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Abstract
Identifying the atomic structure of organic–inorganic interfaces is challenging with current research tools. Interpreting the structure
of complex molecular adsorbates from microscopy images can be difficult, and using atomistic simulations to find the most stable
structures is limited to partial exploration of the potential energy surface due to the high-dimensional phase space. In this study, we
present the recently developed Bayesian Optimization Structure Search (BOSS) method as an efficient solution for identifying the
structure of non-planar adsorbates. We apply BOSS with density-functional theory simulations to detect the stable adsorbate struc-
tures of (1S)-camphor on the Cu(111) surface. We identify the optimal structure among eight unique types of stable adsorbates, in
which camphor chemisorbs via oxygen (global minimum) or physisorbs via hydrocarbons to the Cu(111) surface. This study
demonstrates that new cross-disciplinary tools, such as BOSS, facilitate the description of complex surface structures and their
properties, and ultimately allow us to tune the functionality of advanced materials.
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Introduction
Current frontier technologies are increasingly based on ad-
vanced functional materials, which are often blends of organic
and inorganic components. For example, in search for renew-
able energy solutions, hybrid perovskites are currently the best
candidate to replace silicon in our solar cells [1]. In medicine,
hybrid materials have been studied extensively for applications
in tissue engineering [2] and drug delivery [3]. To optimize the

functional properties of these materials, we need detailed know-
ledge of their atomic structure. Of particular interest is the
hybrid interface, which has a central role in defining the elec-
tronic properties of the material.

Assemblies of organic molecules on surfaces have been studied
experimentally, for example with X-ray diffraction [4,5], scan-
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ning tunneling microscopy [6-8] and atomic force microscopy
(AFM) [9-11]. These methods have a considerable resolution in
imaging planar surface structures, but interpreting images of
bulky three-dimensional molecules on surfaces can be difficult,
which prevents an accurate structure determination. In such
cases, computations can help in detecting the most stable struc-
tures.

With atomistic simulations, we can determine the optimal struc-
tures by computing the potential energy surface (PES). We can
identify stable structures in the minima of the PES and evaluate
their mobility via the associated energy barriers. The most
stable structure, that is the most probable structure in nature,
corresponds to the global minimum of the PES. For its reliable
identification, we must explore the PES thoroughly.

Calculating the full PES for complex hybrid materials requires
either (i) fast energy computations, or (ii) an advanced method
of constructing the complete PES with a small number of
energy points. Classical force-field potentials are fast to
compute, but they cannot accurately model hybrid materials, in
which atomic interactions often feature a mixture of covalent
and dispersive bonding, with charge transfer and polarization
effects. Instead, we must employ quantum mechanical methods,
such as density-functional theory (DFT) [12,13], for electroni-
cally accurate energy sampling. Regarding hybrid materials,
this makes a thorough exploration of the PES prohibitively
expensive with conventional phase-space exploration methods,
such as minima hopping [14], Monte Carlo methods [15], or
metadynamics [16], which typically require calculating thou-
sands of energy points on the PES.

Traditionally, stable structures have been identified by initial-
izing the minima search with estimated low-energy structures,
based on chemical intuition [17,18], thus narrowing down the
search space. With hybrid materials, however, this intuition is
difficult to apply and can lead to biased or incorrect results. For
example, with only partial knowledge of the PES, a metastable
local minimum energy structure could easily be misinterpreted
as the most stable global minimum.

Recently, Gaussian processes (GPs) [19] and Bayesian optimi-
zation (BO) [20] have been applied in modeling the PES to
identify structures with minimum energy. GP regression has
been used for example in local structure optimization [21], in
finding minimum energy paths [22], and in predicting specific
materials properties, such as melting temperature [23] or elas-
ticity [24]. BO has been applied in detecting molecular
conformers [25] and adsorbate structures [26,27], in identifying
stable molecular compounds [28], and in discovering materials
with low thermal hysteresis [29] or thermal conductivity [30].

Typically, previous studies have employed customized materi-
al-specific models, using, for example, a coarse-grained search
space with discrete molecular configurations, or predetermined
GP hyperparameters, at the cost of generality of the method.

In this work, we show that the recently developed Bayesian Op-
timization Structure Search (BOSS) machine learning method
[31-34] provides a solution to the structure search conundrum.
With BOSS, we adopt the aforementioned approach (ii) and
construct the complete PES using a small number of energy
points. To demonstrate the capabilities of BOSS, we apply it
with DFT to the adsorption of (1S)-camphor (C10H16O, here-
after shortened as camphor) on the Cu(111) surface. Camphor is
an exemplary case of a bulky molecule, which is difficult to
image with microscopy. AFM experiments [35] have revealed
various different conformers of camphor on Cu(111), which
makes it ideal for benchmarking the BOSS method.

