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Abstract: This paper presents a hybrid finite element method (FEM)–analytical model of a three-phase
squirrel cage induction motor solved using parallel processing for reducing the simulation time.
The growing development in artificial intelligence (AI) techniques can lead towards more reliable
diagnostic algorithms. The biggest challenge for AI techniques is that they need a big amount of data
under various conditions to train them. These data are difficult to obtain from the industries because
they contain low numbers of possible faulty cases, as well as from laboratories because a limited
number of motors can be broken for testing purposes. The only feasible solution is mathematical
models, which in the long run can become part of advanced diagnostic techniques. The benefits of
analytical and FEM models for their speed and accuracy respectively can be exploited by making a
hybrid model. Moreover, the concept of cloud computing can be utilized to reduce the simulation
time of the FEM model. In this paper, a hybrid model being solved on multiple processors in a parallel
fashion is presented. The results depict that by dividing the rotor steps among several processors
working in parallel, the simulation time reduces considerably. The simulation results under healthy
and broken rotor bar cases are compared with those taken from a laboratory setup for validation.

Keywords: induction motors; fault diagnosis; modeling; finite element analysis; parallel processing

1. Introduction

Electrical machines, particularly induction motors, are indispensable in almost all sectors of
our modern-day society. In the form of conveyor belt movers, compressors, electric vehicles, fans,
and pumps, etc., they consume more than 50% of the total generated energy worldwide [1]. This fact
makes their predictive maintenance very important, to avoid any catastrophic situation. As the world
is moving towards industry 4.0, predictive maintenance is becoming more important—as contrasted
to preventive or reactive maintenance. Unlike preventive or reactive maintenance, in predictive
maintenance we monitor the behavior of an electrical machine and anticipate failures before they occur.

Predictive maintenance allows the servicing of the machine when it needs. By doing so, the system’s
downtime can exponentially decrease with a resultant decrease in the maintenance cost. A variety
of conventional condition-monitoring techniques have been discussed in literature over the past few
decades, such as motor current signature analysis (MCSA) [2–5], thermal analysis [6–8], vibration [9],
acoustics [10,11], stray flux monitoring [12,13], partial discharges [14], air-gap flux monitoring [15], etc.

Although these techniques are well-established, compatible with a variety of signal-processing
techniques, and require fewer computational resources, they possess several drawbacks. The most

Appl. Sci. 2020, 10, 7572; doi:10.3390/app10217572 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0003-0481-5066
https://orcid.org/0000-0003-2154-8692
https://orcid.org/0000-0001-6126-1878
https://orcid.org/0000-0001-8035-3970
https://orcid.org/0000-0002-5915-8393
http://dx.doi.org/10.3390/app10217572
http://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/10/21/7572?type=check_update&version=2


Appl. Sci. 2020, 10, 7572 2 of 15

prominent drawbacks are relevant to expensive sensors—such as in the case of thermal analysis and the
poor legibility of fault-based frequency components at the incipient stage, as in motor current signature
analysis (MCSA)-based techniques. Moreover, these techniques depend upon various constraints such
as machine structure, the industrial environment, external noise, bad load-coupling, poor foundation,
and the impact of the drive controller, etc. The segregation of frequency components when there is
more than one fault is another challenging task in MCSA-based diagnostic techniques. It becomes
worse when the industrial inverters inject several frequency components as well.

The industrial inverters with complex control algorithms are becoming a crucial part of a drive
system. In this case, the definition of faults goes beyond the domain of simple machine equations.
The use of conventional diagnostic techniques, while neglecting all subsystems of the drive, can increase
the false or missed alarm rate.

To avoid all those problems and to make diagnostic algorithms more reliable, advanced
model-dependent and artificial intelligence (AI) based techniques can give promising results.
The majority of rotating machine faults are degenerative, which makes fault diagnosis a pattern
recognition problem. Due to a variety of global signals and different faults, pattern recognition is
not a straightforward problem. Therefore, a reliable diagnostic algorithm can be a combination of
data processing for feature extraction and recognition through AI techniques. Various AI techniques
such as probability-based, classification, statistical learning, mathematical optimization, and convex
optimization can be found in the literature [16]. The statistical and classification-based methods are
gaining increasing popularity in uses such as support vector machines (SVM) [17–19], artificial neural
networks (ANN) [20–22], Bayesian classifiers, Naïve Bayes classifiers [23–25], machine learning [26,27],
k-nearest neighbor algorithm [28–30], etc.

