman, 2008). “At a
time when automotive plants generally ran three shifts a
day, Toyota went to a two-shift schedule separated by 2-
hr preventive maintenance (PM) periods. These PM
periods served as capacity buffers to allow shifts to make
up any shortfalls on their production quotas” (Hopp &
Spearman, 2004, p. 145). As Toyota and Nordic Airline
have different types of production systems, the compa-
nies’ buffer shifts are not directly comparable. However,
the two examples present a radical change in buffering,
and these examples stand in stark contrast to the industry
norm. We also note that Toyota's shift would not have
been possible without several other (at the time) ground-
breaking, variability-reducing developments in how oper-
ations were managed (cf. Hopp & Spearman, 2008, p.
310). These developments resemble the implementation
challenges that Nordic Airline is addressing as part of the
company's digitalization effort.

The two examples suggest that our recon-
ceptualization provides a structure for further research in
management of buffer trade-offs and balancing. Seeming
distinctions between manufacturing and services
(Akkermans & Voss, 2013)—in terms of inventory being
available or not for buffer management—could be treated
as context-specific attributes and constraints within the
same conceptualization. Elaborating further on this con-
ceptualization, we note that in terms of temporal buffer-
ing, any given act of production (resulting in one unit of
product or service) happens before, after, or exactly at the
time that demand arises. Respectively, in terms of capac-
ity buffering, for any given time, we can determine
whether production leaves slack capacity, whether over-
time is used, or whether capacity is perfectly utilized. By
knowing the state of the capacity buffer and by having an
average figure for the temporal buffer, we can express an
operation's buffering approach at a given point in time,
as a single point on the resource/temporal buffering
conceptualization plane (cf. Figure 12). Aggregating the
position of this single point over a period of time would
reveal something akin to the organization's buffering
policy (illustrated by the area of the ovals and circles in
Figure 12).

In terms of buffer management, JIT manufacturing is
a temporal buffering policy that ideally uses neither a
frontlog nor a backlog, as the capacities of the entire
manufacturing system are operated to exactly fulfill
actual customer demand. However, the ideal of lean also
drives the reduction in capacity buffering, leading many
firms to shun the use of buffering altogether (cf. Kroes,
Manikas, & Gattiker, 2018). In this respect, firms that
push the limits of their operations through a myopic

reduction of both time and capacity buffers, often find
their production systems worse off than they were to
begin with (cf. Rappold & Yoho, 2008). Instead of shun-
ning buffers, a firm must find an appropriate combina-
tion to cope effectively with uncertainty (Pagell et al.,
2000). Shifting to a different type of buffer and creating
new operational practices that rebalance the use of avail-
able time and capacity buffers present opportunities to
enact possibly significant shifts in the performance fron-
tier of an operation (Schmenner & Swink, 1998). The
well-known performance outcomes of Toyota's develop-
ment and implementation of JIT manufacturing and the
results of this frontlog simulation for Nordic Airline are
examples of moving the performance frontier through
rebalancing the use of available time and capacity
buffers.

7.2 | Design generalizability

As we identified designs similar to the frontlog in
healthcare (Bowers & Mould, 2002; Helm et al., 2011),
we can discuss what makes this design feasible in the
particular contexts of maintenance and healthcare
(Denyer, Tranfield, & van Aken, 2008). Through this dis-
cussion, we explore the conditions for transferring the
design to other contexts, outlining design generalizability
based on our available knowledge and theoretical
understanding.

We highlight five contextual factors related to fron-
tlog feasibility. First, a common denominator in the
example contexts is that the same resources tend to
planned and unplanned demand, creating a combination
of demand uncertainty (implying that some form of
buffer is needed) and demand predictability (implying
that scheduling, that is, time buffering, is applicable).
Second, related to the first point, capacity is largely
generic, which is a precondition for being able to reac-
tively shift capacity from planned work to unplanned
work. This factor was reflected in Nordic Airline's effort
to increase cross-training and certification of technicians
and attempt to standardize the skillsets available in dif-
ferent shifts. The more generic the capacity with respect
to demand, the better a capacity option works. Another
approach with the same effect is to limit variety in
demand which, in the aviation context, translates into
operating a limited number of different types of aircraft.
Third, the setup costs for (planned) work are low. The
higher the setup costs for planned work, the higher the
sunken costs that are potentially lost when planned work
is postponed. Fourth, the ratio between total available
capacity and work task capacity requirements is big
enough. The greater the total workload handled, the

