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Safety-critical and mission-critical systems, such as airplanes or (semi-)autonomous cars, are relying on an
ever-increasing number of embedded integrated circuits. Consequently, there is a need for complete defect
coverage during the testing of these circuits, in order to guarantee their functionality in the field. In this
context, reducing the escape rate of defects during production testing is crucial, and significant progress has
been made to this end. However, production testing using automatic test equipment is subject to various
measurement parasitic variations, which may have a negative impact on the testing procedure and therefore
limit the final defect coverage. To tackle this issue, this paper proposes an improved test flow targeting
increased analog defect coverage, both at system- and block-level, by analyzing and improving the coverage of
typical functional and structural tests under these measurement variations. To illustrate the flow, the technique
of inserting a pseudo-random signal at available circuit nodes and applying machine learning techniques to
its response is presented. A DC-DC converter, derived from an industrial product, is used as a case study
to validate the flow. In short, results show that system-level tests for the converter suffer strongly from the
measurement variations and are limited to just under 80% coverage, even when applying the proposed test
flow. Block-level testing, on the other hand, can achieve only 70% fault coverage without improvements, but
is able to consistently achieve 98% of fault coverage at a cost of at most 2% yield loss with the proposed
machine-learning based boosting technique.
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1 INTRODUCTION
The trend towards the increasing use of Integrated Circuits (ICs) in cyber-physical systems shows
no signs of slowing down [16]. Following this trend, automotive applications stand at the top
of the list of fast, continuously growing IC sectors as the industry is preparing for the arrival of
autonomous vehicles. Indeed, modern vehicles rely on an increasing number of ICs, in particular
analog and mixed-signal (AMS) circuits, to run safety-critical functions, such as collision detection
or communication with other agents in the field.

Consequently, ensuring that all these ICs are fully functional in the field becomes an increasingly
important constraint for IC manufacturers. Manufacturing flaws, however, can cause a multitude
of defects in the production of an IC. Among them, catastrophic defects can result in unwanted
open or short circuits within the IC. They pose a serious threat to the designed functionality
because they modify the inner circuit topology and cause a wrong behavior. Detecting all these
hard defects before sending the IC in the field is therefore crucial. Specifically considering analog
circuits, detecting catastrophic defects is not an easy task, as the fabrication of ICs is subjected
to a lot of variations. This has been an extensive research topic for more than a decade, e.g.
[5, 6, 10, 11, 15, 21, 22, 28, 29, 32, 36]. First in line are process variations, which are usually taken
into account in the design process by simulating (a) process corners for inter-wafer variations and
(b) Monte-Carlo variations for intra-wafer variations. The objective of these simulations is to ensure
that the designed circuit meets the specifications under these variations, as the design is validated
across all process corners and random process variations. The specifications are subsequently
assessed after chip fabrication during the testing of the IC, typically performed in industry with an
Automated Test Equipment (ATE). In addition to the manufacturing variations, other variations
will also directly affect the test results. Specifically, measurement variations of the ATE and the test
setup, e.g. the variable contact resistance of the test probe pins, even when using some force control,
can modify the test results and can have an impact on the overall fault coverage for a particular
IC. In the current literature, the impact of these measurement variations is rarely analyzed in the
context of defect detection and is therefore not taken into account in fault coverage metrics.

In this paper, we will develop a novel design test framework aimed at AMS ICs, that is able to take
into account measurement variations during testing and compensate for them while maximizing
the fault coverage, specifically by inserting additional measurements to the standard test flow and
by using machine learning algorithms. Hence, we propose:

• The development of a new model for measurement variations in the context of multi-site ATE
testing, which consists in adding test techniques step by step, evaluating them and comparing
them in terms of the fault coverage. This flow is enriched by a model that enables simulating
the measurement variations, integrating them in the test flow and evaluating their impact on
the fault coverage. This test flow is extendable to compare alternative test methodologies
and to boost the fault coverage when needed;

• A comprehensive evaluation of the impact of the measurement variations on system-level
and block-level testing methodologies;

• A boosting technique, aimed at compensating for these variations and increasing the final fault
coverage. This technique is based on (a) the inclusion of new tests, such as pseudo-random
stimuli measurements in the example presented later on, in addition to block-level testing,
and (b) the use of a machine learning algorithm.

https://doi.org/xx.xxxx/xxxxxxx.xxxxxxx


Machine Learning-Based Defect Coverage Boosting of Analog Circuits under Measurement Variations 3

These three contributions have also been integrated in a complete AMS test flow that is suitable
for industrial environments. We will illustrate this test flow by comparing several test techniques,
such as system-level test, block-level test and other measurements, on a representative case study
consisting of an analog DC-DC converter derived from an industrial product. This comparison
will allow to evaluate the impact of measurement variations on the fault coverage for the selected
test techniques. These faults are the simulation models used for the defects introduced during IC
fabrication. It will show that system-level testing, although intrinsically better that block-level
testing in terms of fault coverage, is more sensitive to measurement variations. Using the proposed
boosting technique, the fault coverage is increased from 70-80% to up to 98% on the considered
converter case study under measurement variations, which is a significant improvement compared
to standard test techniques typically used for this circuit. This technique also removes the need for
system-level testing of the converter, as the faults are all covered by block-level testing and the
functionality is measured as well.
The remainder of this paper is organized as follows. Section 2 will give the state of the art of

standard industrial practices in analog circuit testing, explaining briefly the main test methodologies
used in literature. Sections 3 and 4 will then go into the details of our proposed framework, able
to model and integrate measurement variations in the test analysis and design process. Section 5
will detail the design of the case study used to illustrate the proposed methodology, which is
a DC-DC converter. Section 6 will then present a comparative analysis between several test
methodologies in terms of fault coverage, without and with measurement variations considered.
Section 7 will detail the proposed enhanced test to increase the fault coverage of the case study
circuit using pseudo-random test excitation in combination with machine learning-based test
processing. Section 8 will conclude the paper.

2 OVERVIEW ON EXISTING FAULT DETECTION METHODOLOGIES FOR ANALOG
CIRCUITS

Numerous test strategies have been developed and applied to analog circuits. This section will
briefly review the main ones, before subsequently applying them on a case study circuit.

2.1 General fault detection principles
The objective of fault detection methods is to detect and screen out (ideally all) defective circuits
during or right after the manufacturing process. The details of how faulty circuits are simulated
will be given later in Section 3.2.2. Generally speaking, any IC must fulfill a given number of
specifications, which are assessed during the testing phase, and fabricated circuits that do not satisfy
these specifications are rejected. In practice, one of the main complications for the development of
an effective analog fault detection method is that the manufacturing and test processes themselves
are subjected to numerous variations. We will divide them into two distinct categories:

a) process variations, due to variations in the manufacturing phase, and
b) measurement variations, due to variations occurring in the testing phase.

