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Abstract
The dynamic optimality conjecture, postulating the existence of an O(1)-competitive online algorithm
for binary search trees (BSTs), is among the most fundamental open problems in dynamic data
structures. Despite extensive work and some notable progress, including, for example, the Tango
Trees (Demaine et al., FOCS 2004), that give the best currently known O(log logn)-competitive
algorithm, the conjecture remains widely open. One of the main hurdles towards settling the
conjecture is that we currently do not have approximation algorithms achieving better than an
O(log logn)-approximation, even in the offline setting. All known non-trivial algorithms for BST’s so
far rely on comparing the algorithm’s cost with the so-called Wilber’s first bound (WB-1). Therefore,
establishing the worst-case relationship between this bound and the optimal solution cost appears
crucial for further progress, and it is an interesting open question in its own right.

Our contribution is two-fold. First, we show that the gap between the WB-1 bound and the
optimal solution value can be as large as Ω(log logn/ log log logn); in fact, we show that the gap
holds even for several stronger variants of the bound. Second, we provide a simple algorithm, that,
given an integer D > 0, obtains an O(D)-approximation in time exp

(
O
(
n1/2Ω(D)

logn
))

. In
particular, this yields a constant-factor approximation algorithm with sub-exponential running time.
Moreover, we obtain a simpler and cleaner efficient O(log logn)-approximation algorithm that can
be used in an online setting. Finally, we suggest a new bound, that we call the Guillotine Bound,
that is stronger than WB-1, while maintaining its algorithm-friendly nature, that we hope will lead
to better algorithms. All our results use the geometric interpretation of the problem, leading to
cleaner and simpler analysis.
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33:2 Pinning down the Strong Wilber 1 Bound

1 Introduction

Binary search trees (BST’s) are a fundamental data structure that has been extensively
studied for many decades. Informally, suppose we are given as input an online access
sequence X = {x1, . . . , xm} of keys from {1, . . . , n}, and our goal is to maintain a binary
search tree T over the set {1, . . . , n} of keys. The algorithm is allowed to modify the tree
T after each access; the tree obtained after the ith access is denoted by Ti+1. Each such
modification involves a sequence of rotation operations that transform the current tree Ti into
a new tree Ti+1. The cost of the transformation is the total number of rotations performed
plus the depth of the key xi in the tree Ti. The total cost of the algorithm is the total cost
of all transformations performed as the sequence X is processed. We denote by OPT(X) the
smallest cost of any algorithm for maintaining a BST for the access sequence X, when the
whole sequence X is known to the algorithm in advance.

Several algorithms for BST’s, whose costs are guaranteed to be O(m logn) for any
access sequence, such as AVL-trees [1] and red-black trees [2], are known since the 60’s.
Moreover, it is well known that there are length-m access sequences X on n keys, for which
OPT(X) = Ω(m logn). However, such optimal worst-case guarantees are often unsatisfactory
from both practical and theoretical perspectives, as one can often obtain better results for
“structured” inputs. Arguably, a better notion of the algorithm’s performance to consider
is instance optimality, where the algorithm’s performance is compared to the optimal cost
OPT(X) for the specific input access sequence X. This notion is naturally captured by the
algorithm’s competitive ratio: we say that an algorithm for BST’s is α-competitive, if, for
every online input access sequence X, the cost of the algorithm’s execution on X is at most
α ·OPT(X). Since for every length-m access sequence X, OPT(X) ≥ m, the above-mentioned
algorithms that provide worst-case O(m logn)-cost guarantees are also O(logn)-competitive.
However, there are many known important special cases, in which the value of the optimal
solution is O(m), and for which the existence of an O(1)-competitive algorithm would lead
to a much better performance, including some interesting applications, such as, for example,
adaptive sorting [23, 6, 19, 22, 13, 20, 12, 8, 7, 3, 5, 4]. A striking conjecture of Sleator
and Tarjan [21] from 1985, called the dynamic optimality conjecture, asserts that the Splay
Trees provide an O(1)-competitive algorithm for BST’s. This conjecture has sparked a long
line of research, but despite the continuing effort, and the seeming simplicity of BST’s, it
remains widely open. In a breakthrough result, Demaine et al. [10] proposed the Tango Trees
algorithm, that achieves an O(log logn)-competitive ratio, and has remained the best known
algorithm for the problem, for over 15 years. A natural avenue for overcoming this barrier
is to first consider the “easier” task of designing (offline) approximation algorithms, whose
approximation factor is below O(log logn). Designing better approximation algorithms is
often a precursor to obtaining better online algorithms, and it is a natural stepping stone
towards this goal.