ÖHMAN ET AL. 19



smaller the proportional effect of an additional workload,
assuming random occurrence. This was reflected in Nor-
dic Airline representatives seeing the frontlog buffer as
more valuable to small- and medium-sized carriers. This
view implies that large carriers (minding the second con-
textual factor) could be expected to benefit most from
smaller frontlog buffers. Fifth, the cost of a backlog is
prohibitive for all work, making operations time-critical.
If only the unplanned work is critical (as in many other
maintenance settings), then the planned work can simply
be postponed to a backlog. However, when considerable
expense is associated with a planned work backlog (e.g.,
due to the regulation grounding planes in aviation or
human suffering from queuing for treatment in
healthcare), frontlog scheduling becomes a feasible
alternative.

Finally, although not a direct requirement consider-
ing feasibility, the recurring nature of planned work, as
in the study context, makes estimating the cost effect of
the frontlog easier, compared with such contexts as
healthcare (cf. Bowers & Mould, 2002). In addition, the
predictable recurrence and duration of tasks make man-
aging the frontlog buffer more approachable for manage-
ment in aircraft line maintenance than in healthcare.

7.3 | Practical implications

Through the empirically grounded simulation model, we
showed how utilizing a frontlog buffer in aircraft line
maintenance can have a cost-reducing effect. A frontlog
buffer is counterintuitive in the sense that it entails plan-
ning (and doing) more work, the cost of which is offset,
on average, by additional operational resilience against
unplanned work. For the operational context, we conser-
vatively estimated a 4–5% cost reduction for maintenance
operations. This estimate excluded likely indirect cost
reductions in resource planning and cost-reducing effects
of improved departure reliability and reduced major
delays. For the operational context specificity of the
results, we observed that the near-optimal frontlog buffer
and its cost effect varied within the operational context,
depending on fleet utilization (Appendix D). Lower fleet
utilization rates imply more abundant maintenance win-
dows. However, even for the lower utilization fleets (E90
and A32s), there was a business case for deliberate over-
maintenance. This indicates that relying only on capacity
buffering should be questioned in any airline operating
context, if the capacity buffering costs are comparable to
the study context.

In Nordic Airline, the current (unplanned) frontlog
buffer was determined to account for 1% of the average
total workload. This highlights that one can expect to

find a frontlog buffer in any aircraft line maintenance
operation, as performing all maintenance at the last pos-
sible opportunity is challenging in practice. Conse-
quently, we cannot claim that a frontlog buffer is new
per se. However, to address external uncertainty, the
frontlog must be purposefully created and managed,
making the time buffer explicit.

The results of the empirically grounded simulation
model indicated a clear financial incentive for managing
the frontlog buffer. However, the simulation results tell
less about how the frontlog buffer should be designed
and implemented. In our discussions with Nordic Airline,
closing the digital feedback loop between production and
planning emerged as the main practical challenge. Once
this challenge is solved, planning, and dynamic res-
cheduling could be automated to the extent required for
effective frontlog scheduling.

7.4 | Methodological implications

Design and implementation of the frontlog buffer are
necessary steps for realizing the expected benefits. How-
ever, the theoretical insight offered by the frontlog does
not depend on implementation. Based on this work, we
emphasize that empirically grounded simulation (Chan-
drasekaran et al., 2018) is especially useful for theory
development through design exploration. Where the
design represents a profound change in the way opera-
tions are managed (making implementation a long-term
project), or where the outcomes of the design are probabi-
listic (making evaluation a long-term project), a simula-
tion offers a sufficiently rigorous route to pragmatic (pre-)
validation, in accordance with the design science ethos
(Romme, 2003). Nevertheless, simulations are only sim-
plifications of reality. Novel designs, when implemented,
can be expected to reveal unintended consequences
(Holmström et al., 2009), both positive and negative, pro-
viding opportunities for further design science research.

We also argue that combining design exploration and
empirically grounded simulation can spur innovation
through academic OM research, by questioning what is
rigid (Rappold & Yoho, 2008), given (Betts & Johnston,
2005), and inapplicable (Roemeling et al., 2017). With
technology such as the Internet of Things and machine
learning changing operational boundary conditions
(Holmström et al., 2019), engaging in design exploration
with practice provides an opportunity for relevant and
theoretically novel research, pushing the state-of-the-art.
In effect, it is a golden opportunity to move OM research
to Pasteur's quadrant of practical relevance and theoreti-
cal insight (Stokes, 2011), as highlighted in the
introduction.
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7.5 | Limitations and future research