Our objective is to detect the stable adsorbate structures of
camphor on Cu(111). With BOSS, we build a surrogate model
of the PES of adsorption and data-mine this PES to identify the
stable structures in its minima. We converge the model for a
reliable detection of all the PES minima, not only the global
energy minimum. We estimate the mobility of the adsorbates
from the energy barriers extracted from the surrogate PES and
analyze the electronic structure of each adsorbate. Our results
provide insight into the adsorption of complex organic mole-
cules on metallic substrates and pave the way to more complex
studies of hybrid monolayer formation and hybrid interfaces.

In the following sections, we first introduce our computational
methods for adsorbate structure identification with BOSS, the
first-principles calculations, and their application on detecting
the stable adsorbates of camphor on Cu(111). We then present
our results, discuss our findings, and conclude the analysis.

Computational Methods
Adsorbate structure identification
BOSS is a machine learning method that accelerates structure
search via strategic sampling of the PES. With given initial
data, BOSS builds the most probable surrogate model of the
PES, refines it iteratively with active learning, and identifies the
stable structures in the minima of the PES. In this work, we
apply BOSS with DFT for accurate sampling of the energy
points. In the following, we introduce the four-step process
(Figure 1) of structure detection with BOSS and DFT, in
analogy to [31]. We construct the surrogate model of the PES
by sampling the adsorption energies with DFT (I). We then
identify the stable structures by extracting the local minima of
the PES (II) and verify them with full structural relaxation with
DFT (III). We analyze the relaxed structures (IV) regarding
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Figure 2: BOSS workflow and example performance. (a) Basic principle of the BOSS method, in which Bayesian optimization (BO) is applied itera-
tively with DFT to build a surrogate model of the PES. (b) 1D example of the iterative process, in which the adsorption energy Eads of camphor on
Cu(111) is predicted as a function of height h of the molecule from the surface. The predicted adsorption height is converged in five energy evalua-
tions to within 0.1 Å. After ten evaluations, the posterior variance, which describes the uncertainty of the model, has become vanishingly small throug-
hout the search region.

their stability and mobility via the energy barriers on the PES,
and investigate their electronic properties with DFT.

Figure 1: Structure search with BOSS (blue) and DFT (red). (I) The
PES is sampled with BOSS by calculating energies of atomic configu-
rations with DFT to obtain the surrogate model of the PES. (II) BOSS
identifies the stable structures in the minima of the PES. (III) The
stable structures are confirmed with full relaxation with DFT, after
which (IV) their mobility and adsorption properties are analyzed via the
corresponding energy barriers and electronic structure.

Bayesian Optimization Structure Search
With the atomic structures and their corresponding energies,
BOSS constructs a surrogate model of the PES. We define the
atomic structures using chemical building blocks [36], which
are natural rigid components of the structure, for example, rigid
molecules, functional groups, or a surface slab. The PES is then
defined in the phase space resulting from the remaining degrees
of freedom, for example the relative translation and/or rotation
of building blocks.

BOSS refines the PES model iteratively with active learning
using BO (Figure 2a). We here only sketch the search principle
and refer the interested reader to a more in-depth presentation
and to the theoretical foundation in [19,31,37]. BO is a two-step
process, in which data is first fitted with a GP distribution
over functions using Bayesian regression. With the resulting

surrogate model (Figure 2b), BOSS then determines the next
sampling point using an acquisition function.

In the surrogate model, the posterior mean is the most probable
model of the predicted function (here the PES). The posterior
variance describes the uncertainty of the model in less explored
areas. It therefore vanishes at the known data points.

The next sampling point is determined using the exploratory
Lower Confidence Bound (eLCB) [38] acquisition function,
which balances exploitation against exploration. In exploitation,
BO refines the model by acquiring the next point near the cur-
rently predicted global minimum. In exploration, the next acqui-
sition is made at the point of maximum posterior variance,
exploring less visited areas. In this study, we converge the PES
model with respect to the coordinates and energy of all the
minima, not only the global energy minimum.

Local minima and barrier extraction
Once the PES is converged, we data-mine the surrogate model.
We extract the lowest energy minima, which we equate with
the lowest-energy adsorbate structures. The minima are
detected using the built-in local minima search functionality of
BOSS. The search is performed with minimizers, which apply
the limited-memory Broyden–Fletcher–Goldfarb–Shanno
(L-BFGS) [39] optimization algorithm. The minimizers start in
different regions of the PES and traverse the landscape,
following the gradients to locate the minima.