The main obstacle towards designing better algorithms, both in the online and the offline
settings, is obtaining tight lower bounds on the value OPT(X), that can be used in algorithm
design. If the input access sequence X has length m, and it contains n keys, then it is easy
to see that OPT(X) ≥ Ω(m), and, by using any balanced BST’s, such as AVL-trees, one
can show that OPT(X) = O(m logn). This trivially implies an O(logn)-approximation for
both offline and online settings. However, in order to obtain better approximation, these
simple bounds do not seem sufficient. Wilber [25] proposed two new bounds, that we refer
to as the first Wilber Bound (WB-1) and the second Wilber Bound (WB-2). He proved that,
for every input sequence X, the values of both these bounds on X are at most OPT(X).
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The breakthrough result of Demaine et al. [10], that gives an O(log logn)-competitive online
algorithm, relies on the WB-1 bound. In particular, they show that the cost of the solution
produced by their algorithm is within an O(log logn)-factor from the WB-1 bound on the
given input sequence X, and hence from OPT(X). This in turn implies that, for every input
sequence X, the value of the WB-1 bound is within an O(log logn) factor from OPT(X).
Follow-up work [24, 14] improved several aspects of Tango Trees, but it did not improve
the approximation factor. Additional lower bounds on OPT, that subsume both the WB-1
and the WB-2 bounds, were suggested in [9, 11, 15], but unfortunately it is not clear how
to exploit them in algorithm design. To this day, the only method we have for designing
non-trivial online or offline approximation algorithms for BST’s is by relying on the WB-1
bound, and this seems to be the most promising approach for obtaining better algorithms.
In order to make further progress on both online and offline approximation algorithms for
BST’s, it therefore appears crucial that we better understand the relationship between the
WB-1 bound and the optimal solution cost.

Informally, the WB-1 bound relies on recursive partitioning of the input key sequence,
that can be represented by a partitioning tree. The standard WB-1 bound (that we refer to
as the weak WB-1 bound) only considers a single such partitioning tree. It is well-known
(see e.g. [10, 24, 16]), that the gap between OPT(X) and the weak WB-1 bound for an
access sequence X may be as large as Ω(log logn). However, the “bad” access sequence
X used to obtain this gap is highly dependent on the fixed partitioning tree T . It is then
natural to consider a stronger variant of WB-1, that we refer to as strong WB-1 bound and
denote by WB(X), that maximizes the weak WB-1 bound over all such partitioning trees. As
suggested by Iacono [16], and by Kozma [17], this gives a promising approach for improving
the O(log logn)-approximation factor.

In this paper, we show that, even for this strong variant of Wilber Bound, the gap
between OPT(X) and WB(X) may be as large as Ω(log logn/ log log logn). This negative
result extends to an even stronger variant of the Wilber Bound that we discuss below.

Our second set of results is algorithmic. We show an (offline) algorithm that, given an
input sequence X and a positive integer D, obtains an O(D)-approximation, in time poly(m) ·
exp

(
n1/2Ω(D) logn

)
. When D is constant, the algorithm obtains an O(1)-approximation

in sub-exponential time. When D is Θ(log logn), it matches the best current efficient
O(log logn)-approximation algorithm. In the latter case, we can also adapt the algorithm to
the online setting, obtaining an O(log logn)-competitive online algorithm.

