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Abstract—The automatic generation of digital twins of in-
dustrial processes requires the integration of several sources
of information. If the twin is expected to accurately capture
thermo-hydraulic phenomena, dimensions of tanks and other
process components as well as detailed pipe routing information
is relevant. Such information is not comprehensively captured in
P&IDs (Piping & Instrumentation Diagrams), but it is available
from 3D CAD models. However, information about control loops
is not available from 3D CAD models, but is available from
P&IDs. Previous research has demonstrated the extraction of
such information from machine-readable P&IDs and 3D CAD
models and converting this information to graphs. Further
research is expected on applying graph matching methods for
integrating these separate graphs to a common graph-based
data structure that captures all of the desired information. This
common model could support further work to develop digital
twins. A major obstacle to this is that the graphs that have
currently been generated from P&IDs and 3D CAD models are
at very different abstraction levels, so graph matching methods
are not feasible. This article address this obstacle by building on
previous work, in which graphs were generated from P&IDs and
3D CAD models. The contribution of this paper is several novel
algorithms for preprocessing a 3D CAD generated graph, until
it is at the same level of abstraction as a P&ID generated graph
of the same industrial process. The algorithms are demonstrated
in the context of a laboratory process.

Index Terms—industry 4.0, process industry, digitisation, au-
tomation, modelling and simulation, digital twins, 3D modeling,
3D CAD, digital plant, plant design.

I. INTRODUCTION

A major obstacle towards building an integrated digital plant
model is that the relevant information is contained in different
engineering tools. Two of the most important tools are P&ID
(Process & Instrumentation Diagram) tools and 3D CADs.
P&ID tools effectively capture instrumentation and control
loops, while 3D CADs provide detailed information on pipe
routing, component dimensions and elevations. Both kinds of
information are essential for constructing process simulation
models and digital twins. However, integrating information
from these two sources is currently laborious and error prone.
In industrial practice, it is not possible to assume that the
same naming conventions have been used across tools [1],
so there are no straightforward solutions for automatically
identifying the same process components from the P&ID and
the 3D model [2]. Some standardization efforts have been
supported by leading tool vendors. The DEXPI working group

developed a specification (DEXPI) based on the ISO 15926
to define an open P&ID storage format, the Proteus XML
schema [3], [4]. The PCF (Piping Component File) format
for 3D isometrics is supported my major 3D process CAD
tool vendors. Unfortunately, there has been no coordination
between the development of DEXPI and PCF or any other
such formats, so the underlying information models are very
different. In order to build an integrated digital plant model,
there is a need to:

(A) Ignore irrelevant information such as graphical layout of
the P&ID diagram.

(B) Extract the relevant information to a neutral format.
(C) Further process the information so that it is at a common

level of abstraction, to enable further research on com-
bining these information sources to an integrated digital
plant model.

A solution for steps A. and B. was proposed in [2]. Proteus
XML and PCF were used as source formats in step A, and
graphs were used as the neutral format mentioned in step
B. However, the graphs that were generated were at very
different levels of abstraction and contained elements that
could not be readily matched. The objective of this paper is to
address step C by proposing algorithms to further process the
graphs generated from PCF source information, which were
more complex than the graphs generated from Proteus source
information.

II. RELATED RESEARCH

A digital twin is a comprehensive physical and functional
description of a component, product or system. The level of
detail that is captured by the twin determines its potential for
applications along the life cycle of its physical counterpart
[5]. Due to high demand for digital twins, their automatic
generation is interesting, since manual generation involves
significant time and cost. The most two popular sources of in-
formation for automatic generation of digital twins are design
phase documents, such as P&IDs, and 3D models. 3D point
clouds obtained by scanning technologies have been used to
provide visualizations for existing manufacturing simulations
[6] and for object detection in factories [7] and other built
environments [8]. However, these 3D models do not capture
process components, their dimensions and connections, all