The confidence of the surrogate model in different regions of
the PES is quantified via the standard deviation (σB), which is
the square root of the posterior variance in the GP model
(Figure 2b). With the standard deviation, we evaluate the confi-
dence of the surrogate model in the identified minima. Further-
more, we evaluate the accuracy of the model by computing the
energy of each identified minima structure with DFT (ED) and
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Figure 3: Degrees of freedom for the minimum energy search. (a) Three methyl group rotation angles θ, φ and ω of camphor in the 3D conformer
search with BOSS. (b) Three translational directions (x, y, z) and three rotation angles (α, β, γ) of camphor in the 6D search for stable adsorbate
structures. The center of rotation is the middle point between the two carbon atoms, highlighted in red. (c) Orthogonal unit cell of Cu(111), which is the
search range in x and y directions.

compare it to the corresponding energy in the surrogate model
(EB).

The BOSS PES also provides access to energy barriers, with
which we can estimate the mobilities of our identified adsor-
bate structures. BOSS provides post-processing tools to locate
the lowest energy barriers between two minima in the PES with
the nudged elastic band (NEB) method. Since we compute the
PES with the building block approximation and not in the space
of all atomic degrees of freedom, these energy barriers are only
upper limits to the true barriers. However, even qualitative
accuracy in barrier evaluations suffices to identify the least
mobile structures, which are the best candidates when com-
pared to experimentally observed structures. We will return to
energy barriers and our way of estimating them in the Results
section, after we have introduced the camphor/Cu(111) system
in more detail.

Structural relaxation and analysis
We verify the identified structures against a full DFT structure
relaxation. In this, we remove the building block approxima-
tion and allow unrestricted motion of all atoms according to the
interatomic forces in DFT. We then quantify and analyze the
structural changes in the relaxation with respect to the atomic
coordinates and the energy change ( ) for each structure.

To validate the building block approximation, we evaluate the
changes in the internal geometry of the building blocks after
releasing them in the relaxation. For this, we calculate the aver-
age root-mean-square deviation of the atomic positions and the
mean deviation of bond lengths, comparing the structures
before and after the relaxation.

We furthermore investigate the electronic structure of the stable
adsorbates by analyzing their partial density of states (DOS)

and the charge distribution with the Mulliken analysis of partial
charges [40].

Camphor on Cu(111)
We study the adsorption of camphor on the Cu(111) surface
using two building blocks: (i) the global minimum camphor
conformer and (ii) the Cu(111) surface slab. With BOSS, we
first identify the global minimum camphor conformer without
the Cu(111) surface with a 3D search of methyl group rotations
(Figure 3a). We normalize the lengths and angles of the C–H
bonds in the three methyl groups by setting them to identical
values, based on their average lengths and angles (see Support-
ing Information File 1). With this, we obtain an ideal camphor
geometry with three identical minima in the methyl group rota-
tion (i.e., 120° periodicity). We then study the rotation of the
methyl groups in the ranges θ, φ, ω ∈ [−60, 60]°.

With the identified global minimum conformer, we study the
adsorption of camphor on Cu(111) with respect to molecular
orientation and location. We define the PES of adsorption in a
6D phase space with three rotational angles (α, β, γ) and three
translational directions (x, y, z), which correspond to the Cu
lattice directions [10−1], [−12−1] and [111], respectively
(Figure 3b). The adsorption height of the molecule (z) is defined
with respect to the center point of rotation (Figure 3b), which is
the middle point of the line connecting two C atoms at the sides
of the rigid cage of camphor. We investigate the orientation of
the molecule with full 360° rotation of all angles, in the range
(α, β, γ) ∈ [−180, 180]°. The search range in the x–y plane of
the Cu(111) surface is (x,y) ∈ [−0.5, 0.5] (Figure 3c), defined in
fractional unit cell coordinates, which corresponds to lattice
vectors [a’, b’] = [2.57, 4.45] Å.

Before we embarked on the full 6D camphor-on-Cu(111)
search, we first scanned the system with several low-dimen-
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Figure 4: Energy landscapes from preparatory BOSS simulations. (a) θ–ω 2D cross section of the 3D PES in the camphor conformer search,
featuring a single minimum and an energy barrier of 0.1 eV for methyl group rotation. (b) α–β 2D cross section of the 3D PES in the search for adsorp-
tion orientation of camphor on Cu(111). The landscape features multiple local minima and a higher-energy region at β ≈ 90°. (c) PES of the 2D trans-
lational x–y search of the adsorption site of camphor on Cu(111). The landscape has two identical minima, which agree with the translational
symmetry in the orthogonal unit cell.

sional searches. Such low-dimensional searches (e.g., 1D varia-
tion of the adsorption height or 2D scans of molecular registry
on the surface) permit us to relatively quickly explore the be-
havior of the system. We use them to find appropriate limits for
the search dimensions (e.g., maximum and minimum height
over the surface). Additionally, low-dimensional simulations
help us to assess the contributions from rotational and transla-
tional degrees of freedom separately, to estimate the expected
number of local minima and their approximate values, and to
develop qualitative checks for expected energy landscapes (e.g.,
reflecting surface symmetries). The computational effort associ-
ated with these preparatory simulations is recycled, since all
points sampled in reduced dimensions later serve as input in the
6D study. We note that analysis of low-dimensional simula-
tions only provides us with qualitative insight into surface
adsorption. Quantitative conclusions on the stable structures can
only be drawn from a full 6D search.