2.1.1 Fault detection under process variations. Process variations are the result of variations in the
manufacturing process. They can be modelled in the design stage, usually through Monte-Carlo and
corner simulations, from which detection boundaries are deduced between faulty and non-faulty
(i.e. good) dies [12]. Their distribution is usually Gaussian and the spread depends on the actual
process used in production. These parameters are usually supplied together with the technology
that is used at the design stage.

An illustrative example of how a fault detection method works under process variations is given
in Fig. 1. Here, the Probability Distribution Function (PDF) of a given test under process variations
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Fig. 1. Graph showing the yield loss on a distribution of good dies and the fault coverage on a simplified
distribution of dies with a fault.

is represented using a Gaussian distribution. The PDF of "good" chips (i.e. devices passing the
test) is represented with the thick line, and the PDF of faulty chips (i.e. devices failing the test) is
represented by the thick dotted line. For each test, a detection boundary is defined, expressed in
terms of the mean (µGood ) and the standard deviation (σGood ) of this Gaussian distribution. Using
this, we can define the yield loss, shown in dashed red, as the percentage of good chips (chips
without defects) that have some measurement result outside of the test limits. These limits are
usually expressed as a number of standard deviations away from the mean of the measured values
and are usually related to the product design specifications. Due to the variations in the production
process, the circuit can be designated as faulty, even though it does not contain any defect. This
means that either the boundaries are set too tight or that the process produces circuits that are
out of the preset specifications. We consider the yield loss as the fraction of good circuits rejected
because the test procedure considers them as out of the test bounds. The fraction of fabricated chips
that remains within the test bounds is called the yield. Conversely, the fault coverage is defined as
the fraction of faulty circuits that are out of the test bounds, i.e. faulty circuits tested and classified
as faulty.
Specifically, a chipMi is said to be faulty for a measurement i with mean µGood ,i and standard

deviation σGood ,i , if: ����Mi − µGood ,i
σGood ,i

���� > αi (1)

where αi is the detection boundary scaling factor for that measurement. The detection boundary 
positions are determined by the parameter αi , which quantifies how many standard deviations 
away from the good mean the tested chip must be for a measurement i to be regarded as faulty. By 
choosing different values for the parameter αi , the detection boundary between good and faulty 
can be moved. This results in a trade-off, since some circuits of the faulty population will have 
their distribution of measurements close to or even inside the good population, as shown by the 
example faulty population in Fig. 1. Depending on where the boundary is set, a different portion of 
the faulty distribution will be detected, shown in green, but this comes at the cost of yield loss (i.e. 
good circuits detected as faulty), shown in dashed red.

Although many techniques have been presented to deal with process variations (see Subsection 2.2), 
the impact of other types of variations, such as measurement variations, on the measurements 
during test have not been analyzed extensively in the literature.
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Fig. 2. Distribution for measured values for the same measurement over four parallel test sites on an industrial
product of a single wafer.

2.1.2 Fault detection under ATE measurement variations. Measurement variations refer to changes
that may occur during the testing phase. These variations are for instance the variable contact
resistance when probing the IC with tester probes. One of the objectives of this paper is to integrate
such measurement variations in the test flow, to evaluate their impact on the overall test results, and
to compensate for them. To illustrate the actual impact of measurement variations, the experimental
PDFs of four parallel test sites for the same measurement of an industrial-scale product are shown
in Fig. 2. An industrial ATE is capable of testing multiple chips on a silicon wafer at the same time,
using multiple test sites next to each other. Each site contains its own set of measurement probes,
which are routed on a large Printed Circuit Board (PCB) to the measurement circuitry of the ATE
itself. It is clear from Fig. 2 that each test site has its own bias due to the different measurement
parasitics, which will be modelled and explained in more detail in Section 3.1.
To mitigate the effect of such measurement variations, their impact needs to be modelled,

evaluated and compensated. In the following section, we will give an overview of the different
concepts and techniques that will be used to achieve this.

2.2 Overview of the standard fault detection techniques
When testing AMS ICs, most of the fault detection strategies in industry consider in priority (or
exclusively) process-induced variations. In this regard, we can broadly distinguish two types of
testing methodologies, as illustrated in Fig. 3: system-level and block-level testing.

2.2.1 System-level testing: the classical approach for IC testing in the industry is to perform
system-level testing. The general principle is to apply to the Circuit Under Test (CUT) a series of
full-system tests, using the available pins of the circuit, for example primary inputs, outputs, supplies,
etc. These tests allow for a straightforward assessment of the different circuit specifications, as they
resemble typical circuit usage conditions. In addition, system-level testing does not require any
additional on-chip structures to be included, avoiding any circuit area overhead. However, it may
be difficult to detect all possible defects of the circuit because the controllability and observability
are limited to what can be accessed from the outside pins. It is typically not possible to test every
part of the IC separately, which in the end may limit the fault coverage in the inaccessible parts
[22], and lead to potential undetected faults.

2.2.2 Block-level testing: to access more parts of the IC, block-level testing is used, with the
objective to individually test all blocks within the IC separately and to maximize the fault coverage.
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Fig. 3. Illustration of (a) system-level test and (b) block-level test for AMS ICs.

This testing approach requires additional Design-for-Test (DfT) structures, added to the circuit
to allow the separation and individual measurement of each circuit block. The DfT process is
usually carried out along with the IC design, in collaboration between test engineers and designers,
to enable maximum controllability and observability in all circuit blocks, maximizing the fault
coverage and minimizing the impact on the IC performances. The added DfT structures may
introduce overhead (e.g. in chip area, power, etc.) that must be taken into account and minimized.
Another possible drawback of solely using block-level testing is that system characteristics must
be deduced from block characteristics. It is up to the circuit designers and the test engineers to
map and combine them during the test process. Recently, automatic frameworks such as [8] have
been developed to select DfT structures and test stimuli for AMS circuits to maximize the fault
coverage at minimum overhead.

The use of these test methodologies does not always lead to an optimal fault coverage. Specifically,
some faults may stay hidden, even with the use of multiple DfT blocks. In this context, this paper
presents solutions to further increase the fault coverage. This research is divided into two different
contributions:

1) implementation of additional measurements targeted to detect the remaining faults, and
2) development of statistical or machine learning based methods to enhance fault detection.

