
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or
part of any of the repository collections is not permitted, except that material may be duplicated by you for
your research use or educational purposes in electronic or print form. You must obtain permission for any
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not
an authorised user.

Chalermsook, Parinya; Jiamjitrak, Wanchote Po
New binary search tree bounds via geometric inversions

Published in:
28th Annual European Symposium on Algorithms, ESA 2020

DOI:
10.4230/LIPIcs.ESA.2020.28

Published: 01/08/2020

Document Version
Publisher's PDF, also known as Version of record

Published under the following license:
CC BY

Please cite the original version:
Chalermsook, P., & Jiamjitrak, W. P. (2020). New binary search tree bounds via geometric inversions. In F.
Grandoni, G. Herman, & P. Sanders (Eds.), 28th Annual European Symposium on Algorithms, ESA 2020 Article
28 (Leibniz International Proceedings in Informatics, LIPIcs; Vol. 173). Schloss Dagstuhl - Leibniz-Zentrum für
Informatik. https://doi.org/10.4230/LIPIcs.ESA.2020.28

https://doi.org/10.4230/LIPIcs.ESA.2020.28
https://doi.org/10.4230/LIPIcs.ESA.2020.28

New Binary Search Tree Bounds via Geometric
Inversions
Parinya Chalermsook
Aalto University, Finland
chalermsook@gmail.com

Wanchote Po Jiamjitrak
Aalto University, Finland
wanchotej@gmail.com

Abstract

The long-standing dynamic optimality conjecture postulates the existence of a dynamic binary search
tree (BST) that is Op1q-competitive to all other dynamic BSTs. Despite attempts from many groups
of researchers, we believe the conjecture is still far-fetched. One of the main reasons is the lack of
the “right” potential functions for the problem: existing results that prove various consequences
of dynamic optimality rely on very different potential function techniques, while proving dynamic
optimality requires a single potential function that can be used to derive all these consequences.
In this paper, we propose a new potential function, that we call extended (geometric) inversion.
Inversion is arguably the most natural potential function principle that has been used in competitive
analysis but has never been used in the context of BSTs. We use our potential function to derive
new results, as well as streamlining/strengthening existing results.

First, we show that a broad class of BST algorithms (including Greedy and Splay) are Op1q-
competitive to Move-to-Root algorithm and therefore have simulation embedding property – a new
BST property that was recently introduced and studied by Levy and Tarjan (SODA 2019). This
result, besides substantially expanding the list of BST algorithms having this property, gives the first
potential function proof of the simulation embedding property for BSTs (thus unifying apparently
different kinds of results). Moreover, our analysis is the first where the costs of two dynamic binary
search trees are compared against each other directly and systematically. Secondly, we use our new
potential function to unify and strengthen known BST bounds, e.g., showing that Greedy satisfies
the weighted dynamic finger property within a multiplicative factor of p5` op1qq.

2012 ACM Subject Classification Theory of computation Ñ Data structures design and analysis

Keywords and phrases Binary Search Tree, Potential Function, Inversion, Data Structures, Online
Algorithms

Digital Object Identifier 10.4230/LIPIcs.ESA.2020.28

Funding Parinya Chalermsook: Part of this work was done while Parinya was visiting the Simons
Institute for the Theory of Computing. It was partially supported by the DIMACS/Simons
Collaboration on Bridging Continuous and Discrete Optimization through NSF grant #CCF-
1740425. This project has received funding from European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation programme (grant agreement No 759557).
Parinya is also funded by Academy of Finland Research Fellowship, under grant number 310415.

Acknowledgements We would like to thank Thatchaphol Saranurak for his contributions in the
early stage of this paper and for many insightful discussions. We also thank anonymous reviewers
for many detailed comments and suggestions.

© Parinya Chalermsook and Wanchote Po Jiamjitrak;
licensed under Creative Commons License CC-BY

28th Annual European Symposium on Algorithms (ESA 2020).
Editors: Fabrizio Grandoni, Grzegorz Herman, and Peter Sanders; Article No. 28; pp. 28:1–28:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:chalermsook@gmail.com
mailto:wanchotej@gmail.com
https://doi.org/10.4230/LIPIcs.ESA.2020.28
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

28:2 Geometric Inversions in Binary Search Trees

1 Introduction

The dynamic optimality conjecture [23] is among the most fundamental problems in data
structures. The conjecture postulates the existence of an online1 and dynamic2 binary
search tree (BST) that is Op1q-competitive (or simply competitive) to the optimal offline
BST algorithm. So far, the main candidates for being dynamically optimal are Splay and
Greedy[17, 12, 18] (a.k.a. Greedy Future and Greedy ASS) since they possess many desirable
properties that are consequences of dynamic optimality [5, 14, 11, 10, 19], although the
best known competitive ratio of Oplog lognq is given by Tango trees [13]. Despite various
attempts from many groups of researchers, the conjecture remains elusive. There are several
observed reasons that make the conjecture long-standing, and one such reason (that this
work tries to address) is the difficulty of comparing the behavior of two dynamic BSTs (see,
for instance, [16]), which can be attributed to the lack of “generic” and “intuitive” potential
function in this context: The simplest bound, static optimality, was derived via sum-of-
logs [23, 6], and Splay’s dynamic finger (which extends static optimality) uses sophisticated
potential function that in some way extends sum-of-logs [10, 11]; Greedy’s weighted dynamic
finger [14] relies on very different potential function that neither seems related to sum-of-logs
nor Splay’s dynamic finger; the recent simulation embedding properties [16, 21] as well as best
known bound for Splay’s deque property [19, 20] do not even use potential function. Finally,
none of these techniques was used to prove that Greedy or Splay is oplognq-competitive. Given
this state of the art, it is relatively unclear which potential function should be used/extended
for proving dynamic optimality. This paper is inspired by the following question:

Is there a natural, generic potential function technique that allows us to compare the
cost of two dynamic BSTs in a modular way?

