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a b s t r a c t 

Large scale laboratory experiments on size and rate effects on the fracture of warm columnar freshwater 

ice have been conducted with floating edge-cracked rectangular plates loaded at the crack mouth. The 

largest test plate size had dimensions of 19.5m x 36m. The overall crack-parallel dimension covered a 

size range of 1 : 39 , possibly the largest for ice tested under laboratory conditions. The loading rates ap- 

plied led to test durations from fewer than 2 seconds to more than 10 0 0 seconds, leading to an elastic 

response at the highest rates to a viscoelastic response at the lower rates. Methods for both the lin- 

ear elastic fracture mechanics (LEFM) and a non-linear viscoelastic fictitious crack model (VFCM) were 

derived to analyze the data and calculate values for the apparent fracture toughness, crack opening dis- 

placement, stress-separation curve, fracture energy, and size of the process zone near a crack tip. Issues of 

notch sensitivity and minimum size requirements for polycrystalline homogeneity were addressed. Both 

size and rate effects were observed, as well as how these two factors are interrelated in the fracture of 

columnar freshwater ice. There was a size effect at low rates but no size effect at high rates. There was 

a rate effect for the larger test sizes but a weaker or no rate effect for the smallest test size. 

© 2020 Acta Materialia Inc. Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

1. Introduction 

The importance of ice mechanics and arctic marine technology 

is increasing due to climate change. Warming of the Arctic has led, 

and will lead, to changes in the ice conditions: in the future we 

will have less ice than today and the ice will be thinner, warmer, 

weaker, and more fragmented. These changes will have major im- 

pact on the Arctic environment and to the marine operations in 

the area. As an example, as the ice loads on ships and marine 

structures result from the failure process of ice, the design and safe 

operations require understanding of fracture processes of different 

ice features in the changing conditions. As a further example, mod- 

elling the fragmentation of the arctic sea ice requires that the crack 

propagation be modelled. 

The fracture behaviour of ice is affected by a number of factors 

including grain size and type, loading rate, temperature, polycrys- 

tallinity, loading direction, and test plate size. By conducting large- 

scale in-situ fracture experiments with sea ice, Dempsey et al. 

[1,2] eventually questioned the applicability of a one parameter 
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fracture mechanics for sea ice, ultimately favoring a viscoelastic fic- 

titious crack model. These, and other, observations led to the sug- 

gestion that the fracture of small and large ice specimen may not 

be similar, and that the applicability of LEFM to even freshwater 

ice may be limited. At the core of this discussion is the require- 

ment of LEFM that the material behaviour is linearly elastic except 

in a small area near a crack tip [2,3] . Qualitatively, it can be argued 

that these conditions prevail when the the loading rate is high and 

the specimen is large. Quantitatively, we know little as to what is a 

high rate, how large is a large specimen, and how these two ques- 

tions are affected by temperature, size and type of the ice (granular 

or columnar), and other parameters. 

A fundamental concern in this study was that a one parame- 

ter fracture mechanics might prove not useful for warm S2 colum- 

nar freshwater ice [2] . While the viscoelastic fictitious crack model 

had proved useful for first-year sea ice [2] , it is unknown if it 

can model the fracture of S2 columnar freshwater ice. At the out- 

set, the requisite test size for polycrystalline homogeneity for large 

grained columnar freshwater ice is also unknown. Polycrystalline 

homogeneity requires that the crack length and the uncracked lig- 

ament are significantly larger than the grain size, and the specimen 

contains sufficient number of grains to be regarded as homoge- 

neous [3–5] . As discussed by Dempsey et al [6] , polycrystallinity is 

an issue with large grained ice. In order to address these questions 
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Fig. 1. (a) The edge cracked rectangular plate of width H, length L, and crack length A 0 used in the experiments. (b) The crack orientation and direction of crack propagation; 

also the columnar grains are shown. The dotted rectangular box represents the ice cut for storage and analysis. 

and study the size and rate effects on the fracture of S2 colum- 

nar freshwater ice, in-situ edge-cracked rectangular plates of float- 

ing ice have been split ( Fig. 1 ), with the crack parallel dimension 

ranging from 0.5 m to 19.5 m (representing a size range of 1:39). 

While field work with ice provides results from a natural material 

in the real environment, laboratory studies allow a control of test 

parameters not possible in the field. The ice thickness ranged be- 

tween 35 cm and 41 cm. The experiments were conducted at the 

Aalto Ice Tank and all the specimens were from a single large ice 

sheet to ensure the same grain size and structure for all the tests. 

The Aalto Ice Tank is the largest square basin available for use. This 

size range of 1 : 39 may be the largest achieved for ice under lab- 

oratory conditions. During the experiments the ambient tempera- 

ture in the laboratory was kept at -2 C in order to study fracture 

of warm ice, but also to avoid a temperature gradient in the ice. 

Except specimen size, loading rate, and the gradually increasing 

thickness, all ice and test parameters were constant. The experi- 

ments were analysed by using two approaches: a one-parameter 

linear elastic fracture mechanics approach and a multi-parameter 

non-linear viscoelastic approach. 

Large scale in-situ fracture experiments studying size and rate 

effects with freshwater S2 ice have not been conducted before and 

the stress-separation curve for this type of ice has not yet been 

determined. The largest test sizes in the earlier studies have been 

of the size of the smallest test size used here and most of the ear- 

lier studies have tested crack parallel dimensions of tens of cen- 

timeters. The general focus of the previous work with freshwater 

ice has been to characterize the mode I fracture behavior in terms 

of fracture toughness using LEFM [7–24] . Dempsey has provided a 

summary of the experimental work on fracture of freshwater ice 

and suggested that many laboratory test sizes may have been too 

small in terms of the requirement of linear elastic fracture me- 

chanics [3] . It is important to note that a scale effect may not occur 

unless the specimen sizes themselves are large enough [25] . 

The rest of the paper is structured as follows. In Section 2 , 

descriptions of the ice growth, the experimental setup, and the 

ice properties are presented. In section 3 , linear elastic frac- 

ture mechanics is applied as a one-parameter fracture mechan- 

ics approach to derive the expression of the apparent frac- 

ture toughness. Section 4 introduces a non-linear viscoelastic 

fictitious crack model and explains how it is used to ana- 

lyze the experiments. The experimental and model results with 

the notch sensitivity and homogeneity analysis are presented in 

Section 5 and discussed in Section 6 . Section 7 ends the paper with 

conclusions. 

2. Experiments 

2.1. Ice growth, thickness, and temperature 

A sheet of freshwater S2 ice was grown in the Aalto Ice Tank, 

a 40 m x 40 m, 2.8 m deep water basin equipped with a cool- 

ing system. S2 ice is columnar polycrystalline ice with a random 

and horizontal c-axis orientation in most of its grains [26] . The 

growth process was initiated by lowering the air temperature in 

the ice tank to −14 C and bubbling air into the water to obtain 

a uniform water temperature. When a water temperature of 0.2 C 

was reached, the air bubbling system was shut off and after ap- 

proximately 15 minutes a fine mist of water droplets, at around 

+2 C, was sprayed into the air above the basin. Once the droplets 

reached the water surface, they acted as nuclei for ice crystals to 

form. 