All our results use the geometric interpretation of the problem, introduced by Demaine
et al. [9], leading to clean divide-and-conquer-style arguments that avoid, for example, the
notion of pointers and rotations. We feel that this approach, in addition to providing a cleaner
and simpler view of the problem, is more natural to work with in the context of approximation
algorithms, and should be more amenable to the powerful geometric techniques in the field.

Independent Work. Independently from our work, Lecomte and Weinstein [18] showed that
second Wilber Bound (WB-2) dominates the WB-1 bound, and moreover, they show an access
sequence X for which the two bounds have a gap of Ω(log logn). In particular, their result
implies that the gap between WB(X) and OPT(X) is Ω(log logn) for that access sequence.
We note that the access sequence X that is used in our negative results also provides a
gap of Ω(log logn/ log log logn) between the WB-2 and the WB-1 bounds, although we only
realized this after hearing the statement of the results of [18]. Additionally, Lecomte and
Weinstein show that the WB-2 bound is invariant under rotations, and use this to show that,
when the WB-2 bound is constant, then the Independent Rectangle bound of [9] is linear.

We now provide a more detailed description of our results.

APPROX/RANDOM 2020



33:4 Pinning down the Strong Wilber 1 Bound

Our Results and Techniques
We use the geometric interpretation of the problem, introduced by Demaine et al. [9], that
we refer to as the Min-Sat problem. Let P be any set of points in the plane. We say that two
points p, q ∈ P are collinear iff either their x-coordinates are equal, or their y-coordinates
are equal. If p and q are non-collinear, then we let �p,q be the smallest closed rectangle
containing both p and q; notice that p and q must be diagonally opposite corners of this
rectangle. We say that the pair (p, q) of points is satisfied in P iff there is some additional
point r 6= p, q in P that lies in �p,q (the point may lie on the boundary of the rectangle).
Lastly, we say that the set P of points is satisfied iff for every pair p, q ∈ P of distinct points,
either p and q are collinear, or they are satisfied in P .

In the Min-Sat problem, the input is a set P of points in the plane with integral x- and
y-coordinates; we assume that all x-coordinates are between 1 and n, and all y-coordinates
are between 1 and m and distinct from each other, and that |P | = m. The goal is to find a
minimum-cardinality set Y of points, such that the set P ∪ Y of points is satisfied.

An access sequence X over keys {1, . . . , n} can be represented by a set P of points in the
plane as follows: if a key x is accessed at time y, then add the point (x, y) to P . Demaine
et al. [9] showed that, for every access sequence X, if we denote by P the corresponding set
of points in the plane, then the value of the optimal solution to the Min-Sat problem on P is
Θ(OPT(X)). They also showed that, in order to obtain an O(α)-approximation algorithm
for BST’s, it is sufficient to obtain an α-approximation algorithm for the Min-Sat problem.
In the online version of the Min-Sat problem, at every time step t, we discover the unique
input point whose y-coordinate is t, and we need to decide which points with y-coordinate t
to add to the solution. Demaine et al. [9] also showed that an α-competitive online algorithm
for Min-Sat implies an O(α)-competitive online algorithm for BST’s. For convenience, we do
not distinguish between the input access sequence X and the corresponding set of points in
the plane, that we also denote by X.

Negative Results for WB-1. We say that an input access sequence X is a permutation if
each key in {1, . . . , n} is accessed exactly once. Equivalently, in the geometric view, every
column with an integral x-coordinate contains exactly one input point.