1.1 Our Contribution
Our main conceptual contribution is a new potential function that, in our opinion, seems to
be the right way to handle binary search trees. Our idea is inspired by inversions3, which are
arguably the most natural potential function for the purpose of analyzing online algorithms
(see, for instance, [2, 22, 1] in the context of list update and [9] in the context of the k-server
problem). We illustrate the power of our techniques in two directions.

Let us first introduce some notation before stating our results. We consider keys in
rns “ t1, 2, . . . , nu and access sequence X “ px1, x2, . . . , xmq P rns

m. For an online dynamic
BST algorithm A, denoted by costApXq the cost of serving sequence X using algorithm A.
We illustrate the power of our new concept in two ways.

First contribution: MTR-Competitiveness and Simulation Embedding

Recently, Levy and Tarjan [16] (and independently Russo [21]) noted the difficulty of
comparing two dynamic BSTs and proposed an alternative path towards dynamic optimality.
They rephrase dynamic optimality as two intrinsic properties (which they call, simulation

1 A BST is online if an input sequence is revealed one at a time, i.e. the request for xt appears at time t.
2 A binary search tree is dynamic if it is allowed to change its form after each access, paying the cost of

pointer movements.
3 In general, the inversion potential function (or its generalization to “distance potential”) measures the

difference between the algorithm and the optimal, so it is suitable for analyzing the case when the
optimal can change.

P. Chalermsook and W.P. Jiamjitrak 28:3

embeddings and approximately monotone) of an algorithm. Roughly speaking, a BST has
simulation embeddings if it can “simulate”4 any other BST algorithm, and it is approximately
monotone if the cost of running the algorithm on an input sequence X is asymptotically
at least the cost of running it on an arbitrary subsequence of X. An algorithm is Op1q-
competitive if and only if it has both properties. They argue that Splay trees satisfy simulation
embeddings and outlined a plan to prove that Splay trees are approximately monotone.

In this paper, we show that a broad class of algorithms (as defined in [6]) in fact satisfies
simulation embeddings. This result is derived as a corollary to the following theorem.

I Theorem 1. All BST algorithms (including Greedy and Splay) described in [6] are Op1q-
competitive to Move-to-Root.

Move-to-Root (MTR) is a classical BST algorithm that always rotates the requested key
up until it becomes the root of the tree. It is known to be sub-optimal but not subsumed by
any existing BST bounds (such as working set [23], lazy finger [14], pattern avoidance [5], or
multiple fingers [8]). See discussion in the full version. Interestingly, so far no dynamic BSTs
have been shown to be competitive even to this simplest dynamic algorithm.

I Corollary 2. Let A be any BST algorithm according to [6]. Then, A has simulation
embedding property. Therefore, it is dynamically optimal if and only if A is approximately
monotone.

Corollary 2 gives the first potential function proof of simulation property of any BST
algorithm, therefore unifying the classical potential function techniques with the new attempt
by Levy, Tarjan and Russo. The fact that infinitely many BST algorithms (that have simple
description) have simulation embedding property can be interpreted in many ways. For an
optimist, this could give us an access to a large design toolbox for studying the Levy-Tarjan
approach: Instead of focusing on Splay or Greedy, we have the freedom to seek an algorithm
that is approximately monotone by fine-tuning.

Another interesting aspect of MTR-competitiveness is perhaps a conceptual resemblance
between Move-to-Root and the second Wilber bound [24] which is believed to be stronger
than the first Wilber bound but so far no algorithm has ever exploited such bound5. Being
able to charge the cost of an algorithm to Move-to-Root is a very first step towards this
direction. (Informally, the second Wilber bound is equal to crossing Move-to-Root, see [16]
for a more detailed discussion).

Second contribution: Streamlining known bounds

Now, we discuss how to use our potential function to streamline the BST bounds. Our second
main result is an improved bound for the lazy finger property of Greedy. For a sequence
X “ px1, . . . , xmq and a fixed BST R, denoted by LFRpXq “

ř

t dRpxt, xt`1q where dRpa, bq
denotes the number of edges on the unique path in R from a to b. Let LFpXq :“ minR LFRpXq,
we say that an algorithm A has lazy finger property if costApXq ď OpLFpXqq. For any
sequence X, denote by GpXq the cost of Greedy in the geometric view6. Iacono and
Langerman showed that GpXq ď C 1 ¨ pLFpXq `mq where C 1 is around 50 (A quick glance at

4 The definition of simulation is quite technical and we will only discuss this formally later.
5 The best known competitive ratio is due to Tango Trees and its variants [13] which charge the cost to
the first Wilber bound, which is provably insufficient for dynamic optimality [15, 4]

6 Recall that, when turning the Greedy algorithm into a standard BST view, there is a constant factor
blowup in the cost, that is, costGreedypXq (in the tree view) is at most OpGpXqq.

ESA 2020

28:4 Geometric Inversions in Binary Search Trees

their paper would show that the value of C 1 is 24, but there is also another multiplicative
factor hidden in converting the result from “leaf-oriented” tree7 setting to the BST setting).
We show the following.

I Theorem 3. For each access sequence X, GpXq ď 5 ¨ LFpXq `Opm` nq.