Almost all AI-based diagnostic techniques need a large number of data samples under various
conditions. Those conditions may include signals under healthy, faulty, loaded, and no-load conditions.
Moreover, various kinds of faults with different severity levels under a variety of loading conditions
can better train advanced AI-based techniques. The collection of large amounts of data with different
constraints is practically impossible both from industry and laboratory environments. Because, first,
in industries there are few faulty machines and, secondly, the type and level of faults in industry
machines are unknown at first—which is necessary information for training the diagnostic algorithms.
In the laboratory, conducting a large number of destructive tests is not economically feasible. The only
optimal way is to rely on the accurate mathematical models of the machine. Using mathematical
models, almost any kind of fault in any type of machine with different natures of load can be simulated
to train the diagnostic algorithm.

A variety of machine modeling techniques are available in the literature, which can be broadly
classified into two categories; analytical and numerical. The two-axis theory-based models [31–33] are
being effectively utilized for control and analysis. Although those models are simple to understand,
comprehensive, and fast, they are not suitable for fault simulations because of various approximations
such as sinusoidal stator and rotor windings distribution, uniform air gap, no inter-bar currents, and no
material saturation, etc. The multiple coupled circuit theory-based models such as winding function
analysis (WFA) [34,35], modified winding function analysis (MWFA) [36,37], and extended MWFA [37]
allow the inclusion of practical stator and rotor winding functions, the stator and rotor slots openings,
and non-linear functions for material saturation. Those models can be used to simulate the majority of
faults with very much less simulation time and computational complexity, but they do not remain
straightforward while dealing with different types of machines with complex geometrical features.
Similarly, other analytical models such as magnetic equivalent circuit [38], generalized harmonic
analysis [39], voltage behind reactance [40], and convolution theorem [41] can be used for the simulation
of various faults in induction machines but at the cost of material and geometry-related approximations.

Having the ability to deal with almost all kind of geometries and material properties, and the
compatibility to solve various kinds of problems, the finite element method (FEM)-based modeling
techniques are gaining heightened popularity. Using FEM, a vast variety of electromagnetic [42,43],
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thermal [44], fluid dynamics [45], structural [46], and related problems can be solved with incredible
accuracy. In FEM, the geometry of the system is divided into a considerable number of mesh elements
represented by nodes and the solution of each node leads toward the final solution. Indeed, it
requires significantly powerful computational resources and a large memory to save intermediate
results. Although modern computers with advanced processors are very strong, they need a long
time, from several minutes to days, for the solution of highly unsymmetrical machines. The saving of
simulation time for fault diagnostics is very important for the collection of vast amounts of data, which
can be used as a benchmark for advanced fault diagnostic techniques.

Many methods to diminish these problems have been presented in the literature such as;
the hybrid analytical–FEM model [47,48], the model order reduction [49–51], and sparse subspace
learning (SSL) [52], etc. These methods have their own limitations as they rely on statistical and
interpolation techniques, which are different for different kinds of machines. Problems such as the
reducibility of the model and the precision of the input grid can lead to the increased complexity of
the model.

As the world is moving towards industry 4.0 standards and cloud computation, the computational
resources are becoming unlimited. These resources can be in the form of software applications,
processing power, and data storage. All these resources are very important for big data-based
advanced diagnostic techniques such as machine learning [53], deep learning [54], parallel autonomous
mining [55], image processing [56], online wireless monitoring through smart sensors [57], and neural
networks [58–60], etc. The basic building blocks of the cloud computation are infrastructure as a service
(IaaS), platform as a service (PaaS), and software as a service (SaaS). Those building blocks can be utilized
for big data storage, custom software development, and computer application utilization respectively.

In order to curtail the complexity related problems of FEM models, the concept of parallel
processing by utilizing the cluster of computers is presented in this paper. Unlike most of the papers
where the simulation speed of FEM models is increased either by exploiting the symmetry (which is not
true in the case of faulty machines) or by data interpolation, in this paper the complete two-dimensional
(2D) geometry of a three-phase squirrel cage induction motor is solved on multiple processor cores
working in parallel with each other. All inductances are calculated by doing a magneto-static solution
of the machine at several rotor positions. The calculated inductances are saved in the three-dimensional
(3D) lookup table as a function of the rotor position. The dynamic behavior is then studied in
MATLAB/Simulink, and the results are validated by comparing them with the measurements taken
from the laboratory test rig.