After four weeks at −14 C, the initial seeded ice layer had de- 

veloped into a sheet of bubble-free columnar S2 ice with a thick- 

ness of approximately 34 cm. For the experiments, the ambient 

temperature was raised to −2 C and maintained at that temper- 

ature. As the test program lasted about a month, the ice sheet 

grew from the 34 cm to 41 cm during the test program. The ice 

thickness at the crack tip was measured before each test and is 

reported in Table 1 . After completing each experiment, a through- 

the-thickness block of ice was cut from both sides of the crack path 

as illustrated by the dotted rectangular box in Fig. 1 b. These blocks 

extended from 5 cm behind up to 15 − 35 cm ahead of an initial 

crack tip and allowed the measurement of thickness profiles along 

the crack paths: the ice thickness varied only a few millimeters 

along each crack path. The ice blocks studied were clear and trans- 

parent, there were practically no air bubbles. The ice blocks were 

stored in triple plastic bags to prevent sublimation and placed in 

freezers operating at -20 C. Care was taken to mark the correct 

orientation of the blocks. 

The vertical temperature profile of the ice sheet was measured 

daily, at different locations in the ice sheet. The ice temperature 

varied more or less linearly with depth but did not vary much dur- 

ing the test program. It is worth emphasizing that the tested ice 

temperature, −0 . 3 C at the top surface, is warm in comparison to 

the majority of laboratory tests performed to date. 

2.2. Grain size and c-axis orientation 

The microstructure of the ice was analysed by making and 

studying thin sections in a cold room. The conventional way of 
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Table 1 

Specimen dimensions, measured data, and results computed using linear elastic fracture mechanics. 

Test L H A 0 h E CMOD E COD P max t f σn K Q ˙ K CMOD ˙ CMOD NCOD1 ˙ NCOD1 

m m m cm GPa GPa kN s MPa kPa 
√ 

m kPa 
√ 

m s −1 μm μms −1 μm μms −1 

RP1 0.5 1 0.35 35 6.9 - 1.7 54.9 0.486 126.2 2.298 33.1 0.602 5.2 0.094 

RP2 0.5 1 0.35 35 6.9 - 2.3 51.9 0.657 168.6 3.247 43.3 0.834 7.5 0.145 

RP3 0.5 1 0.35 37.1 6.4 - 1.6 1.9 0.431 108.4 57.058 29.1 15.321 7.8 4.128 

RP4 0.5 1 0.35 37.6 7.0 - 1.9 20.8 0.505 129.2 6.223 37.6 1.811 3.2 0.154 

RP5 0.5 1 0.35 40.2 7.3 - 2.1 571.7 0.522 132.2 0.231 36.1 0.063 3.4 0.006 

RP6 0.5 1 0.35 41.1 5.6 - 2.4 811.4 0.584 145 0.179 59.5 0.073 10.4 0.013 

RP7 3 6 2.1 34.5 6.0 6.2 4.6 86.9 0.259 159.4 1.834 236 2.716 47.2 0.543 

RP8 3 6 2.1 34.5 6.6 - 3.0 2.7 0.169 106 39.259 157 58.148 22.9 8.482 

RP9 3 6 2.1 34.5 6.1 6.2 5.2 148.0 0.293 180.6 1.221 266 1.798 42.8 0.289 

RP10 3 6 2.1 34.5 6.7 6.7 4.8 222.2 0.271 166.8 0.751 215.6 0.970 34.6 0.156 

RP11 3 6 2.1 36 7.4 7.7 4.2 15.3 0.227 139.4 9.091 174.4 11.374 25.2 1.644 

RP12 3 6 2.1 37.2 5.7 5.9 6.8 701.8 0.355 221.3 0.315 370.5 0.528 68.5 0.098 

RP13 3 6 2.1 37.6 4.7 4.8 5.7 1027.1 0.295 184.3 0.179 420.3 0.409 63.4 0.062 

RP14 19.5 36 14.6 35 5.7 5.7 10 213.5 0.127 186.0 0.871 961.7 4.505 37.2 0.174 

thinning ice with a microtome was replaced by a milling machine. 

The milling machine proved to be successful in producing a good 

quality surface finish, saving the long working hours with a micro- 

tome, and generating larger thin sections than with a microtome. 

In this method, ice sections were frozen on a plexiglass plate, in- 

stead of a glass plate. The plexiglass used has as good optical prop- 

erties as glass, if not better, and is safer. The ice froze fast to the 

plexiglass and formed a strong bond. With the milling machine, 

the thickness of the ice sections was reduced to about 0.8 mm. The 

thin sections were then examined and photographed under cross- 

polarized light. Figs. 2 a and 2 c show horizontal and vertical sec- 

tions, respectively, displaying the crystalline and columnar struc- 

ture of the ice. The grain size was estimated by using the uniform- 

sphere-assumption method [27] . The grain size varied between 3 

mm at the top and 10 mm at the bottom portion of the ice sheet. 

The mean grain diameter was 6.5 mm. 

An examination of the c-axis orientation was carried out by an- 

alyzing hundreds of grains at different locations and depths along 

the ice sheet. The c-axis orientation plot from horizontal thin sec- 

tion ( Fig. 2 a) taken from the middle of the ice sheet is shown in 

Fig. 2 b. The Schmidt net consists of 100 poles of the basal planes 

measured with a four-axis universal Rigsby stage. Refraction cor- 

rections [28] were applied for the universal stage measurements. 

In the type of axis projection plot used [29] , a horizontal c-axis 

would be on the circumference and a vertical c-axis would be at 

the center. It can be seen that the c-axes of the columnar grains 

were randomly horizontal. The ice sheet had the same type of tex- 

tural features throughout the depth and for the whole ice sheet: 

the ice was columnar S2 ice. 

2.3. Specimen preparation and experimental procedure 

An edge-cracked rectangular plate configuration with displace- 

ment controlled loading at the crack mouth was used ( Fig. 1 ). Four- 

teen fracture tests were conducted with different loading rates and 

three test sizes: 19.5m x 36m, 3m x 6m, and 0.5m x 1m ( Table 1 ). 

The specimens were cut from the parent ice sheet with an elec- 

tric chain saw. The kerfs around each plate were kept clear of ice 

by using shovels. Initial cracks with length A 0 were also cut with 

the electric chain saw giving a crack of width 8 mm. Directly be- 

fore each test a sharp crack tip was produced using either a car- 

pet knife with a blade width of 0.71 mm, or a hand saw with a 

blade width of 1.21 mm. The length of the sharpened crack was 

≈ 0 . 7 − 0 . 75 L, where L is the crack-parallel side length. The final 

sharpening nucleated microcracks along the crack front, which ef- 

fectively created a very sharp and more realistic crack tip. No sig- 

nificant blunting of the tip occurred during the test. The plane of 

the crack was perpendicular to the plane of the ice sheet; the crack 

front was vertical as shown in Fig. 1 b. The parent ice sheet was 

kept intact, and each new test piece was cut from the parent ice 

sheet on an as needed basis. 