In particular, when the input sequence is sufficiently costly, this bound converges to a
multiplicative factor of 5 in front of the lazy finger term. We highlight that the interesting
aspect of this result is not the improvement of constant but rather (1) the fact that our lazy
finger proof directly and intuitively extends the proof of static optimality, and (2) the fact
that we are able to charge the cost directly to the reference BST R instead of a leaf-oriented
tree, in contrast to [14]. We hope that these two points open up natural new paths to adapt
our techniques to handle stronger BST bounds where leaf-oriented settings become unnatural
(e.g. BST rotation is less natural in the leaf-oriented setting).

Conclusion & Open Problems. We introduce a new potential function that allows us to,
for the first time, compare two dynamic BSTs directly in a systematic way. Moreover, to
our knowledge, ours is the first potential function in the BST context that uses a natural
concept of inversions. We show many applications of our potential function. We note that,
once the potential function is formally defined, the proofs of our results do not require any
ground-breaking ideas but rather a careful adaptation of existing proofs [23, 6, 14] to our
potential function.

Though the most intriguing open question is to prove dynamic optimality, we feel that it
is still very far from the current understanding. We list here some open questions that we
believe they are not overly far-fetched.
(i) Can we use our method to analyze weighted dynamic finger (or even just dynamic

finger) for Splay trees?
(ii) Can we show that Greedy satisfies multi-finger properties as defined in [8]? We find

this non-trivial even when there are two fingers.
(iii) The property of being Op

?
lognq-competitive BST can be cast as a “local” BST property,

e.g. see a survey paper [7]. Can we show that Greedy satisfies this property?

Further Related Work. Most prior works in this area focus on proving consequential
properties of dynamic optimality. In particular, dynamic BSTs satisfy various forms of
locality of reference properties that allow efficient access when the input sequence is in
some way “local”. For instance, the dynamic finger bound allows an efficient access when
the access is close to the previous one (on average). It is often not so difficult to prove
that these locality properties are satisfied by an optimal offline BST, so a candidate for
optimal online BST must satisfy them as well. Proving that an online BST algorithm satisfies
such properties has, however, been very challenging (for instance, Cole’s proof [11, 10] of
Splay’s dynamic finger property spans 80 pages in total). Recently, a much stronger locality
of reference bound, called Lazy Finger [3], was proved in a breakthrough result of Iacono
and Langerman [14]. One way to view these locality of reference properties is as a “mildly
dynamic” BST algorithm, i.e. each such property can be described by a restricted way of
using the power of dynamic BST algorithms. Therefore, proving these bounds has naturally
been seen as intermediate steps to study the dynamic optimality conjecture.

7 A leaf-oriented binary search tree is one where all keys in rns are maintained as leafs, and each internal
BST node is auxiliary (corresponding to a subset of leafs in the subtree under it).

P. Chalermsook and W.P. Jiamjitrak 28:5

Figure 1 Examples of good (left) and bad (right) drawing of the same binary search tree.

2 Overview of Techniques

Let us recall the BST search model. The algorithm A maintains a binary search tree T on
keys rns, and when access xt P rns comes at time t, the cost incurred is equal to the depth
of xt in T . Elements on the search path of xt (including xt) are said to be touched by T .
After that, the algorithm may adjust the shape of the tree, paying the cost which is equal to
the number of keys that are involved in the adjustment. The total cost is then equal to the
sum of search cost and adjustment cost. In all algorithms we consider, it suffices to analyze
only the search cost (in particular, for BST algorithms that only change the search path, the
update cost is at most a constant factor of the length of the search path. Therefore, such
cost can be charged to the search cost). We follow this standard practice.

For convenience, we will abuse notation and use A to stand for both the BST algorithm
and the state of BST at certain time.

2.1 Interval geometry for BST & Extended Inversion
Our potential function is defined based on geometry that requires correct drawing of BSTs.
When drawing a BST, one should always use two rules: (1) imagine placing node containing
key z on the plane at point p where p.x “ z (the x-coordinate is z). (2) If u is a parent of v,
always draw u higher than v (See Figure 1)

Let A be a BST. For each key z P rns, let IApzq be the largest open interval in p0, n` 1q
containing only all keys in the subtree of A rooted at z (in Figure 1 we have IAp2q “ p0, 4q).
More formally, IApzq “ pleftApzq, rightApzqq where leftApzq is the nearest left ancestor of z
(0 if not exist) and rightApzq is the nearest right ancestor of z (n ` 1 if not exist). When
drawing the BST correctly, we have that the intervals tIApzquzPrns form a laminar family
(that is, each pair of intervals is either disjoint or nested); see Figure 2.

I Observation 4. If z1 is a left child of z, then IApz
1q “ pleftApz

1q, rightApz
1qq “ pleftApzq, zq.

If z1 is a right child of z, then IApz
1q “ pleftApz

1q, rightApz
1qq “ pz, rightApzqq. Also, for any

keys y, z P rns, we have y P IApzq iff y is in the subtree rooted at z.

Let A be an algorithm we want to analyze and O be an optimal algorithm. In this paper,
we only consider A that changes only search path (this includes Greedy and Splay). Both
A and O store the keys in rns. We want to have a potential function that captures the
“difference” between A and O. The most natural scheme (which does not always work) often
used in the context of online algorithm for this purpose is inversion.

I Definition 5 (Inversion). Let z, α P rns. We say that z forms an inversion with α if
z P IOpαq and α P IApzq.

ESA 2020

28:6 Geometric Inversions in Binary Search Trees

Figure 2 Example of intervals (in grey) for all keys. In this figure, IAp4q “ p0, 9q and IAp5q “
p4, 7q.

Notice that an inversion is an indicator of α being in the subtree of z in one BST, but z
is in the subtree of α in the other. See Figure 3. Unfortunately, we are unable to use this
natural and intuitive scheme to prove any meaningful result. We will use extended inversion
instead.