Informally, the WB-1 bound for an input sequence X is defined as follows. Let B be the
bounding box containing all points of X, and consider any vertical line L drawn across B,
that partitions it into two vertical strips, separating the points of X into two subsets X1 and
X2. Assume that the points of X are ordered by their y-coordinates from smallest to largest.
We say that a pair (x, x′) ∈ X of points cross the line L, iff x and x′ are consecutive points
of X, and they lie on different sides of L. Let C(L) be the number of all pairs of points in X
that cross L. We then continue this process recursively with X1 and X2, with the final value
of the WB-1 bound being the sum of the two resulting bounds obtained for X1 and X2, and
C(L). This recursive partitioning process can be represented by a binary tree T that we call
a partitioning tree (we note that the partitioning tree is not related to the BST tree that the
BST algorithm maintains). Every vertex v of the partitioning tree is associated with a vertical
strip S(v), where for the root vertex r, S(r) = B. If the partitioning algorithm uses a vertical
line L to partition the strip S(v) into two sub-strips S1 and S2, then vertex v has two children,
whose corresponding strips are S1 and S2. Note that every sequence of vertical lines used in
the recursive partitioning procedure corresponds to a unique partitioning tree and vice versa.
Given a set X of points and a partitioning tree T , we denote by WBT (X) the WB-1 bound
obtained for X while following the partitioning scheme defined by T . Wilber [25] showed that,
for every partitioning tree T , OPT(X) ≥ Ω(WBT (X)) holds. Moreover, Demaine et al. [10]
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showed that, if T is a balanced tree, then OPT(X) ≤ O(log logn) ·WBT (X). These two
bounds are used to obtain the O(log logn)-competitive algorithm of [10]. We call this variant
of WB-1, that is defined with respect to a fixed tree T , the weak WB-1 bound.

Unfortunately, it is well-known (see e.g. [10, 24, 16]), that the gap between OPT(X)
and the weak WB-1 bound on an input X may be as large as Ω(log logn). In other
words, for any fixed partitioning tree T , there exists an input X (that depends on T ), with
WBT (X) ≤ O(OPT(X)/ log logn). However, the construction of this “bad” input X depends
on the fixed partitioning tree T . We consider a stronger variant of WB-1, that we refer to as
strong WB-1 bound and denote by WB(X), that maximizes the weak WB-1 bound over all
such partitioning trees, that is, WB(X) = maxT {WBT (X)}. Using this stronger bound as an
alternative to weak WB-1 in order to obtain better approximation algorithms was suggested
by Iacono [16], and by Kozma [17].

Our first result rules out this approach: we show that, even for the strong WB-1 bound,
the gap between WB(X) and OPT(X) may be as large as Ω(log logn/ log log logn), even if
the input X is a permutation.

I Theorem 1. For every integer n′, there is an integer n ≥ n′, and an access sequence X on
n keys with |X| = n, such that X is a permutation, OPT(X) ≥ Ω(n log logn), but WB(X) ≤
O(n log log logn). In other words, for every partitioning tree T , OPT(X)

WBT (X) ≥ Ω
(

log logn
log log logn

)
.

We note that it is well known (see e.g. [5]), that any c-approximation algorithm for
permutation input can be turned into an O(c)-approximation algorithm for any input
sequence. However, the known instances that achieve an Ω(log logn)-gap between the weak
WB-1 bound and OPT are not permutations. Therefore, our result is the first to provide
a super-constant gap between WB-1 and OPT for permutations, even for the case of weak
WB-1.

Extension of WB-1. We consider several generalizations of the WB-1 bound that allow
partitioning the plane both horizontally and vertically. We call the new bounds the consistent
Guillotine Bound and the Guillotine Bound. Our negative result extends to the consistent
Guillotine Bound but not to the Guillotine Bound. The Guillotine Bound seems to maintain
the algorithm-friendly nature of WB-1, and in particular it naturally fits into the algorithmic
framework that we propose. We hope that this bound can lead to improved algorithms, both
in the offline and the online settings

Separating the Two Wilber Bounds. The sequenceX given by Theorem 1 not only provides
a separation between WB-1 and OPT, but it also provides a separation between the WB-1
bound and the WB-2 bound (also called the funnel bound). The latter can be defined in
the geometric view as follows. Recall that, for a pair of points x, y ∈ X, �x,y is the smallest
closed rectangle containing both x and y. For a point x in the access sequence X, the funnel
of x is the set of all points y ∈ X, for which �x,y does not contain any point of X \{x, y}, and
alt(x) is the number of alterations between the left of x and the right of x in the funnel of x.
The second Wilber Bound for sequence X is then defined as: WB(2)(X) = |X|+

∑
x∈X alt(x).