With BOSS, we perform three low-dimensional searches, in
which we study the adsorption of camphor on Cu(111) as a
function of its (i) adsorption height (1D), (ii) orientation (3D),
and (iii) adsorption site (2D). First, we investigate the height of

the molecule with a 1D search (Figure 2b) to determine a suit-
able height for the rotational search. Based on the resulting
energy curve we estimate the optimal height at which we avoid
high-energy peaks in all molecular orientations, and conduct the
3D rotational search. We then set the molecule in the observed
minimum energy orientation (Figure 4b) and perform a 2D
search of the adsorption site within the orthogonal unit cell of
the Cu(111) surface (Figure 3c). With the acquired knowledge
of the energy ranges, we then determine the optimal height
range of the molecule for the 6D search.

We perform a 6D search with combined degrees of freedom to
identify the stable adsorbate structures of camphor on Cu(111).
The search is initialized using the previously acquired energy
points from the low-dimensional studies. We multiply the num-
ber of initial energy points by applying the twofold transla-
tional symmetry in the orthogonal unit cell and the threefold
rotational symmetry of the Cu(111) surface at the top site.
With BOSS, we acquire new energy points and converge the 6D
PES with respect to the energy and coordinates of the identified
local minima (details provided in Supporting Information
File 1).
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The electronic structure of the stable adsorbates is analyzed
with the partial DOS and the Mulliken analysis of partial
charges. We compare the partial DOS of the adsorbed camphor
to the highest occupied and lowest unoccupied molecular
orbitals (HOMO and LUMO, respectively) of an isolated
camphor molecule. In the Mulliken analysis, we calculate the
sum of partial atomic charges per element in the adsorbed
camphor and compare them to the corresponding charge distri-
bution of an isolated molecule. With this analysis, we study the
effect of adsorption on the electronic structure of camphor in
the identified stable structures.

First-principles calculations
We use density-functional theory to calculate the adsorption
energy of camphor on Cu(111) in the BOSS runs, to relax the
predicted stable structures and to analyze the electronic struc-
ture of the stable adsorbates. We apply the all-electron, numeric
atom-centered orbital code FHI-aims [41-43] with the
Perdew–Burke–Ernzerhof (PBE) exchange–correlation func-
tional [44]. PBE is augmented with van der Waals (vdW)
corrections employing the vdWsurf parametrization [45] of the
Tkatchenko–Scheffler method [46]. Previous work found that
PBE + vdWsurf adequately describes organic molecules on
metal surfaces [45,47,48].

Our converged settings employ tier-1 basis sets with light
grid settings and a Γ-centered 3 × 2 × 1 k-point mesh with a
(6 × 4)  supercell model. We apply relativistic corrections
with the zero-order regular approximation [49] and Gaussian
broadening of 0.1 eV of the electronic states. The total energy is
converged within 10−6 eV in the self-consistency cycle and the
structures are relaxed below a maximum force component of
10−2 eV/Å.

We model the Cu substrate with a Cu(111) slab of four atomic
layers and (6 × 4)  orthogonal unit cells (192 atoms, lattice
vectors [a, b, c] = [15.41, 17.79, 56.29] Å). The lattice constant
of Cu is set to 3.632 Å, which we obtain from relaxed bulk Cu,
in agreement with reference studies [50,51]. We construct the
four-layer Cu slab by fixing the two bottom layers to their
optimal layer separation (d34 = 2.097 Å, corresponding to bulk
Cu). The two top layers are then relaxed, which results in a
reduced layer separation (d12 = 2.076 Å, d23 = 2.081 Å), in
agreement with previous calculations [52]. We apply this Cu
slab model as a building block in the subsequent study of
camphor adsorption.

Our other building block is the global minimum conformer of
camphor, which we add onto the Cu slab model. The (6 × 4)
supercell provides a good approximation of a single molecule
on the surface, with an average lateral separation of 10 Å be-

tween the periodic images of camphor and 50 Å separation be-
tween the periodic Cu(111) slabs.

The adsorption energy Eads is calculated as

(1)

in which Etot is the total energy of the camphor/Cu(111) system,
ECu is the energy of the relaxed Cu slab, and Ecam is the energy
of an isolated camphor molecule.