2. The Motor’s Model

The voltage equations of a squirrel-cage induction motor with a stationary stator and short-circuited
rotor cage can be described using magnetic coupled circuits theory as follows:

Vs = IsRs +
d
dt
(LssIs + LsrIr) (1)

0 = IrRr +
d
dt
(LrsIs + LrrIr) (2)

where Vs, Is, Ir, Rs, Rr, Lss, Lsr, and Lrr are the vectors containing the machine’s voltage, currents,
resistances, and inductances respectively. The stator–stator, stator–rotor, rotor–stator, and rotor—rotor
self and mutual inductance matrices (Lss, Lsr, Lrs, and Lrr) can be defined as follows;

Lss =


Laas Labs Lacs

Lbas Lbbs Lbcs
Lcas Lcbs Lccs

, (3)
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Lsr =


Lar1 Lar2 . . . Lari . . . Larn Lare

Lbr1 Lbr2 . . . Lbri . . . Lbrn Lbre
Lcr1 Lcr2 . . . Lcri . . . Lcrn Lcre

, (4)

Lrr =



Lr1r1 Lr1r2 · · · Lr1ri · · · Lr1rn Lr1re
Lr2r1 Lr2r2 · · · Lr2ri · · · Lr2rn Lr2re

...
...

...
...

...
...

...
Lrir1 Lrir2 · · · Lriri · · · Lrirn Lrire

...
...

...
...

...
...

...
Lrnr1 Lrnr2 · · · Lrnri · · · Lrnrn Lrnre

Lrer1 Lrer2 · · · Lreri · · · Lrern Lrere


(5)

Rrr =



2(Rb + re) −Rb 0 0 · · · 0 −Rb −re

−Rb 2(Rb + re) −Rb 0 · · · 0 0 −re

0 −Rb 2(Rb + re) −Rb · · · 0 0 −re
...

...
...

...
...

...
...

...
0 0 0 0 · · · 2(Rb + re) −Rb −re

−Rb 0 0 0 · · · −Rb 2(Rb + re) −re

−re −re −re −re · · · −re −re nbre


(6)

The last rows and columns in Lsr, Lrr, and Rrr correspond to the end ring values, which can
be neglected in case of a perfect symmetrical machine, as the net end ring current is always zero.
In unsymmetrical machines, these entries are important to simulate the end ring faults and to avoid
the singularity problems while taking the inverse of inductance matrices.

For the ease of implementation, all these matrices can be grouped.

Vs =
[

vas vbs vcs
]T

(7)

Is =
[

ias ibs ics
]T

(8)

Ir =
[

ir1 ir2 · · · irnire
]T

(9)

L =

[
Lss Lsr

Lrs Lrr

]
(10)

The currents, torque, and speed can be calculated as:[
Is

Ir

]
=

[
Lss Lsr

Lrs Lrr

]−1 ∫ [[
Vs
0

]
−

[
Rs 0
0 Rr

][
Is

Ir

]]
dt (11)

Te = IT
s

(
d

dθ
Lrs

)
Ir (12)

In the matrices form:

Te =
1
2

(p
2

)[ Is

Ir

]T
d

dθ

[
Lss Lsr

Lrs Lrr

][
Is

Ir

]
(13)

J
d
dt
ωm = Te − TL − Bωm (14)

All inductances and resistances need to be calculated with stepping rotor and save them in 3D
lookup tables where the third dimension corresponds to the rotor position as shown in Figure 1.
All calculations can be done in offline environment using a magneto-static FEM solution and in the
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online environment the rotor position can be used as an index value to call a corresponding matrix
from the lookup table to calculate the performance parameters like speed and torque, etc.

Figure 1. The schematic diagram of inductances calculations and their implementations for dynamic simulation.

3. LAN Network for Cluster Formation

Parallel computing is a form of concurrent computing where several workouts can be performed
in the overlapping periods. Generally, any large problem can be divided into n-small problems,
which can be solved simultaneously. Unlike traditional serial programs, the divided problem segments
should be independent of each other so that they can run on different processors and the solutions
can be combined on the client machine at the end. The general schematic diagram of distributed
parallel computation is shown in Figure 2. The client machines, job scheduler, WIFI or LAN network,
and the worker processors, are the main parts of the distributed cloud computation. The function of
the job scheduler is to divide and distribute the segments of the bigger problem into cluster computers.
The cluster computers can further divide their portion among their cores in the same manner.