We show that, for the sequence X given by Theorem 1, WB(2)(X) ≥ Ω(n log logn) holds, and
therefore WB(2)(X)/WB(X) ≥ Ω(log logn/ log log logn) for that sequence, implying that
the gap between WB(X) and WB(2)(X) may be as large as Ω(log logn/ log log logn). We
note that we only realized that our results provide this stronger separation between the two
Wilber bounds after hearing the statements of the results from the independent work of
Lecomte and Weinstein [18] mentioned above.

APPROX/RANDOM 2020



33:6 Pinning down the Strong Wilber 1 Bound

Algorithmic Results. We provide new simple approximation algorithms for the problem,
that rely on its geometric interpretation, namely the Min-Sat problem.

I Theorem 2. There is an offline algorithm for Min-Sat, that, given any integral parameter
D ≥ 1, and an access sequence X to n keys of length m, produces a solution of cost at
most O(D ·OPT(X)) and has running time at most poly(m) · exp

(
O
(
n1/2Θ(D) logn

))
. For

D = O(log logn), the algorithm’s running time is polynomial in n and m, and it can be
adapted to the online setting, achieving an O(log logn)-competitive ratio.

Our results show that the problem of obtaining a constant-factor approximation for
Min-Sat cannot be NP-hard, unless NP ⊆ SUBEXP, where SUBEXP =

⋂
ε>0 DTime[2nε ].

This, in turn, provides a positive evidence towards the dynamic optimality conjecture, as one
natural avenue to disproving it is to show that obtaining a constant-factor approximation for
BST’s is NP-hard. Our results rule out this possibility, unless NP ⊆ SUBEXP. While the
O(log logn)-approximation factor achieved by our algorithm in time poly(mn) is similar to
that achieved by other known algorithms [10, 14, 24], this is the first algorithm that relies
solely on the geometric formulation of the problem, which is arguably cleaner, simpler, and
better suited for exploiting the rich toolkit of algorithmic techniques developed in the areas
of online and approximation algorithms.

Organization. We start with preliminaries in Section 2. In Section 3, we state decomposition
theorems which are useful for both of our negative and positive results. In Section 4, we
provide the proof of Theorem 1, our main negative result. We discuss extensions of the
Wilber Bound in Section 5. Lastly, we show our main positive result – the proof of Theorem 2
– in Section 6. Due to lack of space, many of the proofs are deferred to the full version.

2 Preliminaries

All our results only use the geometric interpretation of the problem, that we refer to as the
Min-Sat problem. We include the formal definition of algorithms for BST’s and formally
state their equivalence to Min-Sat in the full version.

2.1 The Min-Sat Problem
For a point p ∈ R2 in the plane, we denote by p.x and p.y its x- and y-coordinates, respectively.
Given any pair p, p′ of points, we say that they are collinear if p.x = p′.x or p.y = p′.y. If p
and p′ are not collinear, then we let �p,p′ be the smallest closed rectangle containing both p
and p′; note that p and p′ must be diagonally opposite corners of the rectangle.

I Definition 3. We say that a non-collinear pair p, p′ of points is satisfied by a point p′′
if p′′ is distinct from p and p′ and p′′ ∈ �p,p′ (where p′′ may lie on the boundary of the
rectangle). We say that a set S of points is satisfied iff for every non-collinear pair p, p′ ∈ S
of points, there is some point p′′ ∈ S that satisfies this pair.