A closed-loop servo-controlled hydraulic loading device was in- 

stalled in a rectangular slot cut at the crack mouth to apply pres- 

sure on the crack faces ( Fig. 1 a). The tests were displacement con- 

trolled with the feedback signal measured along the loading de- 

vice. The length of the contact between ice and the loading device 

( D = 150 mm) was the same for each test size and was chosen to 

keep the contact pressure below 0.5 MPa to avoid crushing of the 

crack faces. In other words, the length of contact of the loading 

device D was not scaled with test size. 

Direct measurement of the crack opening displacements was 

carried out using inductive displacement transducers (LVDTs) po- 

sitioned at six different locations ( Fig. 1 ): at the centerline of 

the loading device (the control displacement), at the crack mouth 

(CMOD), at about half the length of the crack (COD), 10cm behind 

the initial sharpened crack tip (NCOD1), 6 − 10 cm ahead of the 

tip (NCOD2), and 20 cm ahead of it (NCOD3). NCOD denotes near- 

crack-tip opening displacement. LVDTs with a measuring range of 

0 − 2 mm and a resolution of less than 3 μm were used. In ad- 

dition, parallel LVDTs with a larger range were used as secondary 

sources of data and as backup. No major discrepancies between 

the primary, high resolution, transducers and the secondary trans- 

ducers were observed. All the LVDTs were mounted on 14.5 mm 

diameter wooden sticks that were frozen into holes in the ice, on 

both sides of the crack. The positions of the LVDTs, including the 

elevation above the ice surface, were kept constant for all the tests. 

The data was sampled at 10 0 0 Hz. 

In all the tests, the cracks propagated more or less straight, ap- 

proximately along the x -axis and through the gauges NCOD2 and 

NCOD3, as illustrated by the dotted crack path in Fig. 1 b. The as- 

pect ratio ( H/L = 2 ) used in the tests apparently supports crack 

path stability. 

2.4. Fractographic examinations 

The ice samples cut from both sides of the crack path were 

used to study the crack propagation by making horizontal thin- 

sections as sketched in Fig. 1 b. Some of the ice samples were cut 

immediately after an experiment, others were cut one or two days 

after an experiment. As a result, the crack healed in some sam- 

ples, and in other samples, the right and left sides of the crack 

were unattached. It was easy to make thin sections with a healed 

crack. For unhealed cracks, the two halves of the specimen were 

matched, and the matched sections were analyzed. The thin sec- 

tions covered almost the whole crack path and provided numerous 

grains to study if a crack propagated through a grain or along a 
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Fig. 2. (a) Horizontal thin section taken from the middle of the ice sheet and (b) its corresponding c-axis orientation Shmidt net. The plot consists of 100 poles of the basal 

planes measured by a four-axis universal Rigsby stage. (c) Vertical thin section showing columnar freshwater ice at the bottom of the ice sheet. The arrow indicates the 

growth direction. (d) Horizontal thin section showing a crack path and taken from a depth of 24 cm from the top of the ice sheet. The arrow indicates the direction of crack 

propagation. Vertical and horizontal thin sections were photographed between crossed polaroids. 

grain boundary. It is obvious from Fig. 2 d that transgranular frac- 

ture was dominant: the cracks propagated through the grain for 

almost all the grains. 

3. Linear elastic fracture mechanics model 

Expressions for stress intensity factor and crack opening dis- 

placement for the edge loaded, edge cracked rectangular plate used 

in the present experiments ( Fig. 1 a) are derived by following the 

weight function approach in [30] . The crack face pressure P/Dh is 

applied between 0 < X ≤ D, where P is the applied force by the 

loading device, D the length of contact between ice and the load- 

ing device, h the ice thickness, and X the position along the crack. 

If the critical stress intensity factor (the fracture toughness) is 

test size independent and test geometry independent, it can be de- 

noted by K Ic . Because of the lack of standards for determining the 

proper specimen size, loading rate, etc. for the fracture toughness 

testing of ice, Dempsey [3] suggested the notation of apparent frac- 

ture toughness K Q instead of K Ic . Then K(A 0 ) = K Q when P = P max , 

where A 0 is the crack length. Eq. (1) in [30] leads to 

K Q = 

P max 

dh 
√ 

L 

√ 

2 a 0 
π

Z 1 (d, a 0 ) (1) 

where L is the crack-parallel side length of the rectangular plate 

( Fig. 1 a), d = D/L, a 0 = A 0 /L, and Z 1 (d, a 0 ) is given by Eq. (A4) in 

Appendix A . For d < x < a 0 with x = X/L, the expression for the 

crack opening displacement (COD) follows from Eq. (1) in [30] as 

E δ = 

2 P 

πdh 

{∫ a 0 
x 

Z 1 (d, η) Z 2 (x, η) dη

}
(2) 

Z 2 (x, η) is defined by Eq. (A5) in Appendix A . 

4. Viscoelastic fictitious crack model 

Linear elastic fracture mechanics is limited to situations where 

material behavior is linearly elastic and where any process zone at 

the crack tip is small compared to other dimensions of the spec- 

imen. A popular model that addresses nonlinear fracture behavior 
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Fig. 3. (a) Illustration of the fictitious crack model. (b) Stress-separation curve describing the behavior in the PZ and showing the control points (see Eq. 4 ) used in the 

optimization procedure. (c) A flowchart illustrating the forward and inverse problems used for matching the experimental and model results. 

and large process zones is the cohesive zone model or the fictitious 

crack model (FCM) [31] . The FCM has proved successful in mod- 

eling the fracture behavior of several quasi-brittle materials. The 

key idea of the FCM is the concentration of all nonlinear fracture 

mechanisms into a localized process zone, located on the crack 

line, as shown in Fig. 3 a, where the length of a traction free crack 

is denoted as A 0 and the total length of a crack – including the 

process zone – as A, giving a length of the process zone as PZ = 

A − A 0 . The crack-opening displacement at X = A 0 is denoted as δ0 . 
The behavior inside the process zone is described by a constitutive 

relation, known as the stress-separation law ( σ − δ law), which re- 

lates the softening stresses to the crack-opening displacements, as 

shown in Fig. 3 b. The response outside the process zone is gov- 

erned by an applicable constitutive relation of the bulk material. 