Figure 3 An example of inversion between the keys 4 and 6. The intervals of A are shown in
dark grey and intervals of O in light grey. The left and right BSTs are A and O respectively.

For each interval in BST O, IOpαq, we define three important points of α in O as
POpαq “ tα, leftOpαq, rightOpαqu.

I Definition 6 (Extended Inversion). Let z, α P rns. We say that z forms an extended
inversion with α if and only if z P IOpαq and Dβ P POpαqpβ P IApzq). See Figure 4.

Unlike inversion, the notion of extended inversion is not symmetric. Clearly, if z forms
an inversion with α, then z also forms an extended inversion with α.

Figure 4 The darker intervals are those intervals IApzq, and the lighter ones are IOpzq. In the
first figure from left, z forms an inversion with α. In the second, z forms an extended inversion
with α but not an inversion. In the 3rd figure, there is no extended inversion, since IApzq does not
contain any point in POpαq. In the 4th figure, there is no extended inversion because z R IOpαq.

P. Chalermsook and W.P. Jiamjitrak 28:7

2.2 Our potential function and its basic properties
All proofs in this paper build upon the following base function.

I Definition 7 (Base Potential function). Define the potential Φ “ ΦA,O at any state of
execution of our algorithm A and optimal O as follows. Let Φpz, αq “ 1 if z forms an extended
inversion with α; otherwise, Φpz, αq “ 0. The potential is defined as ||Φ|| “

ř

z,α Φpz, αq.
This is the total number of extended inversions.

We “visualize” our potential function value as a collection of “coins”. Whenever Φpz, αq “
1, one can imagine there is a coin of label z (or z-coin) placed at node α in O whenever z
forms an extended inversion with α (see Figure 5). By definition, z always forms an extended
inversion with itself, so there is always a z-coin at z. We use Φp‚, αq “

ř

zPrnsΦpz, αq to
denote the total number of coins at α, and Φpz, ‚q “

ř

αPrnsΦpz, αq the total number of
z-coins. The coin interpretation will be used crucially in our analysis.

The main properties we would need are the following:

Figure 5 The left and right BSTs are A and O respectively. The set notation shown at each
node is a collection of coins placed at that node. For instance, there are 5- and 6-coins at node 6.
The path of 3-coins (according to Lemma 8) is a path containing nodes 3 and 2.

I Lemma 8. [Upward path property] For each z P rns, the set of nodes having z-coin (that
is, Qz “ tα : Φpz, αq “ 1u) is a contiguous subpath of the path from z to the root of O.

Proof. Let α1, α2 P Qz. Since z P IOpα1q X IOpα2q, we must have that IOpα1q Ď IOpα2q

(from laminar property). Since z P Qz, we have that Qz is a subset of path from z to the
root. Next, we argue that Qz is connected. Suppose α1 is on the path from z to the root
such that α1 R Qz. See Figure 6. We argue that the parent of α1 (say α, where α1 is the
right child of α) is also not in Qz: From Observation 4, IOpα

1q “ pα, rightApαqq. Recall that
POpαq “ tα, leftApαq, rightApαqu. Since α1 R Qz, we have that IApzq is completely contained
in pα, rightOpαqq. This means that it does not contain any point in POpαq. J

By the above lemma, we view the potential function Φpz, ‚q as the coins on an upward
path in O and Φ as a collection of upward paths.

I Lemma 9. Consider an access to key x P rns. Let z be a key on the search path SApxq

of our algorithm. Then x forms an inversion with LCAOpx, zq. Hence, there is a z-coin at
node LCAOpx, zq.

Proof. Fix z P SApxq. Recall that x P IApzq. Denote by ` “ LCAOpx, zq. Since ` is between
x and z, ` P IApzq. Since ` is an ancestor of z in O, z P IOp`q, and thus an inversion occurs
between z and `. J

ESA 2020

28:8 Geometric Inversions in Binary Search Trees

Figure 6 Illustration of the proof of Lemma 8.

The above lemma is the main advantage of the inversion principle: Each z P SApxq

contributes `1 to the cost of A when accessing x. The lemma shows that such cost can be
“deducted” from the z-coin at LCAOpx, zq.

I Definition 10 (Canonical payment function). Consider algorithm A and optimal O. The
canonical payment function for accessing x is a function CP “ CPA,O,x such that for each
z P SApxq, we have CP pz, LCAOpz, xqq “ 1. The function is 0 everywhere else (Figure 7).

We will simply write CP instead of CPA,O,x when it is clear from the context. Notice
that, for each z P SApxq, CP pz, αq “ 1 only if α is on the search path SOpxq of the optimal.
From Lemma 9, we have that CP pz, αq ď Φpz, αq for all z, α P rns.

I Observation 11. We have
ř

z,α CP pz, αq “ |SApxq|.

Figure 7 An example of coins in the support of CP . In this example, when access 1, we touch
every key in A, but we touch only {1,2,4} in O. Each z P t4, 5, 6, 7u has its coin at node 4 in the
support of CP . Each z in t2, 3u has its coin at node 2. Finally, 1 has a coin at node 1.

2.3 Overview of our proofs
We first recall the basic ideas of potential function proofs.

I Definition 12. We say that potential function Φ proves A ďη O if for any state A and
O of execution, when an access x P rns arrives, we have

p||ΦA,O|| ´ ||ΦA1,O1 ||q ` η|SOpxq| ě |SApxq|

where A1 and O1 are the BSTs after the algorithm and the optimal update their trees.

The following claim follows from a standard potential function analysis. See, for in-
stance, [23] for the formal proof.

I Proposition 13. If potential function Φ proves A ďη O, then for any input X P rnsm, we
have costApXq ď η ¨ costOpXq ` Φmax where Φmax is the maximum value of ||ΦA,O|| over
all possible states of execution of A and O.