Results
Camphor conformer search
We analyzed the camphor conformers with a 3D BOSS
search of the methyl group rotations. The energy landscape
(Figure 4a), converged in 20 evaluations, features a single
global energy minimum at (θ, φ, ω) = (−3, 7, −3)°, and an
energy barrier of 0.1 eV for the rotation of the methyl groups.
Given this barrier, the rotation of the methyl groups Δφ away
from the global minimum is expected to be small at room tem-
perature. The Arrhenius law predicts that in 50% of the mole-
cules Δφ < 10°, and in 70% Δφ < 15°. Camphor is likely to be
found in a conformation very close to the global minimum ge-
ometry. We thus take the identified conformer as a building
block in the following adsorption study. Any further structural
deformations are accounted for at a later stage with full DFT re-
laxation.

Qualitative insight into adsorption of camphor
on Cu(111)
Before conducting a full 6D search, we carried out several low-
dimensional searches to develop a feeling for the behavior of
camphor on Cu(111). First, we performed a 1D search in the
z direction, then a 3D rotational search in (α, β, γ), and finally a
2D translational search in the x–y plane.

We learned about the adsorption height range of camphor
on Cu(111) from a 1D BOSS search (Figure 2b) within the
limits z ∈ [3, 7] Å (other variables were set to (x, y, α, β, γ) =
(0, 0, 0, 0, 0)). The predicted minimum of the adsorption energy
converged in five evaluations and is found at −0.847 eV at a
height z = 4.14 Å. The energy curve has a strong dispersive
character and the repulsive energy increases rapidly as the mol-
ecule approaches the surface below 4 Å.

For the 3D rotational study, we placed the molecule into a fixed
position at (x, y, z) = (0, 0, 5) Å to avoid close contact between
the molecule and the surface. Molecular placement at the top
site (above a Cu atom) here allows us to curtail the γ range to
[−60, 60]°. The resulting PES (Figure 4b) converged in 115
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evaluations and contains many features associated with differ-
ent reactive sites of camphor. The higher energy band at β ≈ 90°
corresponds to the closest approach of the molecule to the sur-
face (via methyl group ω in Figure 3a). The multiple minima
and strong barriers imply that camphor may adsorb on Cu(111)
in various stable orientations. We explored the structures asso-
ciated with the most favourable minima to infer the binding
mechanisms. As shown in Figure 4b, we found that both
charge-withdrawing O and neutral methyl groups face the sur-
face, suggesting that both chemical and dispersive bonding can
be expected in the full 6D search.

The 2D search in the x–y plane allowed us to compute the trans-
lational energy landscape for camphor. We set the molecule to
the global minimum orientation (α, β, γ) = (−84, 143, 3)° from
the previous rotational search, at z = 5 Å. The PES (Figure 4c)
converged in 20 evaluations and features two identical minima
at (x, y) = (−0.05, −0.08) and (0.45, 0.42) in fractional coordi-
nates of the unit cell. These correspond to the translational
symmetry of the Cu(111) surface in the orthogonal unit cell. We
conclude that our model fitting is qualitatively correct even
when the landscapes are very flat, as with this choice of param-
eters. The flat energy landscapes indicate that rotational degrees
of freedom may influence adsorption more than translational
ones, but this is best verified in 6D.

Based on the low-dimensional studies, we expect to find
multiple stable adsorbate structures in the 6D search, with
varying molecular orientations and both chemical and disper-
sive bonding. Given the observed energy ranges, we conclude
that the optimal search range for the height of the molecule in
the 6D search is z ∈ [4, 7] Å. The range is sufficiently broad to
include all the minima and avoids high-energy peaks in the
closest approach of the molecule to the surface.

Predicted stable adsorbates
For the 6D search of stable adsorbates, we employed the 492
previously acquired energy points from the low-dimensional
studies. These points were then multiplied according to the
translational and rotational symmetries of the Cu(111) surface,
which resulted in 986 initial energy points for the 6D search.
We converged the 6D PES (details provided in Supporting
Information File 1) by acquiring 197 new points, for which we
also applied the symmetries. The surrogate model of the 6D
PES was then constructed with 1380 energy points.

In the minima of the PES, we identified eight unique stable
structures with predicted adsorption energies (EB) in the range
[−0.961, −0.634] eV (Figure 5a and Table 1). We have classi-
fied the structures with respect to the bonding species closest to
the surface in the adsorbed camphor, namely oxygen (class Ox)

and hydrogen (class Hy). The standard deviation of the adsorp-
tion energy (σB) in the surrogate PES is 0.019 eV in the global
minimum and 0.025 eV on average over all minima (Table 1),
which shows low uncertainty of the model in these points. The
energies of the identified structures, calculated with DFT (ED)
are in the range [−0.933, −0.631] eV, in close agreement with
the predicted energies.