We refer to horizontal and vertical lines as rows and columns respectively. For a collection
of points X, the active rows of X are the rows that contain at least one point in X. We
define the notion of active columns analogously. We denote by r(X) and c(X) the number
of active rows and active columns of the point set X, respectively. We say that a point set
X is a semi-permutation if every active row contains exactly one point of X. Note that,
if X is a semi-permutation, then c(X) ≤ r(X). We say that X is a permutation if it is a
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semi-permutation, and additionally, every active column contains exactly one point of X.
Clearly, if X is a permutation, then c(X) = r(X) = |X|. We denote by B the smallest closed
rectangle containing all points of X, and call B the bounding box.

We are now ready to define the Min-Sat problem. The input to the problem is a set X of
points that is a semi-permutation, and the goal is to compute a minimum-cardinality set Y
of points, such that X ∪ Y is satisfied. We say that a set Y of points is a feasible solution
for X if X ∪ Y is satisfied. We denote by OPT(X) the minimum value |Y | of any feasible
solution Y for X.1 In the online version of the Min-Sat problem, at every time step t, we
discover the unique input point from X whose y-coordinate is t, and we need to decide which
points with y-coordinate t to add to the solution Y . The Min-Sat problem is equivalent to
the BST problem, in the following sense:

I Theorem 4 ([9]). Any efficient α-approximation algorithm for Min-Sat can be trans-
formed into an efficient O(α)-approximation algorithm for BST’s, and similarly any online
α-competitive algorithm for Min-Sat can be transformed into an online O(α)-competitive
algorithm for BST’s.

2.2 Basic Geometric Properties
The following observation is well known (see, e.g. Observation 2.1 from [9]).

I Observation 5. Let Z be any satisfied point set. Then for every pair p, q ∈ Z of distinct
points, there is a point r ∈ �p,q \ {p, q} such that r.x = p.x or r.y = p.y.

Collapsing Sets of Columns or Rows. Assume that we are given any set X of points, and
any collection C of consecutive active columns for X. In order to collapse the set C of columns,
we replace C with a single representative column C (for concreteness, we use the column
of C with minimum x-coordinate). For every point p ∈ X that lies on a column of C, we
replace p with a new point, lying on the column C, whose y-coordinate remains the same.
Formally, we replace point p with point (x, p.y), where x is the x-coordinate of the column
C. We denote by X|C the resulting new set of points. We can similarly define collapsing set
of rows. The following useful observation is easy to verify.

I Observation 6. Let S be any set of points, and let C be any collection of consecutive active
columns (or rows) with respect to S. If S is a satisfied set of points, then so is S|C.

Canonical Solutions. We say that a solution Y for input X is canonical iff every point
p ∈ Y lies on an active row and an active column of X. It is easy to see that any solution
can be transformed into a canonical solution, without increasing its cost (see the full version
of the paper for the proof).

I Observation 7. There is an efficient algorithm, that, given an instance X of Min-Sat and
any feasible solution Y for X, computes a feasible canonical solution Ŷ for X with |Ŷ | ≤ |Y |.

2.3 Partitioning Trees
We now turn to define partitioning trees, that are central to both defining the WB-1 bound
and to describing our algorithm.

1 We remark that in the original paper that introduced this problem [9], the value of the solution is
defined as |X ∪ Y |, while our solution value is |Y |. It is easy to see that for any semi-permutation X
and solution Y for X, |Y | ≥ Ω(|X|) must hold, so the two definitions are equivalent to within factor 2.

APPROX/RANDOM 2020



33:8 Pinning down the Strong Wilber 1 Bound

Let X be the a set of points that is a semi-permutation. We can assume without loss of
generality that every column with an integral x-coordinate between 1 and c(X) inclusive
contains at least one point of X. Let B be the bounding box of X. Assume that the set of
active columns is {C1, . . . , Ca}, where a = c(X), and that for all 1 ≤ i ≤ a, the x-coordinate
of column Ci is i. Let L be the set of all vertical lines with half-integral x-coordinates between
1 + 1/2 and a− 1/2 (inclusive). Throughout, we refer to the vertical lines in L as auxiliary
columns. Let σ be an arbitrary ordering of the lines of L and denote σ = (L1, L2, . . . , La−1).
We define a hierarchical partition of the bounding box B into vertical strips using σ, as
follows. We perform a− 1 iterations. In the first iteration, we partition the bounding box
B, using the line L1, into two vertical strips, SL and SB. For 1 < i ≤ a− 1, in iteration i
we consider the line Li, and we let S be the unique vertical strip in the current partition
that contains the line Li. We then partition S into two vertical sub-strips by the line Li.
When the partitioning algorithm terminates, every vertical strip contains exactly one active
column.