P. Chalermsook and W.P. Jiamjitrak 28:9

Finally, since the size of support of CP is exactly |SApxq|, one can rewrite the condition
in Definition 12 as ||ΦA1,O1 || ď ||ΦA,O ´ CP || ` η|SOpxq|. All our proofs follow this high-level
idea: (i) Upper bound ||ΦA1,O|| ´ ||ΦA,O ´ CP ||, and (ii) upper bound ||ΦA1,O1 || ´ ||ΦA1,O||.
The extended inversion potential function allows us to analyze Step (i) of various kinds of
BST bounds in a modular way. The following is a key property.

I Proposition 14. Consider algorithm A that, after access x arrives, updates the trees into
A1, while O does not change. Let pΦ “ ΦA,O ´ CP .
(i) For each z R SApxq and α P rns, we have ΦA1,Opz, αq ď pΦpz, αq.
(ii) For each α R SOpxq and z P rns, we have ΦA1,Opz, αq ď pΦpz, αq.

These imply that the potential change ||ΦA1,O|| ´ ||Φ̂|| is upper bounded by the “change on
search paths”, that is, ||ΦA1,O||´||ΦA,O´CP || ď

ř

zPSApxq

ř

αPSOpxq

´

ΦA1,Opz, αq ´ pΦpz, αq
¯

Proof. First, for each such z R SApxq, the intervals IApzq “ IA1pzq, so the number of
extended inversions for them remains the same. Since CP pz, αq “ 0, ΦA1,Opz, αq ď pΦpz, αq “
ΦA,Opz, αq.

Now we prove the second item. Fix α R SOpxq. Due to the previous observation, only
z P SApxq may create a new inversion. By Lemma 9, ΦA,Opz, LCAOpx, zqq “ 1. Since
LCAOpx, zq is an ancestor of α, by Lemma 8, ΦA,Opz, αq “ 1. This means that there was
already a z-coin at α. Since CP pz, αq “ 0, ΦA1,Opz, αq ď pΦpz, αq “ ΦA,Opz, αq. J

All our proofs rely on this proposition to upper bound the change from A to A1.

2.4 The First Showcase: Splay’s Ziz-zig
We consider the Splay tree currently maintaining a path with n as a root and 1 as a leaf;
and O does not change (that is, O “ O1). Define the potential Ψpz, αq “ 2Φpz, αq for all
z, α P rns (there are 2 coins for each extended inversion). Let us consider the situation when
an access x “ 1 arrives. We will upper bound the change of potential function Ψ as follows:

||ΨA1,O|| ď ||ΨA,O ´ CP || ` 6|SOpxq|

Deducting CP from Ψ can be seen as removing some coins from the search path SOpxq.
Recall that in Ψ´ CP , for each z on the search path of A, we had removed one z-coin at
LCApz, xq. The proof has two steps. In the first step, we move the coins around from “bad”
to “good” keys. Refer to Figure 8 for the shape of A1. For simplicity assume that n is odd.
Except for the root, we pair i with i` 1 for i “ 2, 4, . . . , n´ 1. We say that the even keys are
good and the odd keys are bad. For each i, we turn one pi` 1q-coin at LCApi` 1, xq into an
i-coin at LCApi, xq. Let pΨ be the function after moving the coins, so ||pΨ|| “ ||ΨA,O ´ CP ||.

I Lemma 15. We have ||ΨA1,O|| ´ ||pΨ|| ď Op|SOpxq|q. (In other words, we can add at most
Op|SO|q to achieve the coin level of ΨA1,O.)

The rest of this section is devoted to proving the lemma. Denote ΨA1,O by Ψ1 for conveni-
ence. From Proposition 14, we have ||ΨA1,O||´||pΨ||ď

ř

zPSApxq

ř

αPSOpxq

´

Ψ1pz, αq ´ pΨpz, αq
¯

.
The following claim therefore finishes the proof.

B Claim 16. We have
ř

zPSApxq

ř

αPSOpxq

´

Ψ1pz, αq ´ pΨpz, αq
¯

ď 14|SOpxq|.

Proof. Refer to Figure 8 that illustrate the shape of A1 (Splay) after the access of x. For
z “ 1, we use the crude bound of

ř

αPSOpxq

´

Ψ1p1, αq ´ pΨp1, αq
¯

ď 2|SOpxq|. For z ě 2, we
divide the analysis into two cases:

ESA 2020

28:10 Geometric Inversions in Binary Search Trees

(i) new extended inversions, i.e. Ψ1pz, αq “ 1 and pΨpz, αq “ ΨA,Opz, αq “ 0
(ii) existing extended inversions that pay their coins out, i.e. Ψ1pz, αq “ 1, pΨpz, αq “ 0 and

Ψpz, αq “ 1.
We upper bound the potential increase by the notion of witness intervals. For the first case,
a new extended inversion can appear in Ψ1pz, αq due to the fact that the interval IA1pzq

becomes larger than IApzq. In this case, we define Jpz, αq “ IA1pzqzIApzq as a witness
for the new inversion pz, αq. From Figure 8, these witness intervals (drawn in red) are
non-overlapping. Since there are 3 important points for each α P SOpxq and each point can
be in at most one witness interval, there are at most 3|SOpxq| witness intervals. Each witness
interval requires 2 coins, so we need at most 6|SOpxq| coins in total.

For the second case, this happened due to z being a bad key that pays its coin out of
canonical payment (the good ones received their coins back from the transfer in the first
step). In this case, we say that Jpz, αq “ IA1pzq is a witness for the inversion pz, αq. From
Figure 8, the witness intervals of this type (drawn in blue) are disjoint. Therefore, with the
same argument as in the first case, we need at most 6|SOpxq| coins in total. C

Figure 8 A BST before (left) and after (right) splaying x “ 1. After splaying, intervals of odd
keys (except access key) are disjoint. The red and blue intervals are the witnesses as in Claim 16.