These two contributions will be detailed in the next subsections.

2.3 Additional tests for better fault coverage
2.3.1 Use of additional measurements: a first approach to enhance the test process is the use of 
extra additional measurements. For instance, measuring power supply currents to spot additional 
faults has proven its efficiency, first for digital ICs, where it is a standard test named IDDQ [25], 
and then adapted for analog circuits [28]. It can be used also to evaluate other metrics, such as the 
neighborhood current ratio (NCR), which evaluates the ratio of the IDDQ of the current chip to the 
mean IDDQ values of the neighboring dies, and can identify potential outlier circuits [5].

2.3.2 Use of additional test stimuli and responses: improving the fault coverage can also be 
performed through additional test stimuli and test responses. In this context, Built-In Self-Test 
(BIST), initially targeted to reduce the test cost by integrating the test generation and response 
analysis on-chip, leads to the implementation of several new measurement techniques. A large 
variety of BIST techniques have been proposed for specific analog circuits, such as phase-locked
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Fig. 4. General illustration of a typical machine learning based testing strategy.

loops [17], data converters [13], DC-DC converters [4], or more general circuits [10]. The CUT
can, for instance, be analyzed in the frequency domain, e.g. by applying random test inputs and
measuring the frequency response of the circuit [29]. The CUT can also be set in forced oscillation
mode, such that its response can be analyzed to detect defects [10].

2.4 Machine learning techniques for fault detection
In order to further increase the fault coverage, advanced statistical and machine learning algorithms
have been proposed. These algorithms are indeed able to detect complex correlations between
variables, by, for instance, mappingmeasurements to circuit performances and identifying previously
hidden faults when processing the results from (extra) measurements, as presented in this paper.
There exist numerous works proving the efficiency of machine learning and deep learning

algorithms to different test applications, such as fault detection [6, 11, 21, 28, 29, 31, 32, 32, 36, 37],
fault diagnosis and yield learning [15], test escape detection [19, 27], or alternate testing and
calibration [1–3, 20, 24]. The term alternate test refers to a cost-effective methodology where the
complete test process is replaced by low-cost measurements, correlated to the actual performances
of the circuit with machine learning algorithms [35]. This algorithm can then compensate for
process variations if performance tuning knobs are included in the learning process. A general
review of machine learning applications for IC testing, including fault detection, is available in [30].

Focusing on analog fault detection, methods presented in the literature typically consist in using
machine learning algorithms, such as neural networks or support vector machines, to highlight and
classify faults in complement to the current test process or coupled with additional measurements
applied to the CUT. This is illustrated in Fig. 4. First, a dataset is constituted using a set of N
observations. For instance, a dataset can be a fault model dictionary, created with Monte-Carlo
simulations of a circuit under process variations, partially with specific defects introduced in the
circuit. It can also be enriched with test data from fabricated circuits, such as pre-production wafers.
This entire dataset is subsequently used to train and validate a machine learning model, that can
perform various tasks. The most typical tasks consist in classification (e.g. giving pass/fail labels
for ICs in a fault detection case), clustering or multi-class classification (e.g. build distinct classes
depending on the type of faults in a fault diagnosis case), or regression (e.g. explicitly learn the
relationship between given measurements and circuit performances in an alternate test case). In
this paper, we will focus on machine learning applications for fault detection, i.e. pass/fail detection.
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Fig. 5. Detailed (a) and simplified (b) models for the measurement parasitics on ATE probes, as present during
production IC testing.

Among the first examples in literature, in [28], neural network algorithms have been combined
with supply current measurements to detect faults in an amplifier. The fault detection algorithm is
first trained based on a fault dictionary, observing the simulated reaction of the circuit to a supply
current ramp, and identifying clusters of faults with a multi-class classifier. In the fault detection
phase, a ramp is applied to the CUT and the trained classifier is used to detect faults. In [29], the
analysis of the random test responses is performed using artificial neural networks to classify
between good and faulty circuits, based on a dataset with faulty and fault-free devices. More recent
developments in the machine learning area allow to detect more advanced non-linear boundaries
[32], enable to spot and filter out more efficiently outliers in a distribution of ICs using alternate
test [31], or are integrated in a more classical test flow [36]. The term outlier is used here to define
circuits exhibiting a behavior quite different from regular devices, thus having a high probability to
contain a fault. Standard testing and alternate testing can also be combined, as in [11], where the
machine learning model used to classify between good, faulty, and marginal dies can be updated
over time to take into account new information in the data.

3 MODELING, EVALUATION AND COMPENSATION OF MEASUREMENT
VARIATIONS

The description of the impact of measurement variations on AMS testing in the previous section
leads to three targets:
(1) model the effect of the measurement variations;
(2) integrate this model in a test flow that evaluates its impact;
(3) automate the test process to take these variations into account with compensation and

enhancements.
In this section, these three points will be addressed. In Section 4, the resulting test flow that achieves 
these targets will be presented.

3.1 Measurement variations during production test
Due to the nature of production testing, measurement variations are unavoidable during production 
tests. ATEs always have some parasitic elements that influence the measurements. The effect of this 
on an actual industrial product has been shown in Fig. 2. Three main sources of parasitic elements 
are causing this effect: the probe needle or contactor pin, the load board, and the ATE traces. With 
multi-site testing, each test site has its own set of probe needles and is routed slightly differently 
on the PCB to the ATE, causing measurement variations for the same measurement. Each of these 
three elements can approximately be modeled by an inductor-resistor-capacitor chain of lumped 
elements, as shown in Fig. 5a. Moreover, there is also coupling possible between two neighboring
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parasitic chains, as depicted by capacitors in Fig. 5a. For the analysis in this paper, the measurement
parasitic model has been simplified to the equivalent circuit in Fig. 5b, by contracting the three
chains to one single chain. The exact values for RPar , LPar and CPar1 are unknown in the analysis
and are therefore randomly sampled from a [1 − 10] uniform distribution, with unit values Ω, nH
and pF, respectively, whereas CPar2 has a range of [5 − 10] pF. These measurement parasitics are
added to each probe pad in the analysis. The values for the resistance are based on [18], which
reports contact resistances within the range mentioned. The inductor and capacitor values are
based on values for PCB parasitics [34]. The parasitic elements are all assumed to be uncorrelated.
The simplification is equivalent to an RLC filter with added capacitive coupling between the

nodes. As the PDFs of all parasitic components of Fig. 5b are flat, the resulting effect onmeasurement
variations can vary, as is clear from Fig. 2.