of which would be necessary source information for an ex-
ecutable digital twin that can be used for applications such as
process optimization, forecasting and preventive maintenance;
[9] presents a method for using 3D CAD source information
to generate a twin for these purposes. Simulation models have
been generated automatically from P&IDs for the purpose
of testing of control software [10] and for Hardware-in-loop
testing [11]. [12] generated low fidelity simulation models
from high level specifications available at the preliminary
design phase of the automation projects. Later these mod-
els were synchronized with the control and manufacturing
operations management system to obtain a digital twin with
improved fidelity. To generate a higher fidelity digital twin,
several sources of information can be used. [13] identifies the
need for integrating information from P&IDs and 3D scans,
but does not address the problem of information extraction
from the P&ID. Using different sources of information for
automatic generation of digital twins introduces complexity.
One of the main challenges in integrating multiple source
of information is the need to match them. One approach to
matching complex data sets is to convert them to a common
level of abstraction. Graphs consisting of nodes and edges
between the nodes have emerged as a simple yet powerful
abstraction for this purpose in a diverse range of application
areas. Several authors have studied social network analysis
through graph matching. [14] propose a general-purpose ap-
proach, whereas specific applications exist for the purpose of
expert matching [15], prevention of radicalization [16] and
social network analysis [17]. Examples of other applications
include identification of persons in surveillance systems [18],
protein structure matching [19], crime matching [20], ontology
matching [21] and remote sensing [22]. Applications of graph
matching to industrial process design documents are limited.
[1] created manually graph representations of several pulp and
paper process plants and used graph matching to assess the
reuse potential of the plant designs. [23] proposes an algorithm
for matching the 2D and 3D graph representations of a
process plant, but does not propose algorithms for creating the
graph representations from the available source information.
No work has applied graph matching to industrial process
plant design documents that include pipe routing information,
which is necessary for the generation of high fidelity thermo-
hydraulic simulation models [9]. PCFs capture this information
in detail, and for that reason any straightforward approach
for generating a graph from a PCF, as in our previous work
[2], will result in a graph that has much more detail than a
graph that is generated from a P&ID. This is the motivation
for the research in this paper, which aims to process a PCF
generated graph to the same level of abstraction as a P&ID
generated graph. This will make it possible for further research
to integrate P&ID and 3D CAD information towards automatic
generation of a digital twin. Such a generation method will
surpass existing methods for automatic generation of digital
twins.

III. CASE STUDY

A. Case process

The case study is a thermo-hydraulic water process [9],
[24]–[26]. The process has been modelled in the Intergraph
Smart 3D tool (Fig. 1). The model includes 9 pipelines, each
of which has been exported as a PCF file.

Fig. 1. 3D CAD model of the case process [2]

B. A motivating example

Fig. 2 shows a graph that was generated by applying the
graph generation methodology in [2] to one of the 9 PCF files
exported from the model in Fig. 1 The implemented graph
generator automatically outputs the graph as lists of nodes
and edges in .csv files, from which the visual representation
in Fig. 1 was created manually. The same approach applies
to all graphs presented in this paper. Some of the nodes and
edges in Fig. 2 are color coded, and the corresponding physical
process components are indicated within ellipses of the same
color on photographs of the physical process in Fig. 3 and
Fig. 4.

IV. METHODOLOGY AND RESULTS

The structure of this section is as follows. Section IV-A elab-
orates the objective stated in section I as section VI specific
issues to be solved. The remaining subsections present graph
processing algorithms for solving the issues. The algorithms
form a pipeline, with the output graph of one algorithm being
the input graph of the next algorithm. It will be much easier
for the reader to follow the presentation if the output and
input graphs are presented in conjunction with the algorithms.
This is the rationale for structuring this section as a combined
“methodology and results” section.

A. General issues in graphs generated from PCF files

The goal of this paper stated in section I is to further
process graphs such as the one in Fig. 2, so that they are at
the same level of abstraction as graphs generated from P&ID
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Fig. 2. Graph generated from one of the 9 PCF files exported from the 3D
CAD model in Fig. 1

Fig. 3. Color-coded mapping of a part of the graph in Fig. 2 to the photograph
of the physical process

diagrams with methods such as the one presented in [2]. The
following observations in Fig. 2 are examples general issues
to be expected when generating graphs from PCF files:

ISSUE1: Since every elbow and weld is captured, sections
of a pipeline that do not have any tees, nozzles or instruments
are represented with several nodes connected in series.

ISSUE2: Valves are represented with edges instead of
nodes.

ISSUE3: Tees are not explicitly marked as a special type
of node, but need to be identified as nodes with 3 edges.

Fig. 4. Color-coded mapping of a part of the graph in Fig. 2 to the photograph
of the physical process

ISSUE4: The node labelled “Pipeline 2” is a pipeline con-
nector in the PCF file referring to a corresponding connector
in another PCF file. PCF files may have some redundancies,
especially related to pipeline connectors being listed twice
with slightly different 3D coordinates. Figure 2 indicates the
redundant parts as black nodes.

ISSUE5: The pipeline connectors (nodes labelled “Pipeline
2”) are used when a physical pipeline is split somewhere along
the way between two PCF files. (The location of this split in
our motivating example is indicated with the green ellipse in
Fig. 2.)

ISSUE6: Process equipment such as tanks and pipes are
not explicitly captured in the PCF, which describes pipelines
ending at nozzles of such equipment All of these issues result
in the graph having additional details and features, which have
no counterparts in the P&ID generated graphs. Thus, these
additional details and features are undesirable from the per-
spective of the research goal of this paper. Thus a methodology
for overcoming them is presented in the following subsections.