In the present work, the viscoelastic fictitious crack model (VFCM) 

formulated by Mulmule and Dempsey [32] is adopted to model 

the response of the freshwater fracture tests conducted. The VFCM 

couples the FCM with the assumption that the behavior of the 

bulk material is linearly viscoelastic. However, for the freshwater 

ice fracture experiments conducted, neither the stress-separation 

law nor the viscoelastic material parameters are known before the 

experiments, but need to be back-calculated by requiring that the 

results from the experiments and from the modeling match. 

The main elements that characterize the cohesive model are 

shown in Figs. 3 a and 3 b: the length of the process zone (PZ), 

the maximum cohesive stress ( σcoh ) that the material in the pro- 

cess zone can transfer and which initiates the growth of the pro- 

cess zone (tensile strength, σt ), the critical displacement beyond 

which the material is fully separated and can transfer no more 

stresses ( δc ), the shape of the σ − δ curve, and the fracture en- 

ergy represented by the area under the σ − δ curve. Fig. 3 b rep- 

resents a σ − δcurve obtained under conditions in which a fully- 

developed-process-zone (FDPZ) has formed. The full fracture en- 

ergy ( G f ) is consumed. A FDPZ is achieved when two conditions 

are satisfied at X = A 0 : σcoh = σt and δ0 = δc . Based on the test- 
ing conditions (load control versus displacement control, ice tem- 

perature, operating deformation mechanisms, etc.), either a full or 

a portion of the σ − δ curve / fracture energy can be obtained. 

Different approaches have been proposed to quantify the soften- 

ing law. A pure experimental method would involve stable tensile 

tests to determine the parameters of the σ − δ curve. However, 

this approach has proven difficult and few reliable results have 

been obtained [33] . Instead, indirect methods, typically through a 

combined experimental-numerical procedure, have been employed 

both in concrete and ice research and proved promising [32,33] . 

These techniques apply inverse analysis in an iterative procedure 

to obtain the softening curve of the FCM. An iterative approach is 

also used here and the method is outlined below. 

In this study, the creep compliance J = 1 /E + Ct 1 / 2 is used to 

characterize the viscoelastic behavior of the bulk material, where 

E is the short-time elastic modulus measured at the crack mouth, 

C is the creep compliance constant, and t is the time. The form 

chosen for J is based on laboratory-scale experiments [34,35] con- 

ducted on saline ice at -10 C under a low compressive stress (0.5 

MPa). Here, E is obtained from the initial linear portion of the load 

- crack mouth opening displacement plot and C through the itera- 

tive procedure described below. 

According to the spirit of the FCM, the growth of the process 

zone is governed by the interaction of an externally applied load 

and the cohesive stress such that the resultant stress intensity fac- 

tor vanishes at the fictitious crack tip. 

The relation between the cohesive stress, the viscoelastic crack 

opening displacement, and the rate of the crack opening displace- 

ment is given by the stress-separation curve, shown in Fig. 3 b, as 

follows, 

σcoh (δv , ˙ δv ) = 

{
f (δv , ˙ δv ) 0 ≤ δv < δc 

0 δv ≥ δc 
(3) 

where δc and ˙ δv represent the critical crack opening displacement 

and the rate of crack opening, respectively. Details of the VFCM 

equations outlined above are explained in [32] . 

To complete the viscoelastic fictitious crack model for fresh- 

water ice, an iterative procedure was implemented. The availabil- 

ity of the load history and the displacement histories at differ- 

ent positions along the crack allows to carry an inverse analysis 

and to back-calculate the stress-separation ( σ − δ) law, the value 

of the creep compliance constant ( C), and the length of the pro- 

cess zone (PZ) ( Figs. 3 a and 3 b). At each iteration, two problems 

are solved, forward and inverse. In the forward problem, values for 

26 



I.E. Gharamti, J.P. Dempsey, A. Polojärvi et al. Acta Materialia 202 (2021) 22–34 

σ − δcurve, C, and PZ are initially assumed – and later obtained 

though optimization – and the viscoelastic fictitious crack model 

is solved to obtain the crack opening profile and the length of the 

process zone. The measured load - time record is applied in dis- 

cretized steps into the model. This provides displacement results 

at different positions along the crack, including the process zone, 

through an experiment. The length of the process zone is obtained 

from the requirement that the stress intensity factor is zero at the 

fictitious crack tip. In the inverse problem, the crack opening pro- 

file is assumed to be known, and an optimization scheme using the 

Nelder-Mead (N-M) algorithm [36] is used to obtain the constitu- 

tive parameters ( C and the σ − δ law) by minimizing the differ- 

ence between the numerical data and the experimental data. Once 

the σ − δ law and C are solved, they are used as input in the for- 

ward problem and the iteration continues until the best attainable 

agreement is obtained. A flowchart illustrating the implemented 

procedure is shown in Fig. 3 c. 

In the optimization scheme, five control pairs, shown in Fig. 3 b, 

are used to define the σ − δ curve: {
δ = 0 , δ1 , δ2 , δ3 , δc 
σ = σt , σ1 , σ2 , σ3 , 0 

}
(4) 

in which δ1 ,δ2 , and δ3 are assumed such that δ1 < δ2 < δ3 < δc , 
and the N-M scheme optimizes the control points, δc ,σt ,σ1 ,σ2 , and 

σ3 . The σ − δlaw was back-calculated without any assumption 

about its shape. The optimization scheme minimizes an objective 

function F given by the norm of a residual 

F = arg min 
δc ,σt ,... 

N=45 ∑ 

i =1 

∥∥∥M i (δc , σt , σ1 , σ2 , σ3 , C) − D i 

∥∥∥
2 

(5) 

where M i and D i refer to the displacement values given by the 

model and obtained by using the experimental data, respectively. 

‖ . ‖ 2 is the Euclidean norm of a vector. The displacement values 

that are matched total to 45: CMOD, COD, and NCOD1 ( Fig. 1 a) at 

15 time instances during the loading. As no LVDT was placed at 

the initially sharpened crack tip, it was decided to match the dis- 

placement values given by NCOD1. 

In the current problem, the objective function F is numerical, 

and accordingly, no closed form solution for the gradient of the 

objective function is available. Derivative-based optimization meth- 

ods such as Newton solvers cannot be used. This is the main mo- 

tive behind the selection of the Nelder-Mead (N-M) method, which 

is a derivative-free optimization method [36] . 

The optimization problem has constraints: the cohesive stresses 

are tensile and have a softening behavior ( Fig. 3 b). Besides, upper 

and lower bounds were provided for the arguments. The bounds 

for the cohesive stresses were based on the tensile strength of 

columnar freshwater S2 ice [37–39] , for the critical crack open- 

ing displacement on the measured displacements at NCOD1 and 

NCOD2 in each experiment, and for the creep compliance constant 

on sea ice fracture studies [2] . 