The results of this study should be seen as indicative of
further practical and theoretical contributions from
research on buffer balancing and trade-offs. Further
research on buffer management in different contexts is
needed—unearthing and questioning buffer management
mind-sets, exploring and developing new practices and
approaches for digitalized buffer balancing enabled by
dynamic scheduling, and consolidating evidence of out-
comes from strategic buffer shifts. The representation of
operational buffering alternatives along capacity and
time dimensions provides a theoretical foundation on
which this further research can be built. The representa-
tion itself should also be further developed through
strengthening its anchoring in literature on established
means of buffering, beyond the initial conceptualization
we offered. For example, we may consider demand man-
agement (Klassen & Rohleder, 2002) as a potential equiv-
alent to a frontlog. However, as demand management
implies a temporal shift in demand rather than in pro-
duction, there might be a case for developing a dual rep-
resentation of buffering, one demand-centric (as the one
presented here) and the other production-centric (yet to be
developed). Further, we considered demand uncertainty
solely in terms of volume. However, mix is an equally
important consideration, especially in manufacturing. At
the very least, nonetheless, this research indicates a need to
revisit the OM underpinnings of the supposed divide
between manufacturing and services.

As for limitations and further research on aircraft line
maintenance, we examined a hub-and-spoke context in
which maintenance is always performed at the hub, and
where the workload is concentrated in distinct peaks dur-
ing the day, with implications for capacity buffering
costs. As hub-and-spoke networks can be argued to sim-
plify some aviation maintenance problems (Barnhart,
Belobaba, & Odoni, 2003), further research is needed to
study the effects of utilizing a frontlog buffer in other avi-
ation settings, such as in point-to-point operations and
military aviation. Future research could also explore the
implications of considering frontlog buffering in connec-
tion with maintenance routing, as the latter determines
the available maintenance windows utilized by the
former.

The direct applicability of inventory management
principles in frontlog buffer management cannot be
assumed, despite our reconceptualization of inventory,
as a special case of frontlog. However, the design of a
frontlog could draw on previous research related to
containing the bullwhip effect. We approached the
uncertainty problem through a variance lens (Towill,
Zhou, & Disney, 2007). This view indicates control

theory (cf. Ortega & Lin, 2004) could offer insights for
detailed implementation and design improvement. This
idea is further fueled by our observation that the airline
experienced persistent gradual build-up (or amplifica-
tion) of planned workload within the upcoming 3–
4 days.

Based on the present results, we expect the optimal
frontlog buffer to depend on at least fleet size, fleet utili-
zation, aircraft reliability, costs of capacity buffering, and
capacity sharing among fleets. In addition, as fleet utiliza-
tion exerts seasonal variation, introducing a frontlog
buffer in Nordic Airline will likely have strategic, tactical,
and operational dimensions. Considering the purpose of
this study, a fixed frontlog was sufficient to show the
merits of introducing a deliberately managed frontlog.
Against this backdrop, further research could develop a
dynamic solution (cf. Biçer & Seifert, 2017) to this prob-
lem, for example, through using reinforcement learning
or approximate dynamic programming approaches (cf.
Mattila & Virtanen, 2011).

8 | CONCLUSION

We set out to explore solutions to a practical problem
faced by Nordic Airline. Based on an empirically
grounded simulation model, we here propose a counter-
intuitive solution that represents a new way of doing (air-
craft) maintenance. As a result of our study, we have
come to question assumptions widely held both in prac-
tice and academia. We found that, in aircraft mainte-
nance, sole reliance on capacity buffering is likely not a
cost-effective approach for handling uncertainty. We also
found that the frontlog buffer shares properties with
manufacturing inventory, allowing us to conceptualize
inventory as a special case of frontlog time buffering.
Based on this reconceptualization, we propose a generic
framework of how operations are buffered against
demand uncertainty. We argue that time and capacity are
the two principal buffers in operations, and that the latter
can be considered as a continuum ranging from overca-
pacity to overutilization, while the former can be consid-
ered as a continuum ranging from frontlog to backlog.
These two dimensions meet at the perfectly aligned pro-
duction and demand, any deviation from which implies
costs of buffering. We argue that this conceptualization is
a long overdue advance for research to understand how
managers can balance buffers in operations to effectively
cope with uncertainty.
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ENDNOTES
1This research has its roots in the early ‘60s. McCall (1963)
described the operating characteristics of opportunistic inspection
and replacement, and Radner and Jorgenson (1963) provided proof
of the optimality of the policy. Rust (1987) provided an analytical
solution to the opportunistic replacement problem, supported by
empirical data for bus engine replacement decisions.
2Maintenance routing is a planning activity where the maintenance
organization assigns physical aircraft to flights, which are desig-
nated by traffic planning as origin, destination, departure time,
arrival time, and aircraft type. A work package is a bundle of main-
tenance tasks to be performed in a maintenance window. A mainte-
nance task is a sequence of work and inspections performed by the
technician.
3The exact number is omitted here, as the airline considers it
confidential.
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APPENDIX A