Figure 2. The cluster formation and utilization for parallel processing.
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4. Inductances Calculations

In the case of electrical machines, most of the faults such as eccentricity, broken bars, and stator
inter-turn short circuits make the machines unsymmetrical. Due to this fact, the complexity reduction
techniques such as exploitation of symmetry by considering symmetric and non-symmetric boundary
conditions and model order reduction becomes more tedious. The only best optimal and reliable way
for fault diagnostics is to simulate the entire machine at various rotor positions. Since the solution at a
distinct rotor position is independent of the solution at subsequent rotor positions, the total “n” rotor
steps can be divided into various segments. The magneto-static problems of different rotor position
sectors such as, (0→ θ1), (θ2→ θ3), . . . , (θn-1→ θn), (θn+1→ 2π) can be divided among the workers
for parallel processing.

Figure 3 shows the required steps to calculate the inductances at different rotor positions.
The computer cluster consists of four computers making a local area network (LAN). Each computer is
Intel(R) Core(TM) i7-7500 CPU @ 3.41 GHz with 8 GB RAM and four cores. The finite element method
(FEM) based model is constructed using open-access software FEMM 4.0. For making the model and
collecting the results, FEMM is interfaced with MATLAB. After making the machine geometry and
winding configuration on FEMM, MATLAB works as a job scheduler. It divides the total number of
rotor steps among worker computers and their cores and receives the end results.

Figure 3. The division of rotor steps among various computers and their cores for parallel computation
and the procedure of inductances calculation.

For better accuracy, a considerable number of mesh elements (250,160) with (125,177) nodes are
solved having a precision of 1 × 10−8 at each rotor step. The FEMM 4.0 achieves this precision through
a conjugate gradient solver with the help of multiple successive approximation iterations. Since the
inductance profiles change with the change in the air gap, the selection of an appropriate rotor step
size is very important. The changing air gap is the function of stator and rotor slot openings [37],
which becomes very prominent when the openings on both sides align with each other and lead to the
abruptly changing inductance derivatives. As the rotor and stator, slots are different in number, their
least count multiple (LCM) can be a minimum choice regarding the number of rotor steps. By doing so,
some phase inductances can be considered as shifted copies of the other phase inductances. In this
case, the number of total rotor steps or solution samples will be divisible by the total number of rotor
bars and the number of samples corresponding to 120 and 240 degrees for stator phases. For example,
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if the number of rotor steps is (40 × 48 = 1920), the Lbb will be equal to (120 × 1920/360) samples shifted
copy of Laa. The same is true in the case of rotor bar inductances, only self and mutual inductances of a
single loop need to be calculated, the rest of them are shifted copies. However, special attention is
needed if the fault changes all the inductances symmetrically or not.

5. The Simulation Results

At each rotor position, every individual stator phase is energized with a unity DC current,
and relevant inductances are calculated by integrating the magnetic vector potential over the coil area
as shown by the following equations.

Lsel f =

∫
si A.J da

i2
(15)

Lmutual =
n2

i1a2

(∫
+si

A1da1 −

∫
−si

A1da2

)
(16)

where A is the vector potential, J is the current density, n is the number of turns per phase, i is the
phase current, the subscript “si” is for surface integral. The first bracket term in Equation (16) is the
integration of the vector potential of coils with positive current or the coils pointing out of the page.
The second term corresponds to the coils with negative current or pointing into the page, a2 is the
cross-sectional area of the coil, which is approximately equal to the slot area multiplied with the filling
factor. The motor’s magnetic flux distribution after the energizing phase “a” with 1 A DC current is
shown in Figure 4. The highlighted slots contain phase “a” winding whose surface integral of magnetic
potential is equal to self-inductance Laa at the specific rotor position as in Equation (15).

Figure 4. The flux distribution with energized phase “a” with IDC = 1 A, and the selection of slots for
vector potential integral for calculation of self-inductance Laa.

Similarly, all stator–stator self and mutual and stator–rotor mutual inductances can be calculated.
The rotor–rotor self and mutual inductances are calculated by energizing a single rotor loop with
unity DC current as shown in Figure 5. Only one rotor loop needs to be energized and solved for
its inductances, and the rest of them possess the same solution with a phase shift equal to the angle
difference between them.
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Figure 5. Flux distribution due to energized rotor loop with IDC = 1 A for the calculation of
rotor inductances.