5. Results 

5.1. Linear elastic fracture mechanics analysis 

Table 1 gives the dimensions of the ice samples together with 

the measured and computed results. The apparent fracture tough- 

ness ( K Q ) was computed from the failure load and dimensions by 

using Eq. (1) . The loading rate ( ̇ K ) was computed by dividing K Q 
by the time to failure ( t f ). The time to failure varied from about 

2 seconds to about 10 0 0 seconds giving a loading rate range of 

0 . 18 · · ·57 kPa √ 

m s −1 . The elastic moduli ( E CMOD ) and ( E COD ) were 

computed by Eq. (2) from the initial linear portion of the load - 

CMOD displacement records and load - COD displacement records, 

Fig. 4. Load-CMOD records for the 3m x 6m samples with different loading rates. 

The 39.3 kPa 
√ 

m s −1 and 1.83 kPa 
√ 

m s −1 data were smoothed by using moving av- 

erages. 

respectively. Some of the E COD values are missing, caused by the 

fact that the initial portion of the associated load-COD curve was 

very noisy. No significant difference in the moduli was found. Dis- 

placements at the crack mouth and near the crack tip at the crack 

growth initiation, CMOD and NCOD1 respectively, were measured 

at locations shown in Fig. 1 a. ˙ CMOD and ˙ NCOD1 indicate the dis- 

placement rates and were obtained by dividing CMOD and NCOD1 

by the time to failure. Attempts were made to measure displace- 

ments ahead of the crack also ( Fig. 1 a), but those displacements 

were very small and the measurements failed especially for small 

specimens and fast tests and are not analysed here. 

Fig. 4 shows the load-CMOD records for the 3m x 6m speci- 

mens. A decrease of the peak load with increase in the loading 

rate is observed. The records show an approximately linear load- 

displacement relation up to the peak load at high loading rates, 

but at low loading rates, a non-linear relation is observed. 

Fig. 5 shows the apparent fracture toughness ( K Q ) and near- 

crack-tip opening displacements (NCOD1) at the crack growth ini- 

tiation as functions of loading rate. Interestingly, the data suggests 

a loading rate dependent size effect for the warm columnar fresh- 

water S2 ice studied: there is a size effect at low rates, but there is 

no size effect at high rates. At low rates, K Q and NCOD1 are higher 

for the large specimen (both 3m x 6m and 19.5m x 36m) than for 

the small specimen (0.5m x 1m), but with increasing loading rate, 

the specimen size does not have an effect on K Q , and NCOD1 for 

the large specimen approaches the NCOD1 of the small specimen. 

For both the large and small specimen, K Q and NCOD1 are decreas- 

ing with increasing loading rate, but this rate effect is stronger for 

the large specimen. This observed size effect is clear between spec- 

imens of size 0.5m x 1m and of size 3m x 6m, but there was no 

size effect between the 3m x 6m specimens and the largest speci- 

men of size 19.5m x 36m. The K Q − ˙ K and NCOD1 − ˙ K relations are 

non-linear and can be well described with a power-law relation. 

5.2. Viscoelastic fictitious crack model analysis 

The viscoelastic fictitious crack model (VFCM) and the opti- 

mization procedure outlined in Section 4 were used to analyze 

the experimental data. The results are given in Table 2 : the num- 

ber of iterations needed to reach convergence, the five control 

points defining the σ − δrelation ( σt , σ1 , σ2 , σ3 , δc ; Fig. 3 b), the 
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Fig. 5. Measured apparent fracture toughness (a) and near-crack-tip opening displacements (b) as a function of loading rate. First-order power-law fits were applied to the 

data. The power-law fits were calculated separately for the larger specimen (both 3m x 6m and 19.5m x 36m) and for the smaller specimen (0.5m x 1m). 

Table 2 

Optimization results computed using the viscoelastic fictitious crack model. 

Test size ˙ K Number of σt σ1 σ2 σ3 δc δ0 Cx 10 11 G f G ac PZ σn /σt 

(m) ( kPa 
√ 

m s −1 ) iterations (MPa) (MPa) (MPa) (MPa) ( μm) ( μm) ( m 
2 N −1 

√ 

s 
−1 

) (N/m) (N/m) (mm) 

RP2 0.5x1 3.247 243 1.29 1.29 1.24 1.06 7.09 4.07 5.8 6.54 4.97 6.9 0.509 

RP3 0.5x1 57.058 148 1.30 1.30 1.23 0.30 7.57 1.30 3.4 5.48 1.69 2.3 0.332 

RP4 0.5x1 6.223 247 1.26 1.26 1.26 1.26 4.44 2.66 6.7 3.42 3.35 4.6 0.401 

RP5 0.5x1 0.231 167 1.30 1.28 1.27 1.11 5.27 0.77 4.1 3.63 1.00 1.4 0.402 

RP6 0.5x1 0.179 203 1.28 1.28 1.22 0.80 6.73 2.85 3.3 6.49 3.65 5.1 0.456 

RP7 3x6 1.834 161 1.30 1.30 1.17 0.54 33.86 3.25 5.2 16.89 4.24 5.9 0.199 

RP8 3x6 39.259 688 1.24 1.00 1.00 1.00 18.00 1.44 5.9 14.60 1.78 2.7 0.136 

RP9 3x6 1.221 229 1.32 1.22 1.09 0.92 32.80 4.23 5.6 22.30 5.54 6.4 0.222 

RP12 3x6 0.315 211 1.02 1.02 1.02 1.02 37.00 8.14 6.2 27.54 8.17 18.4 0.348 

RP13 3x6 0.179 130 1.00 1.00 1.00 1.00 40.10 5.69 8.8 30.00 5.69 13.2 0.295 

RP14 19.5x36 0.871 476 1.05 1.05 1.05 0.80 36.30 5.58 9.0 20.30 5.83 12.3 0.121 

crack opening displacement at crack growth initiation at X = A 0 
( δ0 ), the creep compliance constant ( C), the full fracture energy 

under FDPZ conditions ( G f ; Fig. 3 b), the actual fracture energy 

( G ac ), and the process zone length (PZ; Fig. 3 a). The VFCM anal- 

ysis required successful measurements of CMOD, COD, and NCOD1 

( Fig. 1 a) at 15 time instances during the loading. These displace- 

ments were small and challenging to measure at the initial, low 

load levels. Only those experiments, where the whole displacement 

history was measured successfully, are included in Table 2 . Note 

that Table 1 includes data from all the 14 tests, as the analysis in 

Table 1 is based on measured maximum values, not on the whole 

displacement-time record. 

Fig. 6 illustrates the correspondence between the experiments 

and the VFCM for RP14 (19.5m x 36m): the load as measured and 

as applied to the model, and the response of the ice samples as 

measured and as obtained from the model. The experiment shows 

a good agreement between the model results and experimental 

data. This agreement supports the ability of the VFCM to describe 

the response of columnar freshwater S2 ice: the VFCM is able to 

model the non-linear displacement record not only at the crack 

mouth where the loading is applied (CMOD), but also along the 

crack (COD) and near the crack tip (NCOD1). The model does not 

account for crack propagation and thus the comparison is shown 

up to the peak load only. 