There are two remarks about this proof. First, this proof only gives an analysis of a
zig-zig case in Splay trees. A full Splay trees analysis can be found as a special case of our
Theorem 1 whose proof is deferred to the full version. Second, if O is not a static tree, we
add one more step to the analysis, that is, upper bounding the change due to updating O;
the second step for MTR-competitiveness results is simple, while for lazy finger, the second
step is more involved, relying on a modified concept of extended inversions and on some
ideas from [14].

2.5 Geometric Inversion for Geometric BST Algorithms
In order to use our scheme, all algorithms must be described in terms of intervals. In
the previous section, we already explained how BST algorithms A in the tree view can
be described as intervals IApzq. In this section, we explain how to do the same for BST
algorithms in the geometric view. As discussed in [12], the tree and geometric views are
equivalent up to constant factor in the competitive ratios.

Let rns be the set of keys. An access sequence of binary search trees (BST) is specified as
searching for key xt P rns at time t “ 1, . . . ,m. Given an access sequence X “ px1, . . . , xmq P

rnsm, we view X as points QX “ tpxt, tq : t “ 1, . . . ,mu in the plane where t-th access
appears on row t (starting from bottom). We abuse the notation and simply write QX as X.

P. Chalermsook and W.P. Jiamjitrak 28:11

For p,q P R2, define lp,q as the set of integral points in the minimally closed rectangular
area defined by p and q. Let Z Ď R2, we say that such the rectangle lp,q is empty in Z (or
Z-empty) if Z Xlp,q contains no other point than p or q. Also, the point set Z is arborally
satisfied if for every pair p, q P Z, the rectangle lp,q is not Z-empty.

Geometric BST problem (MinASS)

Let Xďt denote the set of points in X in rows t and below. In the MinASS problem, given
an input X of points, we are interested in computing a superset Y Ě X such that Y is
arborally satisfied, while minimizing |Y |. In the online version, at any time t “ 1, 2, . . . ,m, a
point in X arrives on the t-th row, and the algorithm must produces a feasible solution Yďt
at each time t by adding points on the tth row. Points in Y are said to be touched by the
algorithm A. We denote a set of touched keys at time t by SApxtq (same notation as search
path of xt in the tree view).

I Theorem 17 (Demaine et al. [12]). Let A be an algorithm for the MinASS problem.
Then for each sequence X, there is a BST algorithm A1 whose total cost on X is at most
OpcostApXqq.

Greedy

For each time t and key z P rns, let τpz, tq denote the last touched time of z on or before time
t. At time t, Greedy touches key z P rns if and only if pz, τpz, tqq forms an empty rectangle
with pxt, tq. The final output of Greedy on input X is defined as GpXq; denote the first t
rows of such output by GďtpXq. See Figure 9 for an illustration.

Figure 9 An example of intervals of Greedy. Here, circles represent access keys X and crosses
represent touched points Y zX. Interval of each key is defined by the top point (i.e. the last touched
point) of such key. Intervals of 2,3, and 6 are shown in this figure.

Intervals for Geometric BSTs

Since the intervals of BST algorithms in a tree view depend on sub-trees, for Greedy, we
need an analogue of sub-trees in geometric view. Let z P rns be a key. The interval IGpzq is
defined as pleftGpzq, rightGpzqq where leftGpaq is the maximum key less than z that is touched
at the same time as when a was last touched (0 if it does not exist). Similarly, we define
rightGpzq as the minimum key greater than a “ z, touched at the last touched time of z

ESA 2020

28:12 Geometric Inversions in Binary Search Trees

(n ` 1 if it does not exist). So the interval IGpzq only change whenever z is touched. See
Figure 9. Given an optimal tree O, Lemma 8, Lemma 9 and Proposition 14 still hold for
these geometric intervals. The following observations are important. (See Figure 10a)

I Observation 18. Suppose key xt is accessed. Let tIGpbqubPrns and tI 1GpbqubPrns be the
intervals before and after Greedy updates. Let b1 ă b2 ă . . . ă bk be the touched keys, b0 “ 0
and bk`1 “ n` 1. Then we have that I 1Gpbiq “ pbi´1, bi`1q for all i “ 1, . . . , k.

I Corollary 19. For each point p P R, there are at most two touched keys z for which
p P I 1Gpzq. In other words, the clique size of this interval graph is 2 and therefore, the touched
intervals I 1Gpzq can be decomposed into two disjoint sets of intervals.

2.6 The Second Showcase: Greedy
We show the following static optimality bound for Greedy using our potential.

I Theorem 20. For each X and each static tree O, GpXq ď 4 ¨ costOpXq ´m` n2.

We note that the term n2 is from the number of initial coins. Later, we will show that
these initial coins can be bounded by costOpXq, therefore we have GpXq ď 5 ¨ costOpXq.

The potential function we use is simply the extended inversion Φ. Let O be any tree.
After accessing x, the Greedy intervals change from tIGpzquzPrns to tI 1GpzquzPrns, and the
potential changes from Φ to Φ1. We will prove that ||Φ1|| ď ||Φ´ CP || ` 4|SOpxq| ´ 1.

Summing over all accesses over a sequence X of length m will give us the desired bound.
Denote Φ´ CP by pΦ. Due to Proposition 14, the change of potential function is only due to
the inversions pz, αq where z P SGpxq and α P SOpxq.