Figure 5: Energetics of adsorption and mobility for surface adsorbates.
(a) Adsorption energies (Eads) of the stable adsorbates predicted by
BOSS (EB), their true values calculated with DFT (ED) and the adsorp-
tion energies of the relaxed structures ( ). (b) Energy barriers (V) for
γ rotation (Vγ) and x–y translation (Vxy), in comparison with thermal
energy at room temperature.

Relaxed structures
We verified the stable structures by performing full DFT relaxa-
tions (Figure 6a,b). In the relaxation, we observed an average
decrease of −0.11 eV from the ED energies (Figure 5a and
Table 1). We found that in class Ox structures, 80% of the
binding energy is due to dispersion whereas in class Hy struc-
tures the binding energy is purely dispersive.

The structural changes in the relaxation were analyzed by
comparing the location and orientation of the molecule before
and after the relaxation. We observed the relaxed structures to
be almost identical with the initial ones. The average change
in the location of the molecule, over all structures, is
( ) = (0.13, 0.09, 0.19) Å and in the orientation
( ) = (6.1, 5.8, 2.5)°. The structural changes in the Cu
slab are minimal. The changes in the internal geometry of
camphor in the relaxation, after removing the building block
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Table 1: Adsorption energies of the stable adsorbates, predicted by BOSS (EB), and their standard deviation in the surrogate model of the 6D PES
(σB). Adsorption energies calculated with DFT (ED) and their difference from the predicted energies (ΔED). Energy after relaxation ( ), and energy
change in the relaxation ( ). Predicted energy barriers of γ rotation (Vγ) and x–y translation (Vxy).

EB (eV) σB (eV) ED (eV) ΔED (eV)  (eV)  (eV) Vγ (eV) Vxy (eV)

Ox1 −0.961 0.019 −0.933 +0.028 −1.022 −0.089 0.232 0.045
Ox2 −0.910 0.013 −0.885 +0.025 −1.008 −0.123 0.216 0.034
Ox3 −0.889 0.027 −0.850 +0.039 −1.005 −0.155 0.183 0.008
Ox4 −0.803 0.032 −0.723 +0.079 −0.932 −0.209 0.278 0.027
Ox5 −0.704 0.016 −0.706 −0.002 −0.800 −0.094 0.048 0.003
Hy1 −0.634 0.021 −0.631 +0.003 −0.784 −0.154 0.033 0.001
Hy2 −0.737 0.041 −0.719 +0.019 −0.772 −0.053 0.008 0.003
Hy3 −0.658 0.027 −0.652 +0.005 −0.664 −0.012 0.012 0.003

Figure 6: Relaxed stable adsorbate structures of camphor on Cu(111) in the 6D search, showing (a) chemisorption of the molecule via oxygen (class
Ox) and (b) physisorption via hydrogen (class Hy). (c) Adsorption site of camphor in the relaxed structures (center of the molecule) and the high-
symmetry points of the Cu(111) surface.

approximation, were evaluated using the average root-mean-
square deviation of the atomic positions and the mean deviation
of bond lengths, which are 0.13 Å and 0.003 Å, respectively, on
average over all structures (see Supporting Information File 1
for structure-specific data).

We analyzed the adsorption site of camphor in the relaxed
structures (Figure 6c) with respect to the center of the molecule
(Figure 3b). The adsorption sites show a notable difference be-
tween the two classes. Class Hy structures (in particular Hy2
and Hy3) prefer to adsorb close to the top site, whereas class Ox
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structures feature more variance in their location. Three of the
class Ox structures (Ox1, Ox3, and Ox4) adsorb near the bridge
site and Ox5 is close to the top site.

To estimate the mobility of camphor molecules on the surface,
we inspect translational and rotational barriers. The transla-
tional energy barriers were computed using 2D x–y cross
sections (grid of 100 × 100 points) of the predicted 6D PES, as
described in the Computational Methods section. For the γ rota-
tion barriers, we extracted 1D γ energy profiles from the 6D
PES but found them overly smooth and free of features ex-
pected for an asymmetric molecule rotating on the Cu(111) sur-
face. We concluded the upper limits for γ rotation to be too
inaccurate and analyze the γ energy barriers using the fully
relaxed structures of local minima geometries. For each minin-
imum type, we rotated camphor in-place (center point of rota-
tion in Figure 3b) and computed the rotational energy profile
with a 1D BOSS search (converged in 15 evaluations). While
this approach is still approximate, the resulting energy profiles
exhibit features that correctly reflect surface symmetry and
provide us with a better estimate of the barriers without
investing time and computational expense into NEB calcula-
tions.

The predicted energy barriers of γ rotation and x–y translation
(Figure 5b and Table 1) are in the range [0.008, 0.278] and
[0.001, 0.045] eV, respectively. The barriers are highest in class
Ox structures, specifically in structures Ox1–Ox4, with a
notable difference to class Hy. When we take into account the
standard deviation of the adsorption energy in the surrogate
model (Table 1), the smallest energy barriers (of the order of
0.01 eV and below) are practically zero. This indicates free
rotation of structures Hy2 and Hy3, and free diffusion of struc-
tures Ox3, Ox5, and Hy1–Hy3, even at low temperatures.