Fig. 7 shows the crack opening displacement at crack growth 

initiation at X = A 0 ( δ0 ), the actual fracture energy ( G ac ), and the 

process zone size (PZ) as functions of loading rate. Similar rate 

and size effects were observed than with the linear elastic frac- 

ture mechanics analysis above. The results from the large and mid- 

size specimens (3m x 6m and 19.5m x 36m) are again interchange- 

able and higher than the results from the small specimens (0.5m x 

1m). This size effect is loading rate dependent and decreases with 

increasing rate: δ0 , G ac , and PZ for the larger specimen decrease 

with increasing loading rate and approach the values obtained for 

the small specimen. No significant rate effect was observed for the 

small specimen. Power-law relations can be used to describe the 

decrease of δ0 ,G ac , and PZ with rate. Note especially the similarity 

of size and rate effects between PZ and the measured crack open- 

ing displacement near the crack tip in Fig. 5 b. 

Stress-separation curves were constructed by using the five 

control points shown in Fig. 3 b, and straight lines connecting the 

points. Fig. 8 shows the back-calculated σ − δ curves under FDPZ 

conditions and illustrates the impact of the specimen size and 

loading rate. With increasing separation, the σ − δ curves show 

initially an approximately constant stress and then extend with a 

softening behavior, which is getting gradually steeper. This kind of 

stress-separation curve is similar to what has been observed for 

sea ice [1] . The data obtained with the larger test size ( Fig. 8 b) 

illustrate that with increasing loading rate, the length of the con- 
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Fig. 6. Experimental and model results for RP14 (19.5m x 36m). (a) Load at the crack mouth, see Fig. 1 a and Eq. (1) . (b) Displacement - time records. (c) Load - displacement 

record. 

Fig. 7. The crack opening displacement at crack growth initiation at X = A 0 (a), the actual fracture energy (b), and the process zone size (PZ) (c) as a function of loading 

rate. Viscoelastic fictitious crack model was used in the analysis. First-order power-law fits were applied separately to the data for the larger specimen (3m x 6m and 19.5m 

x 36m) and for the smaller specimen (0.5m x 1m). 

Fig. 8. The stress-separation curves for the 0.5m x 1m specimens (a) and for the 3m x 6m and 19.5m x 36m specimens (b) at different loading rates for the case of 

fully-developed-process-zones. The number next to each curve reflects the index of the experiment in the Legend. 
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stant part is decreasing while the slope of the softening part ap- 

pears less sensitive to the loading rate. This suggests that the 

observed decrease in fracture energy with loading rate ( Fig. 7 b) 

is due to a decrease in the constant part, not due to change in 

the softening part. At the highest rate studied, no constant part 

of the stress-separation can be observed, the curve shows more- 

or-less linear softening only. The stress-separation curves obtained 

with the small specimens ( Fig. 8 a) show similar behaviour, but 

not as clearly. Although the experiments were conducted under 

displacement control, none of them realized a FDPZ, and the ex- 

periments fractured at peak load. Only a portion of the stress- 

separation curve ( Fig. 8 ) and the fracture energy ( G f , Table 2 ) was 

attained prior to the initiation of crack growth. It is possible that 

the very high homologous test temperatures and the inevitable 

grain boundary melting [40] are the reason for not attaining a 

FDPZ. The change in the shape of the σ − δ curve with loading 

rate is an indication of changes in the deformation and fracture 

processes with rate. At low rates, the approximately constant ini- 

tial part of the σ − δ curve indicates that the freshwater ice de- 

forms initially without softening and the material inside the co- 

hesive zone is able to transfer the full tensile strength for some 

time with increasing load, until the deformation becomes so large 

that softening starts and finally leads to extension of the physi- 

cal, traction-free crack. At high rates, no constant part of the curve 

is observed and softening initiates immediately when the critical 

stress is reached. This explains why freshwater ice appears brittle 

at high loading rates and less brittle at low rates. 

The stress-separation curve includes the tensile strength ( σt ) of 

the ice studied ( Fig. 8 ). This value was not as strongly or clearly 

affected by specimen size or loading rate as the fracture parame- 

ters: for the small specimen σt ≈ 1 . 3 MPa, for the large specimen 

σt = 1 . 0 · · ·1 . 3 MPa, higher for the higher rates. 

5.3. Notch sensitivity analysis 

The dependence of notch sensitivity on specimen size was dis- 

cussed by Carpinteri [41] for concrete fracture. Notch sensitivity is 

given by the ratio between the peak nominal tensile stress ( σn ) at 

the crack tip and the tensile strength ( σt ) of an uncracked speci- 

men. This ratio is function of the brittleness number βt which is 

used to test that a fracture test is notch sensitive and the valid- 

ity of LEFM [3] . Formulations of the notch sensitivity for the edge- 

cracked rectangular geometry with the current loading configura- 

tion are outlined in Appendix A . Table 2 gives the notch sensitivity 

values for the different tests, computed using the σn and σt values 

listed in Table 1 and Table 2 , respectively. 

Figs. 9 a, 9 b, and 9 c show the σn /σt versus the normalized crack 

length for the 0.5m x 1m, 3m x 6m, and 19.5m x 36 m specimens, 

respectively. Lines of constant brittleness numbers are shown. The 

crack length of each specimen size is indicated by the vertical 

dashed line. It is evident that the fracture tests completely lose 

their meaning if σn = σt : a strength failure occurs prior to the at- 

tainment of a critical SIF. For the 0.5m x 1m and 3m x 6m spec- 

imens, that occurs for βt higher than β0 
t ≈ 0 . 36 ; for the largest 

specimen β0 
t ≈ 0 . 33 ( Fig. 9 ). This is shown by the intersection of 

the horizontal dashed line of σn /σt = 1 and the vertical dashed line. 

For values of βt < β0 
t , the fracture tests are more significant for 

shorter cracks. However, the selection of the optimum crack length 

should ensure simultaneously a polycrystalline behavior and a high 

enough degree of brittleness (low enough σn /σt ) for a given spec- 

imen size. 

More importantly, the brittleness number can reveal the op- 

timum specimen size so that the tests are significant ( βt < β0 
t ) 

and suitably notch sensitive ( σn /σt << 1 ) which further restricts 

βt . Considering size effect, previous analyses showed that the re- 

sults of the two larger, 3m x 6m and 19.5m x 36m, samples were 

interchangeable, suggesting from Figs. 9 b and 9 c that a σn /σt < 

0 . 4 is good enough to generate size-independent fracture results. 

Dempsey [3] proposed the same ratio to ensure notch sensitivity 

and referred to it as the specimen shape-independent condition. It 

is worth noting that the 0.5m x 1m, 3m x 6m, and 19.5m x 36m 

plates are 77x, 462x, and 30 0 0x the grain size, respectively. Mul- 

mule and Dempsey [42] speculated that sample homogeneity for 

first-year sea ice would be obtained if the crack-parallel specimen 

size harboured at least 200 d av , where d av is the average grain size. 