I Lemma 21. For each α P SOpxq, we have ||Φ1p‚, αq|| ´ ||pΦp‚, αq|| ď 4. Moreover,
||Φ1p‚, xq|| ´ ||pΦp‚, xq|| ď 3.

Proof. Fix α P SOpxq. Notice that the term Φ1pz, αq ´ pΦpz, αq “ 1 only if z P SGpxq and
Φ1pz, αq “ 1. To have Φ1pz, αq “ 1, the interval I 1Gpzq must contain a point in POpαq “

tl, α, ru (where l “ leftOpαq and r “ rightOpαq) and point z must be inside IOpαq. From the
fact that z is inside IOpαq and the geometry of Greedy (Observation 18), only one interval
can contain l, only one interval can contain r, and at most two intervals can contain α (this
is all illustrated in Figure 10b); moreover, when α “ x, only one interval may contain α

(IGpxq itself). This concludes the proof. J

(a) Intervals of keys that are touched at the same
time in Greedy. Think of all of them as in the
same height, we perturb them in order to show their
intervals clearly.

(b) Intervals in G are represented in black, while
interval in O is represented in grey.

Figure 10

P. Chalermsook and W.P. Jiamjitrak 28:13

To recap, the framework is as follows. Let A be an algorithm and O be an optimal
algorithm. Suppose, after accesssing key x P rns, A changes to A1 and O to O1. We wan
to upper bound |SApxq| ` ||ΦA1,O1 || ´ ||ΦA,O|| ď Op|SOpxq|q. We upper bound this in two
steps:

The change of A to A1 after subtracting the cost: ||ΦA1,O|| ´ ||ΦA,O ´ CP ||
And then the change of O to O1: ||ΦA1,O1 || ´ ||ΦA1,O||

We have shown how to bound the term ||ΦA1,O|| ´ ||ΦA,O ´ CP || for Greedy and (a
special case of) Splay. This is the “systematic” part of our framework that allows us to prove
MTR-competitiveness for a family of BSTs. In the next subsection, we outlined how to upper
bound ||ΦA1,O1 || ´ ||ΦA1,O|| for Splay and Greedy, thus implying their Op1q-competitiveness
to MTR. The proof for weighted dynamic finger is omitted due to the lack of space. Full
details appear in the full version.

2.7 MTR-Competitiveness
In this section, we present the proof that Greedy and Splay have simulation embeddings.
Due limitation of space, we defer the rest of the proofs to the full version.

First, we present necessary preliminaries.

I Definition 22 (Static Optimality). A BST algorithm A is statically optimal if, for all input
X and static (reference) tree R, costApXq ď OpcostRpXqq.

Remark that a more precise definition of static optimality involves “initial tree” (the
initial state of algorithm A). In the context of our potential function, it is not difficult to see
that the initial tree only affects the cost by at most an additive factor of costRpXq. Hence we
omit the reference to initial trees for brevity. Denote the move-to-root algorithm by MTR.

I Definition 23 (MTR-Competiveness). A BST algorithm A is MTR-competitive if, for all
input X, costApXq ď OpcostMTRpXqq.

I Definition 24 (Simulation Embeddings). A BST algorithm A has simulation embeddings if,
for all access sequence X and algorithm O, there exists a supersequence Y Ě X such that
costApY q ď OpcostOpXqq.

Levy and Tarjan [16] show that Splay has simulation embeddings by constructing a
transition graph G4 of Splay. Transition graph Gk is a directed graph where each node
represents an instance of k-node BST. There is an edge pu, vq if a tree instance u can be
changed to a tree instance v using one access. Also, they show that, in order for BST A to
have simulation embeddings, it suffices to show that Gk of A is strongly connected for some
constant k ě 3.

B Claim 25. The transition graph G3 of MTR is strongly connected. Hence, MTR has
simulation embeddings. (See Figure 11)

This implies the following theorem.

I Theorem 26. If a BST algorithm A is Op1q-competitive to MTR, then A has simulation
embeddings.

ESA 2020

28:14 Geometric Inversions in Binary Search Trees

Figure 11 G3 of MTR. The number on each arrow represents the key that MTR has to access in
order to change its tree to the specific structure.

Proof. Suppose A is c-competitive to MTR. Now fix an input sequence X and a BST
algorithm O. From Claim 25, let d be the factor in the simulation embeddings of MTR, so
we know that there exists a super-sequence X 1 such that costMTRpX

1q ď d ¨ costOpXq. Since
algorithm A is c-competitive to MTR, we have

costApX
1q ď c ¨ costMTRpX

1q ď pcdq ¨ costOpXq

This implies that A has simulation embeddings. J

Our potential function is particularly suitable for proving MTR-competitiveness. In fact,
to show that A is Op1q-competitive to MTR, it suffices to only prove static optimality for A
using extended inversions (together with a function that depends only on n.)

I Lemma 27. A BST algorithm that (1) satisfies static optimality via potential function Ψ
that depends linearly on extended inversions (i.e. ||Ψ|| “ c1||Φ|| ` c2n), and (2) moves the
accessed key to the root, must be Op1q-competitive to MTR.

Proof. If A satisfies static optimality via Ψ, we have that:

||ΨA1,O|| ´ ||ΨA,O ´ CP || ď C ¨ |SOpxq|

Now, since the second term of potential is c2n (only depending on n), to upper bound
||ΨA1,O1 || ´ ||ΨA1,O||, it suffices to show that, we have ||ΦA1,O1 || ´ ||ΦA1,O|| ď 0.