Since the solution is for the 2D model, the effect of end windings is compensated by using
additional end winding leakage inductance and resistance using the following analytical formulas.

Lew =
Qs

m
q
(

Zq

a

)2

µolwλw (17)

where Qs is the number of stator slots, Zq is the number of conductors per slot, a is the number of
winding parallel paths per phase, m is the total number of stator phases, and q is the number of slots
in a pole captured by an individual phase. lw is the average length of the end winding, λw is the
permeance factor which is 0.20 for the motor under investigation. The same formula can be used to
calculate the leakage inductance of the rotor end rings. For building the resistance matrix, various
stator- and rotor-related resistances are calculated using resistivity formula where the skinning and
proximity effects are neglected because of the DC supply current;

R =
ρl
A

(18)

where ρ is the resistivity, A is the cross-sectional area, and l is the length of the conductor. The effective
slot area (ESA) is equal to the total area of slot multiplied with the filling factor, which is 0.60 for
the machine under investigation. The conductor cross-sectional area can be calculated by dividing
the ESA with the total number of conductors in the slot, which are 17 in this case. The resistance
of the end windings is included by increasing the length of the per phase conductor corresponding
to the length of the end winding. Since the stator and rotor windings are energized with unity DC
current, the effects such as proximity, skinning, material saturation, and eddy currents are neglected
as the focus is towards the simulation time reduction. However, they can be included in the online
section analytically.

Figure 6 shows various inductances as a function of the rotor position. All self and mutual
inductances are the functions of the air gap, which changes with the stepping rotor. This phenomenon is
evident in the inductance profiles, which are calculated with a rotor step size of 0.1875 degrees. The self-
and mutual inductances of stator have five cycles until an angle of 45 degrees, which corresponds to
40 cycles until 360 degrees. This is because the rotor has 40 bars having 40 slot openings. The stator
inductances consider the stator air gap as static while rotor associated air gap moves with the moving
rotor. The same is true for rotor self- and mutual inductances, which have six cycles per 45 degrees
corresponding to 48 cycles till 360 degrees. Where 48 is the number of stator slots and for rotor
inductances, the rotor-associated air gap remains static while the stator gap has a relative motion.
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Figure 6. The calculated inductances as a function of the rotor position.

6. Test Setup

The test rig consists of two identical motors with specifications given in Table 1. Both machines
are attached back to back on the same mechanical foundation as shown in Figure 7. The first motor is
the test motor while the second acts as a loading machine. The grid supplies the test machine while the
loading motor is controlled using ABB ACS-880 industrial inverter for better controllability of slip.
The measurement time of the stator current of the test machine under healthy and broken bar cases is
100 sec with a sampling frequency of 10 kHz.

Table 1. Motor specifications.

Sr. No. Parameter Symbol Value

1 Rated speed Nr 1400 rpm@50 Hz
2 Rated power Pr 18 kW@50 Hz
3 Connection Y, ∆ Star (Y)
4 Power factor cosϕ 0.860
5 Number of poles P 4
6 Number of rotor bars Nrb 40
7 Number of stator slots Ns 48

Figure 7. The test rig and its block diagram.
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7. Results and Discussion

7.1. Stator Current Spectrum under Healthy and Broken Rotor Bar Cases

The varying inductances give rise to the harmonics in the stator voltage and currents. The most
prominent of them are supply based and spatial harmonics. A comparison of the frequency spectrum of
stator current obtained from the proposed model and the measurements taken from the laboratory test
rig is shown in Figure 8. The only additional harmonics in the practical signal are the third harmonics
coming from the supply side. Another major source of harmonics in the signal spectrum is the fault,
which can act as a definition component for condition monitoring. Figure 9 shows the development of
the left side harmonics (LSH) due to the broken bars at the rated load.

Figure 8. The frequency spectrum of stator current obtained from the proposed model and
laboratory-based measurements.

Figure 9. The broken rotor bars-based side-band frequencies.