3.2 Integration in the test flow
We will use several aspects of AMS testing to evaluate the impact of the measurement variations,
while at the same time accounting for the process variations. Different types of tests, measurements
and test setup schemes are explored that will aid in assessing the effects of the measurement
variations.

3.2.1 Specification and additional tests. Both system- and block-level test methodologies contain
specification tests, i.e. tests that measure some functional specification. In the system-level test
method, the function is typically related to the system, e.g. the conversion speed of a voltage
converter. This is also true for block-level tests, only the functions here are related to the different
blocks of the system. These can typically be amplifiers, oscillators, etc., which can have tests that
measure for instance the bandwidth or oscillation frequency. Specification tests are typically not
designed specifically with fault coverage in mind; yet, they are consistently used in industrial
test settings. Their fault coverage performance for the considered design case will be analyzed in
Sections 6 and 7. Additional measurements are used to quantify structures that are usually present
in most AMS circuits as introduced in Section 2.3.1. These can measure currents and voltages
that should always be present and can be done regardless of the test methodology applied. The
DC current consumption is used as an additional analog measurement in our case. This extra
measurement does not introduce a significant increase in test time, because it can happen in
parallel to the specification tests. Besides having a very low test cost, this extra measurement has
the additional benefit that it can be simulated efficiently by DC simulations. These are orders of
magnitudes faster than the transient simulations required for the other typical tests.

3.2.2 Fault coverage simulations. We adopt a defect-based test methodology for analog circuits.
The assessment of the test methods is quantified by their analog defect coverage for catastrophic
defects. These are defects that cause short or open circuits between transistor terminals. In the
simulations, these defects are modelled by faults inside CMOS transistors as described by the 5-fault
model [26]. This model contains the following faults:

• open circuit at source side;
• open circuit at drain side;
• gate-source short circuit;
• gate-drain short circuit;
• drain-source short circuit.

For test analysis, open circuits are modelled as a high-resistive connection (1GΩ), whereas short
circuits are modelled as low-resistive connections (100Ω). The fault coverage (FC) is expressed as
the fraction of all the possible faults (Nf aults ) that the test program can detect (Ftdetect ,i = 1 if
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4 PROPOSED TEST FLOW
The proposed flow for analog fault coverage improvement under measurement variations is
illustrated in Fig. 8. This flow is specifically targeted to deal with the issues caused by measurement
variations and therefore to increase the fault coverage in the context of an industrial ATE test
environment. The general principle is to analyze, compare and combine several test strategies
(additional measurements or stimuli, etc.), when necessary, in order to compensate simultaneously
for process and measurement variations. The overall flow is built in such a way that it can be
integrated into the design flow of an IC. When designing ICs with attention to testing them, this

, Vol. 1, No. 1, Article . Publication date: June 20xx.

Fig. 6. Block diagram showing the test data generation.

fault i is detected):

FC =

∑Nf aults
i=1 Ftdetect ,i

Nf aults
(2)

As the number of transistors in a circuit is determined (including possible DfT circuitry), so is
the number of defects. We will further assume that each fault has equal probability of occurrence
(although this could be included if the proper process information would be available). Thus, the
calculation of the fault coverage reduces to Equation 2. Since this work is based on simulations, we
will use the fault coverage as target criterion for the remainder of this paper.

3.2.3 Test boundary selection. The fault coverage will be calculated in two situations:
1) the coverage when all threshold boundary scaling parameters αi = 6 with respect to the

mean of the population without measurement variations; and
2) the maximum achievable coverage, by selecting αi such that the coverage is maximized with

respect to the mean of the entire population.
For this first approach using αi = 6 is typical in industry, while the last approach is rather used as a
metric of optimality, as the selection of these parameters is highly dependent on the industrial test
situation. It also corresponds to Dynamic Part Average Testing (DPAT) [12]. Its original purpose is
to account for wafer to wafer process variations, which also causes a shift in the measurements.
DPAT uses only the samples of the considered wafer to determine tighter and better-centered test
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boundaries following equation (1). In the frame of this paper, it is assumed that the simulated dies
are on a single wafer and thus the test boundaries depend on the entire simulated population.
Using DPAT has two additional benefits. Firstly, the tests become invariant to process corners:

without DPAT simulations would also be required across process corners, heavily increasing the
required simulation time. Secondly, the technique only needs data computation, which means that
it adds no cost in terms of test time or silicon area.

3.3 Introduce compensation and enhancement techniques in the test flow
As additional test measurement, we propose to inject a pseudo-random noise signal, measure the
response to this pseudo-random signal, and classify between good and faulty circuits based on these
measurements. This signal activates the circuit over a wide spectral band and allows to find faulty
circuits based on their response to this signal. Our implementation is based on ATE capabilities
rather than previously proposed BIST implementations [29]. The general flow is shown in Fig. 6. A
pseudo-random input signal ®yin is applied to one or more nodes of the circuit and the response ®yout
of the circuit to this signal is simulated (in this paper) or measured by the ATE (in industry). It is
also the ATE that, in practice, will determine the bandwidth and the power of the pseudo-random
signal.

From the spectrum ®sout of the measured output, a set of features is extracted. This extraction is
based on [9], where low-dimensional features are extracted from high-dimensional time signals.
In our work, we use both proposed techniques, where the extracted features correspond to the
Principal Components of the signals, and an autoencoder to extract features. In this paper, only the
good (fault-free) population of circuits are used to train the feature extractor. These features are
then used to train a binary classifier, such that classification is possible between good and faulty
circuits. The entire feature extraction and classification process is illustrated in Fig. 7. The input
layer of the neural net consists of the features, whereas the output is only the two classes: Good
and Faulty. As an extension, a Support Vector Machine (SVM) binary classifier will also be used.
This classification step is implemented in the Machine Learning Toolbox of MATLAB.