For key z “ x, ||ΦA1,O1pz, xq|| “ ||ΦA1,Opz, xq|| “ c1. Now, we consider keys z ‰ x.
Observe that intervals in O1 change as follow:
(i) IO1pxq “ p0, n` 1q.
(ii) IO1pyq “ pleftOpyq, xq for all y such that y ă x and y P SOpxq.
(iii) IO1pyq “ px, rightOpyqq for all y such that y ą x and y P SOpxq.
(iv) IO1pyq “ IOpyq for all y R SOpxq.
In other words, the only new important point in O1 is x. Since A1 also has x as the root, no
I 1Apzq can contain x. Since x is the only new ancestor for z, this means ||ΦA1,O1pz, xq|| “ 0. J

Since Splays and Greedy satisfy static optimality via our potential function, Lemma 27
implies that they are MTR-competitive, and hence have simulation embeddings.

P. Chalermsook and W.P. Jiamjitrak 28:15

References
1 Susanne Albers. Improved randomized on-line algorithms for the list update problem. SIAM

Journal on Computing, 27(3):682–693, 1998.
2 Susanne Albers. Online algorithms: a survey. Mathematical Programming, 97(1-2):3–26, 2003.
3 Presenjit Bose, Karim Douïeb, John Iacono, and Stefan Langerman. The power and limitations

of static binary search trees with lazy finger. In International Symposium on Algorithms and
Computation, pages 181–192. Springer, 2014.

4 Parinya Chalermsook, Julia Chuzhoy, and Thatchaphol Saranurak. Pinning down the strong
wilber 1 bound for binary search trees. APPROX, 2020.

5 Parinya Chalermsook, Mayank Goswami, László Kozma, Kurt Mehlhorn, and Thatchaphol
Saranurak. Pattern-avoiding access in binary search trees. In 2015 IEEE 56th Annual
Symposium on Foundations of Computer Science, pages 410–423. IEEE, 2015.

6 Parinya Chalermsook, Mayank Goswami, László Kozma, Kurt Mehlhorn, and Thatchaphol
Saranurak. Self-adjusting binary search trees: What makes them tick? In Algorithms-ESA
2015, pages 300–312. Springer, 2015.

7 Parinya Chalermsook, Mayank Goswami, László Kozma, Kurt Mehlhorn, and Thatchaphol
Saranurak. The landscape of bounds for binary search trees. arXiv preprint, 2016. arXiv:
1603.04892.

8 Parinya Chalermsook, Mayank Goswami, László Kozma, Kurt Mehlhorn, and Thatchaphol
Saranurak. Multi-finger binary search trees. In 29th International Symposium on Algorithms
and Computation (ISAAC 2018). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.

9 Marek Chrobak and Lawrence L. Larmore. An optimal on-line algorithm for k-servers on trees.
SIAM J. Comput., 20(1):144–148, 1991. doi:10.1137/0220008.

10 Richard Cole. On the dynamic finger conjecture for splay trees. part ii: The proof. SIAM
Journal on Computing, 30(1):44–85, 2000.

11 Richard Cole, Bud Mishra, Jeanette Schmidt, and Alan Siegel. On the dynamic finger
conjecture for splay trees. part i: Splay sorting log n-block sequences. SIAM Journal on
Computing, 30(1):1–43, 2000.

12 Erik D Demaine, Dion Harmon, John Iacono, Daniel Kane, and Mihai Patraşcu. The geometry
of binary search trees. In Proceedings of the twentieth annual ACM-SIAM symposium on
Discrete algorithms, pages 496–505. SIAM, 2009.

13 Erik D Demaine, Dion Harmon, John Iacono, and Mihai Patraşcu. Dynamic optimality—almost.
SIAM Journal on Computing, 37(1):240–251, 2007.

14 John Iacono and Stefan Langerman. Weighted dynamic finger in binary search trees. In
Proceedings of the twenty-seventh annual ACM-SIAM symposium on Discrete algorithms, pages
672–691. SIAM, 2016.

15 Victor Lecomte and Omri Weinstein. Settling the relationship between wilber’s bounds for
dynamic optimality. arXiv preprint, 2019. arXiv:1912.02858.

16 Caleb Levy and Robert Tarjan. A new path from splay to dynamic optimality. In Proceedings
of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1311–1330.
Society for Industrial and Applied Mathematics, 2019.

17 Joan Marie Lucas. Canonical forms for competitive binary search tree algorithms. Rutgers
University, Department of Computer Science, Laboratory for Computer . . . , 1988.

18 J Ian Munro. On the competitiveness of linear search. In European Symposium on Algorithms,
pages 338–345. Springer, 2000.

19 Seth Pettie. Splay trees, davenport-schinzel sequences, and the deque conjecture. In Proceedings
of the nineteenth annual ACM-SIAM symposium on Discrete algorithms, pages 1115–1124.
Society for Industrial and Applied Mathematics, 2008.

20 Seth Pettie. Applications of forbidden 0–1 matrices to search tree and path compression-based
data structures. In Proceedings of the twenty-first annual ACM-SIAM symposium on Discrete
algorithms, pages 1457–1467. SIAM, 2010.

21 Luís MS Russo. A study on splay trees. Theoretical Computer Science, 2018.

ESA 2020

http://arxiv.org/abs/1603.04892
http://arxiv.org/abs/1603.04892
https://doi.org/10.1137/0220008
http://arxiv.org/abs/1912.02858

28:16 Geometric Inversions in Binary Search Trees

22 Daniel D Sleator and Robert E Tarjan. Amortized efficiency of list update and paging rules.
Communications of the ACM, 28(2):202–208, 1985.

23 Daniel Dominic Sleator and Robert Endre Tarjan. Self-adjusting binary search trees. Journal
of the ACM (JACM), 32(3):652–686, 1985.

24 Robert Wilber. Lower bounds for accessing binary search trees with rotations. SIAM journal
on Computing, 18(1):56–67, 1989.