7.2. Time Comparison

The overall computational speed of each worker (computer) can be increased by using all cores
in a parallel fashion. This increase in speed is because of increased cache, which reduces memory
latency; the parallel handling of the independent instructions; and the improved performance of the
processor power wall. The per-step computational time for the calculation of inductances relevant
to a single phase (Laa, Lab, Lac, and Lar) at different rotor positions by using the different number of
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cores is shown in Figure 10a. Since, with the increase in the number of cores, more processing power
is being utilized, the per-step calculation time increases. Moreover, the variation in the calculation
time with the increase in the number of cores also increases, which depends upon the processor being
utilized by auxiliary programs like Windows, etc. Figure 10b shows the mean per-step simulation
time, which increases from 100 to 200 s per step with the increase in the utilization of processing
power from about 25% (one core) to 94% (four cores). The mean simulation time is calculated because
each step takes a slightly different time for calculation because of the change in the number of mesh
elements and the other programs running in parallel. The overall calculation time for all inductances
for 1920 rotor positions is shown in Figure 10c. It is obvious that even the per step simulation time with
an increase in the parallel processing increases, but the total calculation time decreases dramatically.
Meanwhile, Figure 10d shows the time taken by the cluster of four computers working as a LAN.
The simulation time decreases considerably and the non-linear decrease in time is due to the latency of
the network. It is worth mentioning that the job scheduler prefers cores of different computers to work
in parallel. This is the reason why the computational time in Figure 10d with four cores of different
computers working in parallel is considerably less than the time taken by one computer with all four
cores engaged in parallel as shown in Figure 10c.

Figure 10. The simulation time, (a) per step with different number of single computer workers (cores)
in parallel, (b) the mean per-step time with different number of cores of a single computer working in
parallel, (c) overall time on one computer with different cores engaged in parallel, (d) overall time with
different number of computers making a cluster with distributed cores in parallel.

8. Conclusions

This paper presents a hybrid FEM–analytical model solved in a parallel fashion on a cluster
of computers for the reduction of computational time. The artificial intelligence (AI) based
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condition-monitoring techniques for predictive maintenance of electrical machines is gaining heightened
popularity. This is not only because of their ability to detect faults at the incipient stage but also
because of their aptitude for faults segregation. The accurate model of the electrical machines is the
key element of these techniques, which is crucial for the collection of big data under various healthy
and faulty conditions. This data is essential for the training of the diagnostic systems and for making
the safety rules. Among several modeling techniques, the FEM-based models have proved their
accuracy in the field of electrical machine design for the past few decades. The FEM models have very
few approximations and can deal with almost any kind of geometrical complexities of the system as
compared to their analytical counterparts. The analytical models have their own attractions, such as the
reduced simulation time and the development of analytical equations, which are integral parts of drives
and inverse problem theory, etc. The biggest challenge for FEM-based models is their complexity in the
forms of computational time and required memory. While on the analytical side, the approximations
are fatal for any reliable diagnostic algorithm. The world is witnessing the exponentially increasing
trend in the power of processors and sophisticated IT networks, which leads toward cloud computation
and industry 4.0 standards.

By exploiting the benefits of analytical, FEM models, and cloud computation, this paper proposes
a hybrid analytical–FEM model for the simulation of the machine under healthy and faulty conditions
with reduced calculation time. Most of the techniques dealing with the reduction in the simulation time
of FEM models fail when the machine is in a faulty condition, which makes it purely unsymmetrical.
Moreover, any approximation for the sake of reduced complexity can decrease the reliability of the
model-dependent diagnostic algorithm. With the development of more sophisticated processors and
industry 4.0 standards, the complete models of the system can be solved in very much less time as
compared to the conventional techniques. In this paper, the model is first divided into offline and
online portions. All the inductances and other necessary parameters are calculated in the offline
section, and the results are saved in 3D matrices as a function of rotor position. Once the inductances
are calculated, they can be used in an online dynamic model where the performance parameters such
as speed, torque, flux, and currents can be investigated under different conditions. In the case of some
faults such as broken bars or broken end rings, the inductance matrices need not be calculated again
but the fault can be manipulated in the online portion. This can be achieved by changing the values
of the corresponding elements in the resistance matrix. For reducing the calculation time, the FEM
model is divided into several computers before dividing the specific portion into the cores of any
particular processor. For making a computer cluster resembling a cloud, four computers having the
same specifications were used as a local area network. The total rotor steps were then divided into
several cores working in parallel and the results were collected on the main computer. This technique
reduces the simulation time drastically without any need for model approximation. For the validation
of results, the frequency spectrum of simulated stator current is compared with the one measured in
the laboratory setup under healthy and broken rotor bar cases.
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