These tests for very warm S2 columnar ice suggest that a crack- 

parallel specimen size of about 460 d av would be required for poly- 

crystalline homogeneity. This highlights the huge difference posed 

by the testing of cracked and uncracked test samples. For the ten- 

sile and compressive testing of un-notched ice cylinders, it is rec- 

ommended that the cylinder diameter be 15 to 20 times d av [43] . 

However, as soon as one is testing a cracked test sample, the req- 

uisite specimen size is measured not in 10’s of the grain size, but 

100’s of the grain size. 

Considering the rate effect further restricts the notch sensitivity 

requirement. Fig. 9 d extends this analysis by showing the variation 

of σn /σt as a function of loading rate. First-order power-law fits 

were applied to the data for the 0.5m x 1m and 3m x 6m speci- 

mens. The 3m x 6m specimens displayed a higher rate effect than 

the 0.5m x 1m specimens which satisfied the shape-independent 

condition only at high rates. For the 3m x 6m specimens: at low 

rate, the suggested σn /σt < 0 . 4 is valid; while at higher rates, a 

much lower ratio of σn /σt < 0 . 2 is necessary to ensure notch sen- 

sitivity. The discussion of notch sensitivity in terms of both size 

and rate further limits the brittleness condition to σn /σt < 0 . 2 . The 

effect of rate on notch sensitivity has not been discussed before. 

A tentative conclusion is that the selection of the optimal speci- 

men size and crack length, for LEFM applicability, should consider 

simultaneously polycrystalline homogeneity and notch sensitivity, 

including the effects of size and rate. 

6. Discussion 

The observed fracture characteristics of S2 columnar freshwater 

ice are reminiscent of what is expected of quasi-brittle materials, 

such as concrete and rock [44] . An important consequence is that 

the thickness of the specimen (i.e. the length of the crack front) is 

not an important variable for the fracture of freshwater ice, as has 

been shown for the fracture of concrete [44,45] . The direct conse- 

quence is that there is no validity to plane stress and plane strain 

idealizations, which proved very important to the development of 

the metals-based fracture mechanics [46] . For long crack fronts, a 

triaxial state of stress does not materialize, as the tensile stress 

parallel to the crack front is relieved by microcracking parallel to 

the top and bottom surfaces or by creep, the latter taking place 

rapidly. 

The fracture experiments conducted with columnar freshwater 

S2 ice showed both size and rate effects which can be expressed 

either as a rate dependent size effect or as a size dependent rate 

effect. There was a size effect at the lower rates but no size effect 

at the higher rates. There was a rate effect for the larger specimens 

but a weak or no rate effect for the smaller specimens. This inter- 

relation of size and rate effects for columnar freshwater ice is a 

novel observation; earlier experiments have observed rate effects 

[7,9–11,15–17,22,23] or size effects [1,2,6,25] , but not how these 

two are related. In addition, the rate dependency of fracture en- 

ergy has not been reported earlier: fracture energy increases with 

decreasing loading rate ( Fig. 7 b). Compared with the earlier stud- 

ies with freshwater S2 ice, the specimens tested here were large 

( L ≥ 0 . 5 )m, very warm ( ≥ −0 . 35 C), and tested in-situ . 

The apparent fracture toughness ( K Q ) measured – about 100 

kPa 
√ 

m at high rates and about 100 − 200 kPa 
√ 

m at low rates –
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Fig. 9. Notch sensitivity ( σn /σt ) as a function of the normalized crack length for the 0.5m x 1m (a), 3m x 6m (b), and 19.5m x 36 m (c) specimens. Lines of constant 

brittleness numbers are shown. The notch sensitivity of σn /σt = 0 . 4 , 1 are indicated with the horizontal dashed lines. The normalized crack length of each specimen size is 

shown by the vertical dashed line. (d) Notch sensitivity ( σn /σt ) as a function of the loading rate. First-order power-law fits were applied to the data for the 0.5m x 1m and 

3m x 6m specimens. 

is within the range measured earlier for columnar S2 freshwater 

ice [3] . While values for K Q are given in Table 1 and Fig. 5 a, the 

validity of K Q as a material parameter for ice should be discussed. 

K Q is an LEFM parameter and thus limited to be used when the 

material response can be idealised as linearly elastic, except in a 

small process zone near the crack tip, where yielding – or in the 

case of ice, microcracking and creep – may occur [47] . If such a pro- 

cess zone is small enough compared with the other dimensions of 

the specimen, fracture toughness governs crack growth; if a spec- 

imen experiences extensive yielding or creep – near the crack tip 

or elsewhere in the specimen – fracture toughness is not a relevant 

parameter. 

The size of the process zone in ice has been estimated with dif- 

ferent methods. Following Riedel and Rice [47] , who studied tensile 

cracks in elastic-nonlinear viscous materials, a creep zone size for 

freshwater ice has been estimated to be in the range of 0 . 01 · · ·0 . 5 
mm at a rate of about 2 kPa 

√ 

m s −1 and temperatures of −10 C 

or lower [15,16,24] . It is important to note that the elastic power- 

law model of Riedel and Rice is applicable to materials where con- 

siderable ductility is present in the process zone. Another method 

used for ice is the method suggested by Veerman and Muller [48] , 

where the size of a plastic zone near a crack tip is related with 

the location of an apparent rotation axis of a specimen in bend- 

ing. For specimen with the largest dimension of 0.4 m, a rate of 

2 kPa 
√ 

m s −1 and temperature of −5 C, this method has suggested 

a process zone size of about 0.5 mm [22,23] . These results of a 

small process zone have led to conclusions that LEFM is a suitable 

model for ice fracture at the rates and temperatures studied. How- 

ever, the above values are an order of magnitude smaller than the 

about 5 mm measured here at the same rate but with larger spec- 

imens and warmer ice ( Fig. 7 c). The PZ measured here for fresh- 

water ice, about 5 − 15 mm depending on rate and specimen size, 

is again an order of magnitude smaller than the PZ measured for 

sea ice: about 25 mm for 1 m specimen and up to 150 mm for 

test sizes larger than 3 m [1] . The size of the freshwater fracture 

process zone, as with many ice parameters, is affected by scale, 

rate, and temperature. Rodin and coworkers [49,50] studied sim- 

ilar polycrystalline S2 warm ice and modelled the plate as a sin- 

gle grain specimen governed by the crack tip’s location and loaded 

through a metal-ice composite testing machine. Their model an- 

ticipated smaller PZ size than the grain size. However, the current 

observed PZ sizes are significant and are of the order of the grain 

size if not multiple times the grain size, especially as the specimen 

gets larger with the 3m x 6m and 19.5m x 36 m specimens. This 

concludes that the one grain ice-metal system envisaged by Rodin 

and coworkers is not applicable in this case. 
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Fig. 10. Variation of creep compliance ( J = 1 /E + Ct 1 / 2 ) as a function of loading rate 

( ̇ K ) for different specimen sizes. 