Electronic structure
We analyzed the charge distribution of the stable adsorbates
with the Mulliken analysis of partial charges and investigated
their partial DOS to study the effect of adsorption on the elec-
tronic structure. The Mulliken analysis of partial charges in the
relaxed structures (Figure 7a and Table 2), in comparison to the
charge distribution of an isolated camphor molecule, shows
electron transfer from the adsorbed camphor molecule to the Cu
substrate. The electron transfer is highest in class Ox structures,
in which the O atom of camphor is close to the Cu surface. The
average partial charge of camphor (Δq) is +0.21 e (elementary
charge, e = |e−|) in class Ox structures and +0.10 e in class Hy
structures. In class Ox structures, the main contribution to the
positive charge comes from hydrogen (H) atoms, with O as the
second notable contributor. In class Hy structures, the positive
charge of camphor originates predominantly from H atoms.

Figure 7: Electronic properties of different camphor adsorbates.
(a) The sum of partial charges (Δq) in the adsorbed camphor in the
relaxed structures. (b) DOS of Cu and camphor in structure Ox1, and
(c) DOS of camphor in the relaxed structures and in an isolated mole-
cule.

Table 2: The sum of partial charges of C, O, and H in an adsorbed
camphor molecule (ΔqC, ΔqO, and ΔqH, respectively) and the total
partial charge of the camphor molecule (Δq).

ΔqC (e) ΔqO (e) ΔqH (e) Δq (e)

Ox1 −0.01 +0.08 +0.14 +0.21
Ox2 −0.00 +0.09 +0.12 +0.21
Ox3 −0.01 +0.08 +0.13 +0.20
Ox4 −0.01 +0.10 +0.14 +0.22
Ox5 −0.02 +0.11 +0.14 +0.23
Hy1 −0.01 +0.01 +0.11 +0.11
Hy2 −0.03 +0.01 +0.13 +0.12
Hy3 +0.01 +0.00 +0.05 +0.06

In the partial DOS of the relaxed structures (Figure 7b,c), we
analyze the electronic states of the adsorbed camphor close to
the Fermi level. The partial DOS of class Ox structures features
hybridization of the electronic states, in comparison to the
HOMO and LUMO of an isolated camphor. The hybridization
implies chemical bonding between the molecule and the sub-
strate in class Ox. Conversely, in class Hy, the electronic states
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resemble the HOMO and LUMO of an isolated camphor mole-
cule and are at −1.0 and 2.9 eV, respectively, with an energy
gap of 3.9 eV. This indicates physisorption between the mole-
cule and the substrate in class Hy.

Discussion
With the low-dimensional studies of molecular translation (1D
and 2D) and rotation (3D), we obtained a qualitative descrip-
tion of the adsorption properties of camphor on Cu(111). We
gained insight into the estimated adsorption height of the mole-
cule and acquired the ranges of adsorption energy with respect
to molecular orientation and the adsorption site. The rotational
energy landscape with multiple local minima suggests that
camphor can adsorb on Cu(111) in various stable orientations.
From the low-dimensional analysis, we obtained the required
knowledge to determine the optimal search range for the height
of the molecule in the subsequent 6D study.

In the relaxation of the identified structures, we observed minor
changes in the molecular orientation, the adsorption site, and
the adsorption energy. This effectively confirms the accuracy of
the surrogate model of the 6D PES. Negligible changes in the
internal structure of camphor and the Cu slab in the relaxation
validates the building block approximation in this study.

The eight stable adsorbate structures extracted from the 6D
search feature notable differences between the class Ox and
class Hy structures, specifically, regarding their adsorption
energy, adsorption site, energy barriers, and the electronic struc-
ture. Class Ox adsorbates have the highest adsorption energies
and high energy barriers of molecular mobility. In class Ox
structures, the preferred adsorption site is near the bridge site,
so that the O atom can point sideways to bond with the Cu
atom. In class Hy structures, methyl groups avoid the top site,
so the molecule centers there, and the methyl groups point side-
ways. The DOS of class Ox structures feature hybridization of
the electronic states and the electron transfer from the molecule
to the substrate is significantly larger than in class Hy struc-
tures, with the largest contribution per atom from O. This indi-
cates chemisorption of camphor via O to the Cu substrate. Con-
versely, in class Hy structures we observed the characteristics of
physisorption. Class Hy structures have systematically lower
adsorption energies, energy barriers, and electron transfer to the
substrate, and their DOS resembles the HOMO and LUMO of
an isolated molecule. These findings are supported by the vdW
contributions in the adsorption energy, which show 80% disper-
sive bonding in class Ox structures and fully dispersive adsorp-
tion in class Hy structures.