4 PROPOSED TEST FLOW
The proposed flow for analog fault coverage improvement under measurement variations is
illustrated in Fig. 8. This flow is specifically targeted to deal with the issues caused by measurement
variations and therefore to increase the fault coverage in the context of an industrial ATE test
environment. The general principle is to analyze, compare and combine several test strategies
(additional measurements or stimuli, etc.), when necessary, in order to compensate simultaneously
for process and measurement variations. The overall flow is built in such a way that it can be
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integrated into the design flow of an IC. When designing ICs with attention to testing them, this
flow can be used to determine optimal testing schemes and the potential need for DfT circuitry
during the design stage. Integrating this into the design flow also has the benefit of allowing to
design the DfT circuitry in such a way as to have minimal impact on the circuit in normal use.
The proposed test flow is split in two main branches: system-level (left) and block-level (right)

testing methodologies. Both branches can be traversed sequentially or simultaneously. This can
either follow the design procedure of an IC, where first a system is created, then the fault coverage is
assessed, and the choice remains to invest in DfT and follow the second branch. The first branch can
also be entirely bypassed, when DfT is necessary (while debugging, for example). It is also possible
to obtain a comparison between both methodologies by following them simultaneously. The latter
is the approach taken in this paper. All steps of this methodology, except for the generation of DfT
blocks, can be automated, for instance to compare the fault coverage of two testing techniques, or
to stop the process when a given fault coverage is reached.

In details, the proposed test flow is composed of the following major steps:

• Initialize the circuit:
This step consists in e.g. preparing simulations with the required test stimuli and storing
future test results.

• Add measurement variations in the circuit:
These variations can be added at simulation level by introducing parasitic components to the
circuit, as explained in more details in section 3.1.

• First branch: system-level testing (left side of Fig. 8):
– Perform the fault simulation with system-level tests.
The first tests that are performed by the methodology are system-level tests, because they
are straightforward to implement and do not need any DfT structures. The proposed
fault coverage of system-level test uses functional tests (e.g. specification-based tests,
depending on the circuit type and topology), as well as structural tests (e.g. DC supply
current measurements) as they do not require any change in the circuit topology.

– Add fault coverage boosting technique for system-level testing (Fig. 9).
If the coverage is insufficient, the next step calculates possible improvements by adding our
proposed boosting technique. This technique is also configurable and can be performed
in an automated way. The basic principle is to add tests (e.g. alternate measurements)
and measurements in combination with machine learning techniques to extend the fault
coverage. Several machine learning algorithms (referred to as ML in Fig. 9) can be compared
to select the one that leads to the best fault coverage. In the proposed methodology, we use
a pseudo-random noise signal as an additional test technique, and compare two feature
selection methods (encoder with neural network and principal component analysis), with
two types of classifiers (neural networks and support vector machines) to choose the
optimal strategy.

• Second branch: Block-level testing (right side of Fig. 8):
– Add DfT structures for block-level testing.
If the coverage is insufficient with system-level test, or if the objective is to compare
system-level and block-level test under measurement variations, this step intends to design
and incorporate DfT structures into the circuit for block-level testing. In this work, this is
the only step that is not automated in the test flow, as DfT structures heavily depend on
the type of circuit and the topology.
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– Perform the fault simulation with block-level testing.
Generate the block-level fault coverage using functional and structural tests. This fault
simulation is linked to the chosen DfT strategy which depends on the considered circuit.

– Add fault coverage boosting technique for block-level testing.
If the coverage is insufficient, the next step calculates possible improvements by adding
our proposed boosting technique. This is the same technique as for the system-level phase.
If the coverage is not high enough, the same branch can be followed using additional DfT
circuitry.

Furthermore, by performing concurrently the system-level and block-level testing schemes, 
the proposed flow enables a direct comparison between the two testing methodologies. Another 
interesting feature of this approach is that the influence of measurement variations for the two 
branches of the flow can also directly be compared to evaluate which test suffers the most from 
these variations. In the following subsection the DfT structures will be detailed in the context of 
our DC-DC converter case study.

5 CASE STUDY: DC-DC CONVERTER
A number of analog benchmark circuits are available in the literature for testing purposes, e.g. in 
[33]. However, they typically lack proper definition of the process variations of the technology. Thus, 
in order to illustrate the proposed methodology, a custom DC-DC converter has been designed 
and serves as a case study throughout this paper. The circuit is industrially relevant. Indeed, 
cyber-physical systems need multiple clean supply voltages to guarantee the designed functionality. 
For instance, a standard vehicle power supply today usually consists of batteries and alternators that 
provide a voltage in the range from 12 V to over 14 V. Robust DC-DC converters are thus necessary 
to provide all other ICs with a supply voltage that is as stable and clean as possible. It is therefore 
important that the DC-DC converters are thoroughly tested for defects. DC-DC converters are 
rarely the case study for developing test strategies. Whereas, in [4] a BIST methodology has been
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Fig. 10. Principal schematic diagram of the DC-DC buck converter (totaling 25 transistors) and external
components (a), and the simplified schematics of the two main blocks containing most of these transistors
(b).

developed, targeting the detection of parametric defects, while the test effectiveness of detecting
catastrophic defects in DC-DC converters has hardly been analyzed.

5.1 Design of the converter
The design is derived from a full industrial product embedded in automotive systems, with the aim of
having a working circuit to which different testing techniques can be applied. ON Semiconductor’s
0.35 µm I3T50 technology is used in the implementation, because the products on which this circuit
is based on, are part of the company’s automotive IC portfolio. The target design of the circuit is as
close as possible to the original design of ON Semiconductor’s products.

The switching buck converter is chosen as the topology, which is based on [23]. This topology is
also common in several products. The complete schematic is shown in Fig. 10. It uses feedback to
control the duty cycle of a pulse-width modulated signal that operates at a frequency of 2MHz.
This, in turn, operates a large power transistor (FET). The feedback consists of measuring the
difference between the converter output and a reference voltage level (Vr ef ). The circuit has been
designed to convert 3.3V down to 2.4V. The reference (Vr ef ) and sawtooth (Vsaw ) voltage inputs
of the error amplifier and comparator are taken to be ideal sources. The blocks in the circuit of
Fig. 10 feature 25 transistors, as shown in Fig. 10b.

5.2 System-level test methodology
System-based functional tests are executed when the entire converter is on and converting. This
means that there are additional off-chip components needed to emulate the nominal use case. These
components (a diode, an inductor and a capacitor) are typical for a buck converter and are outside
of the chip, as shown in Fig. 10. Different conditions or condition changes can be introduced during
the tests. In our case, changing the supply and the load are used as tests, where each is switched
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Fig. 11. Schematic diagrams of the DC-DC buck converter in two block test modes: (a) amplifier, and (b)
comparator and power FET.

from its respective minimum (3V and 1 kΩ) to its maximum (3.6V and 1MΩ) value and vice versa.
In the first situation, a change to the supply is induced after the circuit has settled. The same is
also done in the second situation by changing the load. In each situation, the supply or load are
changed. For each test three measurements are simulated: settled voltage before the change, the
overshoot or undershoot (maximum of minimum voltage obtained), and the settled voltage after
the change. This results in a total of six measurements per test. The test boundaries that determine
whether a sample is defective or not will be given in Section 6.