Freshwater ice is a viscoelastic material, and it can be hypoth- 

esised that the viscous deformation is less significant when the 

loading rate is high, and the temperature is low. Quantitively the 

elastic and viscous responses can be analysed by using the non- 

linear viscoelastic model (VFCM) and especially the creep com- 

pliance ( J = 1 /E + Ct 
1 
2 ). J, calculated for each experiment by using 

E = E CMOD , t = t f , and Cfrom Tables 1 and 2 , is shown in Fig. 10 as 

a function of the loading rate. Note that both Eand C show some 

scatter but not a relation with the loading rate. As J is a func- 

tion of time, a rate effect is observed, but interestingly, J appears 

not to have size effect – at least the size effect is much weaker 

than for the other parameters studied here. At high loading rates, 

J approaches the value of 1 /E (elastic compliance), but with de- 

creasing loading rate, the viscous component of J increases and the 

material response deviates more and more from an elastic behav- 

ior. At loading rates ˙ K ≈ 20kPa 
√ 

m s −1 or less, J is twice or more 

of the elastic compliance. Thus, the warm freshwater ice studied 

here can be considered elastic only when ˙ K is higher than about 50 

kPa 
√ 

m s −1 ; or the time to failure is less than 1 − 2 seconds. This 

strongly supports the notch sensitivity ratio ( σn /σt < 0 . 2 ), sug- 

gested in Section 5.3 , for LEFM applicability. For other types of 

ice and for other temperatures, different limit rates for elastic re- 

sponse should be found. Earlier studies, based on analysis of the 

process zone size, have concluded that LEFM is a valid fracture 

model when ˙ K > 10 kPa 
√ 

m s −1 [11,16] , suggesting a larger range for 

LEFM than suggested here. 

Finally, it is interesting to note that the tensile strength ( σt ), ob- 

tained from the experimental data through the VFCM analysis, was 

about 1.2 MPa ( Fig. 8 ) and not as strongly affected by size or rate 

as the fracture parameters. In earlier experiments tensile strength 

of ice has been observed to be a function of temperature, grain 

size, orientation, porosity – all constants in the experiments re- 

ported here – but also of strain rate [51] . Why the tensile strength, 

as defined in the VFCM, does not show a clear rate effect when it 

has been measured before, and when the other fracture parame- 

ters do show both rate and size effects? 

7. Summary and conclusions 

Laboratory experiments on size (scale) and rate effects on the 

fracture behavior of warm, columnar (S2), freshwater ice were 

completed at the Aalto Ice Tank. The samples covering a size range 

of 1 : 39 were edge-cracked rectangular floating plates loaded at 

the crack mouth; the largest sample had dimensions of 19.5m x 

36m. This size and the size range are to our knowledge the largest 

for ice under laboratory conditions. The loading rates applied led 

to loading durations from fewer than 2 seconds to more than 10 0 0 

seconds leading to an elastic response at the highest rates and a 

viscoelastic response at the lower rates. The tests were displace- 

ment controlled and monotonically loaded up to fracture. The frac- 

ture mode was transgranular in all the experiments. 

The experiments were analysed by using the linear-elastic frac- 

ture mechanics (LEFM) and the non-linear viscoelastic fictitious 

crack model (VFCM) approach. For the LEFM analysis, expressions 

for the apparent fracture toughness ( K Q ) and crack opening dis- 

placement were derived by following the weight function method 

by Dempsey and Mu [30] . For the VFCM, the approach formulated 

by Mulmule and Dempsey [32] was adopted and combined with 

the Nelder-Mead optimization scheme [36] to back-calculate the 

constitutive parameters: stress-separation curve, fracture energy, 

creep compliance constant, and size of the fracture process zone 

(PZ). 

The main observation from the experiments is that the size 

and rate effects were interrelated. There was a size effect at low 

loading rates, but no size effect was observed at the higher rates. 

This applied to the crack opening displacement near the crack tip 

(NCOD1) as measured, to K Q as an LEFM parameter, as well as to 

the stress-separation curve, G ac and PZ as VFCM parameters. The 

rate dependent size effect is a novel result for any type of ice. Ear- 

lier both rate effects and size effects have been measured, but not 

how these two are related. Similar to earlier studies, the rate ef- 

fects – when observed – followed power law type relations. The 

rate dependent size effect can be related with the fracture process 

at the vicinity of the crack tip: Both the measured NCOD1 and the 

calculated PZ of the larger specimen decrease with increasing rate 

and approach the values for the smaller specimen. As was illus- 

trated by using the VFCM, the ice studied can be considered elas- 

tic only at the highest rates applied, the rates where the size effect 

vanishes. 

The measured size and rate effects can be expressed also as 

size dependent rate effects. For the larger specimen (3m x 6m and 

19.5m x 36m), a clear rate effect was observed, while for the small 

specimen (0.5m x 1m) the rate effect was weak or absent. 

The results of the two larger, 3m x 6m and 19.5m x 36m, sam- 

ples were interchangeable suggesting that the 3m x 6m sample 

size is large enough to give size-independent fracture results for 

this type of warm ice. From the experimental results and analysis 

presented, the following requirements are recommended. 

L/d av ≥ 460 polycrystalline homogeneity requirement , 

σn /σt < 0 . 2 notch sensitivity , 

in which L is the specimen size in the cracking direction, as por- 

trayed in Fig. 1 a and d av is a measure of the average grain size. 

The crack length must be selected to optimize the brittleness of 

the test plate. 

This study proved that the viscoelastic fictitious crack model is 

successful in treating the fracture of S2 columnar freshwater ice. 
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Appendix A. Mathematical Details 

For the edge-cracked rectangular geometry with the current 

loading configuration, the nominal stress is given by 

σn = 

2 P max 

hL 
g(a 0 ) , g(a 0 ) = 

2 + a 0 − 3 d/ 2 

(1 − a 0 ) 2 
(A1) 

Using P max provided in Eq. (1) , it follows that 

σn 

σt 
= C n βt (A2) 

in which 

βt = 

K Ic 

σt 

√ 

L 
, C n = 

d 
√ 

2 π√ 

a 0 Z 1 (d, a 0 ) 
g(a 0 ) (A3) 

Note that βt as used in the paper is expressed in terms of 

Dempsey’s notation of K Q ( Eq. (1) ) instead of K Ic , given that no 

standard exists for K Ic . 

Finally, in Section 3 , 

Z 1 (d, a 0 ) = 

5 ∑ 

i =1 

G i (a 0 ) 
2 i − 1 

(
1 −

(
1 − d 

a 0 

)i − 1 
2 

)
(A4) 

Z 2 (x, η) = 

5 ∑ 

i =1 

G i (η) 
(
1 − x 

η

)
i − 3 

2 (A5) 

where G i (i = 1,2,...,5) are functions given by Eq. (4) in [30] . 
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