To verify the identified stable structures, we can compare them
to adsorbates observed in experiments. The adsorption of

camphor on Cu(111) has been studied experimentally with
AFM by Alldritt and co-workers [35]. In their images, they
have observed various different adsorbate structures, which
shows that camphor can adsorb on Cu(111) in multiple stable
configurations. In the experiments, camphor molecules were
deposited onto the Cu surface at 20 K temperature and the
imaging was done at 5 K. When the surface is annealed to the
imaging temperature, we expect the deposited molecules to
obtain the global minimum conformer geometry, which corre-
sponds to the camphor building block in this study. Based on
the estimated energy barriers of molecular mobility in this
study, we conclude that the experiments likely feature chemi-
sorbed camphor molecules from class Ox. In particular, the
structures Ox1–Ox4, which have the highest barriers, are the
most likely candidates for static adsorbates. They also have the
highest adsorption energies, which makes them the most prob-
able structures to be observed. Conversely, class Hy structures,
which have lower adsorption energies and low energy barriers
for molecular mobility, are less likely to be imaged in experi-
ments. A more detailed comparison between BOSS and AFM
will be reported in [53].

We highlight the computational efficiency of global structure
search with BOSS by comparing the number of required DFT
calculations to a conventional structure search. The best candi-
dates for the minimum-energy structures can be first estimated
using chemical intuition and then relaxed with DFT to identify
the stable structures. With camphor on Cu(111), we can search
for the stable adsorbates by placing the molecule on each of the
four high-symmetry points of the Cu surface (Figure 6c) and in-
vestigate, for example, ten different molecular orientations at
each of the adsorption sites. We estimate that the relaxation of
the structures requires on average 40 calculation steps per struc-
ture. With this method, the estimated computational cost would
be 1600 DFT calculations. Still, this amounts to exploring only
a small portion of the PES and does not guarantee a reliable
identification of the global minimum energy structure.

With BOSS, we identified the stable structures of camphor on
Cu(111) with 892 DFT calculations (689 to construct the surro-
gate model of the 6D PES, and 203 to relax the eight
structures). Relaxation of the predicted stable structures in the
local minima of the PES was fast (25 relaxation steps per struc-
ture on average) due to their low initial energy. With the PES
model, we were able to reliably identify not only all the
minima, but also the associated energy barriers of molecular
mobility. This comparison highlights the benefits of the BOSS
approach, which are, in particular, (i) computational efficiency,
(ii) reliable identification of the most stable structures, and
(iii) energy barriers readily obtained with the surrogate model
of the PES.
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Conclusion
In this study, we have demonstrated the efficiency of BOSS in
global structure search with complex molecular adsorbates. We
have shown the accuracy of the constructed surrogate model of
the PES, in comparison with adsorption energies of stable struc-
tures calculated with DFT. As a benchmark system, we have
analyzed the adsorption of a camphor molecule on the Cu(111)
surface with respect to molecular translation and rotation. With
BOSS, we constructed a surrogate model of the 6D PES of
adsorption and identified its minima, in which we detected the
most stable structure (global minimum) and seven other stable
structures (local minima).

We classified our stable structures into two classes, that is, Ox
and Hy, with respect to the bonding species in the adsorbed
camphor. The differences between the two classes were further
categorized by the trends in the adsorption energies and the
energy barriers of molecular motion. By analyzing the elec-
tronic structure of the stable adsorbates, we concluded that in
the most stable structures (class Ox), camphor chemisorbs to the
Cu surface via O bonding. Our results imply that class Ox struc-
tures are viable candidates for static camphor adsorbates ob-
served in AFM experiments.

By combining machine learning with DFT, BOSS provides a
novel method for a reliable structure identification via the surro-
gate model of the PES. With the complete PES, we obtain
chemical insight into numerous materials properties (e.g., the
stable adsorbate structures and their mobility) in one go, with-
out prior presumptions about the material. Our approach elimi-
nates the human bias present in conventional structure search, in
which the optimal structures are commonly estimated using
chemical intuition. Efficient and unbiased structure search
methods, such as BOSS, facilitate the study of complex hybrid
interface structures. The acquired knowledge can be applied in
the precision engineering of interface structures in functional
materials to optimize their advantageous properties.

Supporting Information
Supporting information features camphor geometry in
global minimum conformer search, convergence of the 6D
surrogate model, and coordinates of camphor in the
predicted and relaxed stable structures.

Supporting Information File 1
Camphor global minimum conformer, convergence of the
6D model, and coordinates of camphor.
[https://www.beilstein-journals.org/bjnano/content/
supplementary/2190-4286-11-140-S1.pdf]
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