B. Graph simplification algorithm

A graph simplification algorithm for addressing ISSUE1,
ISSUE2 and ISSUE3 is presented in Fig. 5. The result of
applying this algorithm to the graph in Fig. 2 is presented in
Fig. 6. The color coding indicates the steps of the algorithm
that generate the different types of nodes. The node label
PLX −Y is shorthand for an END−CONNECTION −
PIPELINE element in a PCF file with PIPELINE −
REFERENCE PLX , referencing another pipeline with
PIPELINE −REFERENCE PLY .
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Fig. 5. Graph simplification algorithm
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Fig. 6. The result of applying the algorithm in Fig. 5 to the graph in Fig. 2
to the photograph of the physical process

Fig. 7 shows the result of applying the algorithm in Fig. 5 to
each of the 9 PCF files separately. Thus, Fig. 7 is 9 separate
graphs. Violet circles have been added manually to indicate
which nozzles correspond to the same component. Brown
dashed lines have been manually added to indicate matching
end connections between PCF files.

C. Redundant end connection removal algorithm

The solution to ISSUE4 is the removal of the redundant end
connections and the tees that they are connected to. These are

the black nodes in Fig. 7. The remaining edges of the removed
tee also need to be fixed. For example, after removing tee 294
in Fig. 7, there should be one edge from valve 343 to end
connection PL2-5. An algorithm for this purpose in presented
in Fig. 8. The result of applying this algorithm to the graph
in Fig. 7 is presented in Fig. 9.

D. Graph fragments unification algorithm

The solution to ISSUE5 is to establish the connections that
are indicated with manually drawn dashed brown lines in
Fig. 9. It is not enough to just add edges corresponding to these
lines. The end connection nodes should be deleted, since they
will have no counterpart in the graph generated from a P&ID.
Thus, there should be an edge between the nodes that are
connected to the end connection nodes. For example in Fig. 9,
the nodes PL5-2 and PL2-5 should be deleted along with their
edges, and an edge from tee 602 to valve 343 should be added.
Fig. 10 presents the algorithm for this purpose. It is notable
that although the case study follows the naming convention of
pipeline references starting with ‘PL’, the algorithm does not
make any assumptions on naming conventions and just uses
the variable REF for this purpose. Fig. 11 shows the result
of applying the algorithm in Fig. 10 to the graph in Fig. 9.

E. Equipment node creation algorithm

The solution to ISSUE6 is to create the equipment nodes
corresponding to the violet circles that have been manually
added to Fig. 11. The nozzles have been created from the tag
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on the CONNECTION − REFERENCE line under an
END−CONNECTION −EQUIPMENT element of a
PCF file. The tags are of the following form:
< equipmentname > / < nozzlename >

The algorithm in Fig. 12 creates an equipment node from
each unique < equipmentname > found from these tags. For
each tag, it creates an edge from the nozzle to this equipment
node. The result of applying this algorithm to the graph in
Fig. 11 is shown in Fig. 13.
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map.put(tag, n’)
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Fig. 12. Equipment node creation algorithm
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V. DISCUSSION

Fig. 14 shows a graph generated by applying the algorithm
presented in [2] to a P&ID of the case process exported in
the Proteus XML format. It is notable that this P&ID does
not have all of the pipelines, so that graph is simpler, and
the significance of this for further research is elaborated in
the concluding section. By comparing Fig. 13 and Fig. 14, it
can be observed that they are at the same level of abstraction,
and that the smaller number of tees and valves in the latter is
due to the absence of some of the pipelines in the original
P&ID. Otherwise, the graphs are comparable. One notable
difference is that the Proteus XML specifies the type of process
component, such as the type of tank, vessel or pump. As was
explained in section IV-E, this information cannot be found
from PCF files, so the algorithm in Fig. 12 only creates nodes
of type ‘equipment’. Thus for graph matching purposes in
further research, it may be beneficial to simplify the P&ID
generated graph so that the type of all pump, tank and vessel
nodes is changed to ‘equipment’.

VI. CONCLUSION AND FURTHER RESEARCH

The objective of the paper was stated in section I and
elaborated into 6 issues in section IV. A solution based on
the PCF standard was presented in sections IV-A to IV-E
and an application to a case was presented. Based on the
case study, all of the issues were satisfactorily addressed.
Further research for larger industrial cases can further test
the scalability of the method and its robustness to glitches
in the source information. The motivation for this paper has
been to enable integration of P&ID and 3D CAD information
to obtain an integrated graph model, so the most immediate
need for further research is to perform matching between
graphs such as the ones in Fig. 13 and Fig. 14 to identify
the corresponding parts of the P&ID and 3D CAD models.
The algorithms presented in this paper generate the node and
edge listings that are the source information to a tool that
implements a graph matching algorithm. Potential matching
algorithms have been discussed in [1]. Finally, it is notable
that our P&ID was an early design phase artifact while our
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Fig. 14. Graph generated from a P&ID of the case process