5.3 Design-for-test structures and block-level test methodology
While other works focus on adding BIST [4] to test DC-DC converters, the flow presented in this
work proposes to design and insert a number of Design-for-Test (DfT) structures into the circuit,
such that more internal blocks are accessible. These DfT structures come in the form of multiplexers
(Mi ) and switches (Si ), and are shown in Fig. 11. Their purpose is to allow the ATE equipment to
reach signals inside the converter. These signals, which otherwise are not accessible, are routed
by the switches and multiplexers to specific test pads. The switches can also put the converter in
selected test states for specifically designed tests. 28 DfT transistors are added in total.

For the block-level functional tests, the DC-DC converter is divided into three distinct blocks, as
indicated in Fig. 10. These blocks are the error amplifier, the comparator, and the power FET. The
error amplifier is tested in separate test conditions, whereas the test conditions for the comparator
and the power FET are combined in joint test states. The active parts for each test mode are

Table 1. Number of simulated samples.

Type Intra-die Measurement Total # of
(total amount) variations variations simulations

Good (1) 98 7 686
Faulty (265) 1 7 1855
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highlighted in Fig. 11. All block-level tests follow a general pattern: an input voltage is applied
to the block and the output of the block is measured. Different from system-level testing, this
testing requires extra DfT structures. The applied inputs can also change after some time, such that
different conditions can be tested for that block. The output is then measured by the ATE through
the DfT structures. The measurements in the block-level tests are either settled voltages, settling
times for the error amplifier tests, or voltage levels that cause a sufficiently high current to flow
through the power FET for the other tests.

5.4 Fault simulations under measurement variations for the designed DC-DC
converter

To model the measurement variations, each fault is simulated for 7 different, randomly sampled sets
of measurement parasitic values, determined by the parasitic model values described in Section 3.1.
The parasitics are added to each probe pad Pi : for the system-level approach there are only four pads
(shown in Fig. 10), while for the block-level approach, three additional probe pads are introduced
in addition to the four existing pads.
The total number of fault simulations is given in Table 1. The total number of faulty circuits

also includes the faults in the DfT structures. Note that these are omitted in the analysis of the
system-level tests, as these transistors are never used in this case.

6 BASELINE TEST OF THE DC-DC CONVERTER
This section will present the baseline comparison between system-level testing in Section 6.1
and block-level testing in Section 6.2, while the effects of the additional measurements and the
machine learning techniques will be introduced in Section 7. First, only the system- and block-level
specification tests will be used; then DC supply current measurements will be added to complete
the baseline. The fault coverage results are summarized in Table 2.

6.1 Fault coverage analysis with system-level testing
The coverage is determined using the test detection boundaries explained in Section 3.2.3: first
α = 6 is used for each of the measurements. This results in a fault coverage of 73.6% without
measurement variations. When measurement variations are included, the coverage increases to
76.1%, while at the same time causing a yield loss of 4.5%. The effect of the measurement variations
is that some measurement shifts and spreads more, such that extra yield loss is incurred for fixed
detection boundaries, as well as an increase in coverage, because some faulty circuits shift outside
the test boundaries at the same time. Secondly, the maximum achievable fault coverage is calculated.
This maximum is 76% and is reduced by 0.5% when taking measurement parasitics into account,
due to the same spreading effect.

6.2 Effects of measurement variations on block-level testing
Block-level testing shows very little impact from measurement variations. The effect of the
measurement variations on the coverage is very limited and shows an increase in coverage by
only 0.6%, because there is a small shift of the distribution of some measurement here as well. This
effect is more pronounced in defective circuits, which results in very high coverage levels of the
functional blocks. For α = 6 this is 89.6%, while it is possible to get to 92.8% as upper limit. However,
a major drawback becomes clear when the coverage of the added DfT structures is included in
the coverage calculation. When these are included, the coverage performance drops to 62.9% with
α = 6 and 65.2% as maximum achievable coverage.
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Fig. 12. Histograms of (a) a system-level and (b) a block-level measurement on the fault-free converter without
and with measurement parasitic variations.

6.3 System-level test versus block-level test
It is clear that system-level testing does experience some negative effects from the measurement
variations, whereas block-level testing shows very limited change. The coverage of the extra DfT
circuitry used in block-level testing, however, highly reduces the coverage levels below those of
system-level testing.

Fig. 12 shows the effect of the measurement variations in the form of histograms. These show a
typical measurement for each test methodology, excluding and including measurement parasitic
variations. Fig. 12a shows the impact of the measurement variations on the system-level test. The
mean value is shifted and the standard deviation is increased, which explains the high yield loss
in Table 2 and the reduction in maximum achievable coverage. The block-level measurements, in
comparison, only experience a small shift in the histogram and a negligible increase in standard
deviation, as shown in Fig. 12b. This very limited shift can be explained by the absence of a feedback
loop that regulates the system. Measurements in system-level test are always taken when it is
regulating, thus the effect is present in each measurement. Block-level measurements do not contain
such complex feedback loops and are thus much more resilient to measurement variations. The

Table 2. System- and block-level functional test fault coverage (FC) and yield loss (YL) levels with fixed
parameters α = 6 and the maximum coverage without yield loss.

Test method Measurement Test bounds fixed α = 6 Max coverage without YL
variations FC [%] YL [%] FC [%] YL [%]

System-level
No 73.6 0 76.0 0
Yes 76.1 4.47 75.5 0

Block-level No 89.6 0 92.8 0
(excluding DfT) Yes 89.6 0 92.8 0
Block-level No 62.3 0 63.8 0

(including DfT) Yes 62.9 0 65.2 0
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Fig. 13. Trade-off between the maximum achievable fault coverage and the yield for the specification tests
and the baseline which consists of both specification (spec.) tests and the additional measurements (add.
meas.) for system-level testing and block-level testing with DfT circuitry.

limited shift of the block-level measurements also explains the limited effect of the measurement
variations on the block-level test coverage values shown in Table 2.

6.4 Adding the DC current supply measurement to form the baseline
In order to complete the baseline fault coverage performance in both cases, the DC current
measurement at the supply is added as extra measurement. This results in an increase of the
fault coverage to 78.4%, from previously 75.5%, for system-level testing, while block-level testing
experiences a much larger benefit, as the coverage increases to almost 70%.