FIGURE A1 Maintenance routing

algorithm. 1Checks whether (1) the

aircraft is at the station from which the

flight departs (as the model is

initialized, no flights are assigned,

which means that the aircraft accepts

any departure station); (2) enough time

(1 hr) has passed since the aircraft

landed after its previous flight; and (3)

no maintenance expires during the

flight (or the return flight if the

destination is not the hub). 2Rearranges

the list (L2) so that the aircraft located

at an outstation are stacked on top and

those at the hub are stacked below, both

in ascending order, based on the

maintenance expiration. This is done to

ensure that if maintenance windows are

scarce, they are divided evenly among

the aircraft, and the aircraft spend as

little time at outstations as possible.
3Checks whether (1) aircraft are at the

hub and (2) whether there is sufficient

time for maintenance. 4If this does not

lead to a feasible solution, the number

of flights retracted is gradually increased
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APPENDIX B

FIGURE B1 Maintenance window algorithm. 1The separating constant is derived from the first processed aircraft in the fleet and

refined as other aircraft of the fleet are processed for the first time. In practice, the separating constant is the average time between two

maintenance windows, divided by the number of aircraft in the fleet. The resulting value is subsequently used (in the remaining 49

candidate iterations for the fleet) in ensuring that the windows are evenly distributed from the fleet perspective. 2The maximum

maintenance interval corresponds to the shortest recurring maintenance task interval, that is, the longest an aircraft can operate without

being maintained. 3The maintenance plan is populated through reducing potential maintenance windows to actual maintenance windows.

This is done by choosing the first maintenance window according to the offset. Then, successive potential maintenance windows are

removed until the time between the last designated maintenance window and the next potential maintenance window exceeds the

maximum maintenance interval. At this point, the model jumps over one maintenance window (designating it as actual) and continues in a

similar vein until the maximum interval again would be exceeded. This procedure leaves close to the minimum number of actual designated

maintenance windows. For the next aircraft of the same type, the algorithm adds a separating constant to the previous starting offset, which

acts as an approximation of spreading the maintenance windows evenly across time. 4Randomly constructing different combinations of

individual aircraft maintenance plans derived from the 50 fleet maintenance plan candidates. 5The Concurrent Maintenance Windows

(CMWs) value is calculated based on a time series, which expresses the number of concurrent maintenance windows with a 30-min

resolution. The CMW value is the sum of the cubed data points of the time series
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APPENDIX C

FIGURE C1 Maintenance scheduling algorithm. 1Randomly designated so that the first due date of the recurring maintenance task

falls somewhere at or after the first designated maintenance window. 2Checks whether the workload variance exceeds 20% within the

planning period (2 months), based on a 30-min resolution, taking into account task recurrence. This is done to ensure a realistic and

sufficiently uniform planned workload for the initial state of the simulation. 3Recurring maintenance tasks are initially scheduled to the last

possible designated maintenance window. The frontlog buffer is applied by moving planned recurring tasks (favoring those with long

maintenance intervals) to earlier work packages one by one while updating task recurrences. This procedure is performed until the total

workload in the schedule has risen by the amount set by the decision variable. 4In the simulation, any emergent maintenance tasks are

considered with recurring tasks, with the due date of emergent tasks determined by their criticality. Further, the scheduling procedure

considers task-related constraints, such as mutually exclusive tasks (e.g., some engine-related tasks on twin-engine aircraft), and whether the

work can be performed on apron or not. 5During flight and maintenance operations, the algorithm is initiated whenever a scheduled

maintenance work package is completed or due to the occurrence of emergent maintenance task(s)
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APPENDIX D

FIGURE D1 Fleet-specific workload variance as a function of the frontlog buffer. The figures reflect the different operational profiles

of the fleets. The A330, A340, and A350 fleets fly long-haul routes to Asian destinations, and the A32s and E90 fleets fly short-haul

connecting/feeding routes. Higher fleet utilization (e.g., in the A330 fleet) leads to increased workload variance, presumably due to the

scarcity of maintenance opportunities, which, in turn, leads to a stronger effect of increasing the frontlog buffer
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APPENDIX E