3D CAD model is a detailed design phase artifact. This
explains the major differences between Fig. 13 and Fig. 14.
For broad industrial applicability, it is desirable to be able to
match artifacts developed in different stages of the lifecycle
of the plant, since it is not possible to generally assume
that digital artifacts are available from all lifecycle phases.
This is especially relevant for industrial process plants which
have already been in operation for several decades. Additional
detail and changes are introduced throughout plant design and
commissioning, but also later in modernization, refurbishment
and retrofit operations. Thus, one specific question for further
research is to assess the possibility to match artifacts from
different lifecycle phases. An example of how this question
would apply to our case study would be trying to correctly
match the violet nodes in Fig. 13 and Fig. 14.
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[12] J. G. Campos, J. S. López, J. I. A. Quiroga and A. M. E. Seoane,
”Automatic generation of digital twin industrial system from a high
level specification,” Procedia Manufacturing, Volume 38, PP. 1095-1102,
2019.

[13] H. Son, C. Kim and C. Kim, ”3D reconstruction of as-built industrial
instrumentation models from laser-scan data and a 3D CAD database
based on prior knowledge,” Automation in Construction, vol. 49, part
B, pp. 193-200, 2015.

[14] C. Davalas, D. Michail and I. Varlamis, ”Graph matching on social
networks without any side information,” 2019 IEEE International Con-
ference on Big Data (Big Data), Los Angeles, CA, USA, pp. 1060-1065,
2019.

[15] W. fei Fan, X. Wang and Y. Wu, ”ExpFinder: Finding experts by graph
pattern matching,” 2013 IEEE 29th International Conference on Data
Engineering (ICDE), Brisbane, QLD, pp. 1316-1319, 2013.

[16] B. W. K. Hung, A. P. Jayasumana and V. W. Bandara, ”Finding Emergent
Patterns of Behaviors in Dynamic Heterogeneous Social Networks,” in
IEEE Transactions on Computational Social Systems, vol. 6, no. 5, pp.
1007-1019, Oct. 2019.

[17] G. Liu et al., ”MCS-GPM: Multi-Constrained Simulation Based Graph
Pattern Matching in Contextual Social Graphs,” in IEEE Transactions
on Knowledge and Data Engineering, vol. 30, no. 6, pp. 1050-1064, 1
June 2018.

[18] Y. Huang, H. Sheng and Z. Xiong, ”Person re-identification based
on hierarchical bipartite graph matching,” 2016 IEEE International
Conference on Image Processing (ICIP), Phoenix, AZ, pp. 4255-4259,
2016.

[19] F. Othman, I. Umar, R. Abdullah and A. Rathi, ”Parallel Bipartite Graph
Algorithm for Protein Structure Matching Using OpenMP,” 2010 Second
International Conference on Computer Research and Development,
Kuala Lumpur, pp. 25-29, 2010.

[20] N. Qazi and B. L. W. Wong, ”Behavioural & Tempo-Spatial Knowledge
Graph for Crime Matching through Graph Theory,” 2017 European
Intelligence and Security Informatics Conference (EISIC), Athens, pp.
143-146, 2017.

[21] A. Sharma, ”Ontology Matching Using Weighted Graphs,” 2006 1st In-
ternational Conference on Digital Information Management, Bangalore,
pp. 121-124, 2007.

[22] B. Banerjee, F. Bovolo, A. Bhattacharya, L. Bruzzone, S. Chaudhuri
and K. M. Buddhiraju, ”A Novel Graph-Matching-Based Approach for
Domain Adaptation in Classification of Remote Sensing Image Pair,” in
IEEE Transactions on Geoscience and Remote Sensing, vol. 53, no. 7,
pp. 4045-4062, July 2015.

[23] R. Wen, W. Tang and Z. Su, ”Topology based 2D engineering drawing
and 3D model matching for process plant,” Graphical Models, V. 92,PP.
1-15, 2017.

[24] G. S. Martı́nez, T. A. Karhela, R. J. Ruusu, S. A. Sierla and V.
Vyatkin, ”An Integrated Implementation Methodology of a Lifecycle-
Wide Tracking Simulation Architecture,” in IEEE Access, vol. 6, pp.
15391-15407, 2018.

[25] G. S. Martı́nez, S. A. Sierla, T. A. Karhela, J. Lappalainen and V.
Vyatkin, ”Automatic Generation of a High-Fidelity Dynamic Thermal-
Hydraulic Process Simulation Model From a 3D Plant Model,” in IEEE
Access, vol. 6, pp. 45217-45232, 2018.

[26] S. A. Sierla, T. A. Karhela and V. Vyatkin, ”Automatic Generation of
Pipelines Into a 3D Industrial Process Model,” in IEEE Access, vol. 5,
pp. 26591-26603, 2017.