6.5 Fault coverage results
As a target, the maximum achievable fault coverage will be used and extended to allow only a very
limited yield loss to be traded for a possible improvement in fault coverage. In typical industrial
test situations, allowing a limited yield loss can prevent defective circuits from being shipped.
Furthermore, such a trade-off is the optimal way of comparing the fault coverage performance
using machine learning to the previous techniques, because there is no αi in the machine learning
approach. The trade-off between fault coverage and yield is shown in Fig. 13 for the case of only the
functional tests and including DC measurements. Trading yield for fault coverage only allows an
increase of around 1% extra fault coverage for 1% yield loss with system-level testing. Block-level
testing has almost no benefit in fault coverage when allowing yield loss. The benefits of trading in
yield are not substantial enough to reach the state of the art in fault coverage. Therefore, other
techniques are necessary. However, the fault coverage levels of system-level tests are well below
those of recently presented methods [7, 14], which achieve over 90%. To achieve these levels, we
apply our fault coverage boosting technique in the next section.

7 FAULT COVERAGE BOOSTING TECHNIQUES
So far, we have passed a part of both branches of the flow simultaneously and can conclude the
following points:
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• Block-level testing performs worse than system-level testing due to the coverage of the DfT
circuitry.

• Block-level testing is much less sensitive to measurement variations.
• There is room to improve the fault coverage (FC) versus yield loss (YL) trade-off, as it reaches
a maximum of 80% FC at 1.5% YL.

In this section, we will continue with the flow and apply the boosting technique, which was 
introduced in Fig. 9.

7.1 Implementation of the pseudo-random measurement
As a first step, the test sequence needs to be enriched with additional measurements to enable 
catching more defects. In this work, we use a frequency analysis of the circuit’s response to a 
pseudo-random signal, implemented as follows. The available probe pads are used as the insertion 
points for the pseudo-random signal used as extra input. The signal is inserted at the supply voltage 
for the system-level tests and at the DfT injection points for the block-level testing. The bandwidth 
(BW) of the pseudo-random signal itself is determined by the capabilities of the arbitrary waveform 
generator on a typical ATE. In our case a BW of 20 MHz is used. The power of the signal is limited 
in such a way that the amplitude of the inserted signal does not exceed the technology’s safe 
operating regions.

7.2 Classify circuit instances with machine learning algorithms
Following up on the measurement results obtained with the pseudo-random signal, a machine 
learning algorithm is used to extract information from the test results and to classify circuits 
between good and faulty instances. In order to find optimal results, several techniques can be 
used to build the feature extraction block and the classifier in this case. We will compare (a) two 
feature extraction methods, namely an encoder composed of a neural network (NN) encoder and 
a method based on Principal Component Analysis (PCA), and (b) two types of classifier, namely
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a feedforward NN and support vector machines (SVM). These are shown in Fig. 14. Keeping the
generality of the proposed test approach, other types of feature extraction and dimension reduction
schemes can be used as well as different machine learning or classification algorithms are possible
in this case, we provide here examples in the context of our case study.

Feature selection methods.
• Principal Component Analysis.
PCA is a statistical technique enabling to reduce data dimensionality, by extracting the
principal components (or vectors) of the data while preserving a maximum of information.
This is necessary since the measured signals are time series with very high dimensions
(more than 5000). These principal vectors are then used as features for the machine learning
algorithm. In our case, the PCA matrix used for the feature extraction is based only on the
Monte-Carlo simulations of the good population, considering only process variations.

• Automatic feature extraction with encoder.
Features can also be extracted using deep learning techniques. Encoders based on neural
networks are popular among them, and have recently been used in the context of test escape
detection [19, 27]. Their principle is similar to PCA but enables to extract non-linear features.
The data is the same as used for the PCA.

Types of classifiers.
• Neural network.
Neural networks are one of the most popular machine learning techniques, which have
proven their ability to learn in numerous contexts. In this work, we will use a feedforward
neural network, fully connected, trained with the usual back propagation algorithm. It is
composed of 4 layers: the input layer, whose size depends on the number of features, two
hidden layers of 50 neurons each, and an output layer with one node per class to predict.

• Support vector machines.
The general principle of SVMs is to find a boundary (in the form of a hyperplane) between
the two different classes, so that data points of the different classes lie as far as possible
from each other. This boundary can be moved by changing support vectors, whose value are
determined during training. In our case, Radial Basis Functions are used as kernel functions
for the SVM.

7.3 Comparison of feature extractions and machine learning algorithms
7.3.1 Details on feature extraction with PCA. In order to reduce the dimensionality of the measured
or simulated (in our case) signals, the PCA features ®дi are extracted using a PCA matrixWPCA,
constructed from the data. These distinctive features are based on a set of T training spectra ®si ,
which contain K frequency bins. These training vectors make up the matrix X . The L eigenvectors
®vj with the largest eigenvalues ®λj of XXT are then computed and normalized to produce ®uj :

®uj = 1
sqrt(Kλj )X

T ®vj (3)

Using these normalized eigenvectors,WPCA is constructed asWPCA = [®u1®u2 . . . ®uL]. With this
PCA matrix, features ®дi are extracted from the spectra of the measurements using:

®дi =W t
PCA®si (4)

The reduction of signal dimension to a small signature depends on which signals are applied and
how long. Considering the ATE capabilities, the signals are kept in the same order of magnitude
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Fig. 15. ROC curves of repeatedly training and classifying with (a) NN and (b) SVM using different parts of
the data for training and validation in block-level tests (including DfT) using 10 features per measured signal.

as the other measurements. In our case this operation results in the reduction of dimension by a
factor 103 per measurement to around the order of 10 per signal.

7.3.2 PCA and machine learning algorithms. The performance of the classification can be shown in
Fig. 15, with the ROC (Receiver Operating Characteristic) curves of a tenfold repeated training of
the same neural network or SVM, using the same settings, but using different training subsets, i.e.
different divisions of the data in the training and validation subsets. Only the results when using
block-level testing are shown here for simplicity. Only true and false positives of the classification
as faulty are shown, as this is a binary classification. There are two main conclusions from Fig. 15:
(1) the performance without yield loss can have outliers, while in general the coverage will be

around 90%, and
(2) the highest achievable coverage is consistently higher than 98% when allowing at most 2%

yield loss.
From this it can be concluded that, at minimal yield loss, a consistently high test coverage 
performance can be achieved using the neural network approach, which will be used in the 
following subsection.