Figure 1 An Illustration of partitioning tree and the corresponding sequence σ = (L1, . . . , L7).
Strip S(v) corresponds to node v that owns line L6.

This partitioning process can be naturally described by a binary tree T = T (σ), that we
call a partitioning tree associated with the ordering σ (see Figure 1). Each node v ∈ V (T )
is associated with a vertical strip S(v) of the bounding box B. The strip S(r) of the root
vertex r of T is the bounding box B. For every inner vertex v ∈ V (T ), if S = S(v) is the
vertical strip associated with v, and if L ∈ L is the first line in σ that lies strictly in S, then
line L partitions S into two sub-strips, that we denote by SL and SR. Vertex v then has two
children, whose corresponding strips are SL and SR respectively. We say that v owns the
line L, and we denote L = L(v). For each leaf node v, the corresponding strip S(v) contains
exactly one active column of X, and v does not own any line of L. For each vertex v ∈ V (T ),
let N(v) = |X ∩ S(v)| be the number of points from X that lie in S(v), and let width(v) be
the width of the strip S(v). Given a partition tree T for point set X, we refer to the vertical
strips in {S(v)}v∈T as T -strips.

2.4 The WB-1 Bound
The WB-1 bound2 is defined with respect to an ordering (or a permutation) σ of the auxiliary
columns, or, equivalently, with respect to the partitioning tree T (σ). It will be helpful to
keep both these views in mind. In this paper, we will make a clear distinction between a
weak variant of the WB-1 bound, as defined by Wilber himself in [25] and a strong variant,
as mentioned in [16].

2 Also called Interleaving bound [10], the first Wilber bound, “interleave lower bound” [25], or alternation
bound [16]
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Let X be a semi-permutation, and let L be the corresponding set of auxiliary columns.
Consider an arbitrary fixed ordering σ of columns in L and its corresponding partition tree
T = T (σ). For each inner node v ∈ V (T ), consider the set X ′ = X∩S(v) of input points that
lie in the strip S(v), and let L(v) ∈ L be the line that v owns. We denoteX ′ = {p1, p2, . . . , pk},
where the points are indexed in the increasing order of their y-coordinates; since X is a
semi-permutation, no two points of X may have the same y-coordinate. For 1 ≤ j < k, we
say that the ordered pair (pj , pj+1) of points form a crossing of L(v) iff pj , pj+1 lie on the
opposite sides of the line L(v). We let cost(v) be the total number of crossings of L(v) by
the points of X ∩ S(v). When L = L(v), we also write cost(L) to denote cost(v). If v is a
leaf vertex, then its cost is set to 0.

I Definition 8 (WB-1 bound). For any semi-permutation X, an ordering σ of the auxiliary
columns in L, and the corresponding partitioning tree T = Tσ, the (weak) WB-1 bound of X
with respect to σ is: WBσ(X) = WBT (X) =

∑
v∈V (T ) cost(v). The strong WB-1 bound of

X is WB(X) = maxσ WBσ(X), where the maximum is taken over all permutations σ of the
lines in L.

It is well known that the WB-1 bound is a lower bound on the optimal solution cost:

B Claim 9. For any semi-permutation X, WB(X) ≤ 2 · OPT(X).

The original proof of this fact is due to Wilber [25], which was later presented in the
geometric view by Demaine et al. [9], via the notion of independent rectangles.

3 Geometric Decomposition Theorems

In this section, we develop several technical tools that will allow us to decompose a given
instance into a number of sub-instances. We then analyze the optimal solution costs and the
Wilber bound values for the resulting subinstances.