TABLE E1 Evaluation events

Date Evaluation event

Evaluation
phase

Participants (where
A* = * author) Takeaways1 2 3 4

June 17,
2016

Meeting—evaluation of
conceptual structure of
simulation

X A1, A2, A3, head of
maintenance planning

- Simplified view of resource planning
can be used without a significant
negative impact on representability

September
9, 2016

Meeting—evaluation of first
simulation results and
model behavior

X A1, A2, A3, head of
maintenance planning,
planning manager,
operations manager

- On a general level simulation output
seems representative of operations

- Need to check whether the
maintenance routing algorithm
results in sufficient ground time for
individual aircraft

- 24 hr man-hour variation and total
fleet man-hours needed for
validation

- A32s- and E-fleets have spare
aircraft, but re-routing should
happen infrequently

- Buffer impact on departure
reliability is interesting, and could
be studied directly through the
model

December
8, 2016

Meeting—evaluation of
simulation model
validation

X A1, A2, A3, head of
maintenance planning

- Simulation man hour output is in
minutes, which needs to be
considered in internal
communication

- Workload corresponds to reality,
deviations in average workload
attributed to changes in fleet
compositions reflected in the data

- Model is not representative in terms
of delays, can be fixed through
resource re-allocation constraints

February
28, 2017

Meeting - evaluation of cost
savings potential indicated
by model

X A1, A2, head of
maintenance planning,
operations manager, head
of line maintenance

- Potential cost savings are plausible
and significant

- Costs for long term labor flexibility
cannot be assumed to approach
zero with larger buffer values, since
ground time will still be unevenly
distributed, to be fixed

April 21,
2017

Results presentation—
evaluation of research
results by operational
stakeholders

X A1, A2, A3, head of
maintenance planning,
head of line maintenance,
VP of technical
operations, head of
engineering, head of
maintenance control,
head of resource planning,
head of analytics
development, planning
manager, operations
manager, analyst

- On a general level model results
were not questioned.

- Workload mismatch was observed
by the audience, and explained by
the presenters

- VP of technical operations noted
that with the buffer increasing the
total workload, there is a risk that
the increased downtime translates
to lost flying hours and would
hence be away from “generating
revenue”. It was highlighted that all
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TABLE E1 (Continued)

Date Evaluation event

Evaluation
phase

Participants (where
A* = * author) Takeaways1 2 3 4

planned flights in the current traffic
program (which was an input to the
simulation model) were successfully
executed with all buffer values.

September
26, 2017

Implementation meeting—
evaluation of efforts
needed to implement the
design

X A1, A2, A4, (new) head of
maintenance planning,
planning manager,
maintenance planner,
maintenance planner

- Planners strive not to make too tight
plans, implying that they are
currently introducing a buffer, but
it is not managed

- Planning systems need to be able to
measure the buffer if it is to be
managed

- Buffer consumption happens in
operations, implying that sound
principles for when the buffer
should be used are needed

- Also effect of traffic planning
decisions on available ground
times, and by extension
prerequisites for buffering needs to
be better understood

December
28, 2018

Personal communication—
recap of implementation
status

X A1, (new) head of
maintenance planning

- Buffer would require automated
replanning of work, which current
planning system is unable to
perform, possibilities to remedy this
has to be explored

- There is a negative mind-set related
to not being able to perform all
planned work, which could pose a
challenge when introducing the
buffer

- Changes in resource planning cause
uncertainty at the moment, which
is connected to buffer
implementation

- Tracking of tasks in operations is
improving, which is advantageous
considering buffer implementation

November
22, 2019

Interview on
implementation
challenges

X A1, A4, (new) head of
maintenance planning,
process development
(lean) manager, business
development manager

• Many of the earlier challenges
were acknowledged and confirmed
as still relevant

• There has been considerable
progress with task tracking, but
there is still work to do before
reaching real-time visibility into
operations.

• Resource planning principles are
changing, showing as more stable
resource plans.

• There are now regular
maintenance activities also at a
number of outstations for both NB
and WB fleets.

(Continues)
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TABLE E1 (Continued)

Date Evaluation event

Evaluation
phase

Participants (where
A* = * author) Takeaways1 2 3 4

• Buffer would require a digital
feedback loop from operations to
planning

• - Incentives, organizational
structure and mind-set in
production can be expected to pose
challenges related to building and
consuming the frontlog.
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