7.3.3 PCA and NN: optimal number of features. The impact of the number of features, corresponding 
to the number of Principal Components, has also been investigated. Fig. 16 shows the summary of 
this analysis on the block-level tests. Here, using a different number of components, the training 
and validation of the neural net have been repeated ten times and the average is given in the 
figure. The result is that using less than 10 principal components gives a sub-optimal fault coverage, 
because more than 20% yield loss is needed to achieve the same fault coverage performance as 
when using more features. Beyond 10 principal components, there is no further improvement, 
any change visible is stochastic, and repeated experiments show that any line with more than 10 
components lies around the 10-component line. Therefore, only 10 principal components should 
be used in this case study, to keep the numerical calculations contained while achieving optimum
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Fig. 16. Average ROC curves over 10 runs using a different number of principal components as features in
block-level testing (including DfT).
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Fig. 17. Average over 10 runs using different number of features with NN encoder.

fault coverage. The consistency in training using the PCA matrix based on good circuits without
measurement variations, shows that the principal components of the good circuit are adequate for
classifying faulty circuits and that they experience little or no effect under measurement variation.

Deep-learning approach with autoencoder. Instead of using PCA analysis to extract features, an
encoder can be used. Combined with a neural network decoding the data, we obtain a complete
autoencoder, which has been used recently in the context of testing [19, 27]. We also applied
the autoencoder to our case study, in order to evaluate if better features could be extracted to
improve the performance of the algorithm. However, the results were worse than when using PCA,
as illustrated in Fig. 17. When using 10 features or more, the maximum FC with a yield loss of
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Fig. 18. Trade-off between the maximum achievable fault coverage and the yield for the baseline case and
when using pseudo-random signal injection (PR) together with a mahalanobis-based metric (MH) and
machine learning using a neural network (NN) for system-level and block-level testing (include DfT).

maximum 2% is around 90%, significantly lower that the PCA counterpart. This can be explained
by the fact that PCA focuses on linear components in a more guided way, which are sufficient to
describe the relationships between the measurements and the test results. The encoder does not
have any prior information on the data and thus leads to lower performance.

7.4 Final fault coverage performance
Summarizing the findings of the previous subsections, the following settings are used to compute
the final fault coverage results:

• Feature extraction with PCA; 10 principal components used as features.
• Classification with a neural network with two hidden layers of 50 neurons.
• For the classification performance, the entire population is divided in two halves: one for
training the neural network, and one for validating it.

These final settings are evaluated in complement to system-level tests and block-level tests. 
For the sake of completeness, we also evaluate the impact of the pseudo-random measurements
(referred as PR meas.) and the machine learning neural network (referred as ML-NN) separately. 
It enables to highlight the ability of machine learning on blocks to push further the fault coverage 
metrics. The results are summarized in Fig. 18.

Pseudo-random measurement without machine learning. It is possible to use the pseudo-random 
measurement without machine learning. This can be done, for instance, by computing a metric
based on the Manalanobis distance (referred to as MH) from the PCA vectors. In detail, feature
fingerprints h i =  {д®i , σ i2} are constructed by using the variance σ i

2 of the features д®i , which are
required in the next step. The Mahalanobis distance d®i is used as a metric to score how close a 
fingerprint is to the good circuit, which is represented by the simulated reference feature set. This
distance d®i between the reference fingerprint hr ef and a test’s fingerprint htest is defined as:
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®di =
√√√√ (®дr ef − ®дtest

)t (®дr ef − ®дtest
)

min
(
σ 2
test ,σ

2
r ef

) (5)

The final classification is made between good and faulty circuits based on these calculated
distances. The threshold is, again, optimized such that a proper trade-off can be constructed
between fault coverage and yield. Other non-machine learning schemes can be used as well, as the
flow allows the use of multiple classification schemes. Some others (random forest and SVMs) were
tried as well and their performance is comparable to that of MH. Due to their similarity, these are
not shown in the comparison in Fig. 18.

Pseudo-random measurement with machine learning. Using the neural network, features are
directly presented at the input of the neural network, which is trained to learn the boundary
between the two classes.

Block-level versus system-level tests. Considering system-level testing, the ML boosting technique
has a limited effect on the overall fault coverage, as illustrated in Fig. 18. This can be explained
because it is only possible to apply the pseudo-random signal on top of the supply voltage in this
case. This results in a fault coverage approaching 80% which is minimal with respect to the baseline.
The trade-off for yield is also the same as the baseline. This limited impact can be explained due to
the power supply rejection properties of the circuit: as fluctuations of the supply are suppressed, so
is the effect of injecting a test signal at the supply.

For block-level testing, however, the improvements are substantial. The achieved fault coverage
levels exceed those of system-level testing by far. This can be explained by the fact that the response
follows a signal path that passes through the DfT structures, thereby testing these as well. First,
we can observe that using the pseudo-random measurements without machine learning already
improves the fault coverage significantly above the baseline, considering a yield loss higher than
0.2%, with a general fault coverage around 95% at 2% yield loss. In addition, the use of machine
learning on top of the pseudo-random measurements significantly increases the overall fault
detection performance. It results in coverage levels around 90% without yield loss, while improving
substantially and passing 98% fault coverage at the 2% yield loss point. This proves the ability of the
proposed technique to boost the fault coverage, in this case using block-level testing as a baseline,
while at the same time performing all the specification measurements. Using this method on top of
system-level testing has no extra benefit as it would only cost testing time, while everything is
already measured by the block-level tests.

8 CONCLUSIONS
This paper has presented a flow designed to optimize the test fault coverage of AMS ICs. Most steps
can be automated. Both system-level and block-level testing methodologies are compared in terms
of their fault coverage. Both methodologies contain both functional and structural measurements.
The flow takes into account measurement variations and looks for a test approach such that the tests
are minimally impacted by these measurement variations. The flow improves the fault coverage by
adding extra measurements, such as injecting pseudo-random signals into the circuit, and applying
machine learning classification to the response of these signals.
As a case study to illustrate the flow, an industry-oriented DC-DC converter has been used.

When considering only functional and structural tests, system-level testing has the highest fault
coverage, while block-level testing has a poor coverage due to the extra DfT structures. With
the extra measurements added, system-level tests perform worse for the DC-DC converter than
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block-level tests, achieving just under 80% fault coverage without any yield loss. Allowing for yield
loss only improves the fault coverage by 1% per 1% yield loss. Block-level testing, on the other
hand, shows a fault coverage of more than 90% without yield loss, at the expense of some extra
DfT structures. Allowing for up to 2% yield loss increases the coverage to over 98%. These results
have been obtained by using a fully connected neural net classifier on features extracted from the
fault simulations through Principal Component Analysis.
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