Split Instances. Consider a semi-permutation X and its partitioning tree T . Let U ⊆ V (T )
be a collection of vertices of the tree T , such that the strips {S(v)}v∈U partition the bounding
box. In other words, every root-to-leaf path in T must contain exactly one vertex of U . We
now define splitting an instance X via the set U of vertices of T .

I Definition 10 (A Split). A split of (X,T ) at U is a collection of instances {Xc, {Xs
v}v∈U},

defined as follows.
For each vertex v ∈ U , instance Xs

v is called a strip instance, and it contains all points
of X that lie in the interior of the strip S(v).
Instance Xc is called a compressed instance, and it is obtained from X by collapsing,
for every vertex v ∈ U , all active columns in the strip S(v) into a single column.

We also partition the tree T into sub-trees that correspond to the new instances: for every
vertex v ∈ U , we let Tv be the sub-tree of T rooted at v. Observe that Tv is a partitioning
tree for instance Xs

v . The tree T c is obtained from T by deleting from it, for all v ∈ U , all
vertices of V (Tv) \ {v}. It is easy to verify that T c is a valid partitioning tree for instance Xc.
The following observation, whose proof appears in the full version of the paper, establishes
several basic properties of a split. Recall that, given an instance X, r(X) and c(X) denote
the number of active rows and active columns in X, respectively.

APPROX/RANDOM 2020



33:10 Pinning down the Strong Wilber 1 Bound

I Observation 11. If X is a semi-permutation, then the following properties hold for any
(X,T )-split at U :∑

v∈U r(Xs
v) = r(X)∑

v∈U c(Xs
v) = c(X)

c(Xc) ≤ |U |∑
v∈U WBTv (Xs

v) + WBT c(Xc) = WBT (X).

The first property holds since X is a semi-permutation. In order to establish the last
property, consider any vertex x ∈ V (T ), and let T ′ ∈ {T c} ∪ {Tv}v∈U be the new tree to
which v belongs; if x ∈ U , then we set T ′ = Tx. It is easy to see that the cost of v in tree
T ′ is the same as its cost in the tree T (recall that the cost of a leaf vertex is 0). The last
property can be viewed as a “perfect decomposition” property of the weak WB-1 bound. We
will show below an (approximate) decomposition property of strong WB-1 bound.

Splitting by Lines. We can also define the splitting with respect to any subset L′ ⊆ L of
the auxiliary columns for X, analogously: Notice that the lines in L′ partition the bounding
box B into a collection of internally disjoint strips, that we denote by {S′1, . . . , S′k}. We can
then define the strip instances Xs

i as containing all vertices of X ∩ Si for all 1 ≤ i ≤ k, and
the compressed instance Xc, that is obtained by collapsing, for each 1 ≤ i ≤ k, all active
columns that lie in strip Si, into a single column. We also call these resulting instances a
split of X by L′.

We can also consider an arbitrary ordering σ of the lines in L, such that the lines of L′
appear at the beginning of σ, and let U ⊆ V (T (σ)) contain all vertices u for which the strip
S(u) is in {Si}1≤i≤k. If we perform a split of (X,T ) at U , we obtain exactly the same strip
instances Xs

1 , . . . , X
s
k, and the same compressed instance Xc.

Decomposition Theorem for OPT. The following theorem gives a crucial decomposition
property of OPT. The theorem is used in our algorithm for Min-Sat, and its proof appears
in the full version of the paper.

I Theorem 12. Let X be a semi-permutation, let T be any partitioning tree for X, let
U ⊆ V (T ) be a subset of vertices of T such that the strips in {S(v) | v ∈ U} partition the
bounding box, and let {Xc, {Xs

v}v∈U} be an (X,T )-split at U . Then:∑
v∈U

OPT(Xs
v) + OPT(Xc) ≤ OPT(X).

Decomposition Theorem for the Strong WB-1 bound. We also prove, in the full version
of the paper, the following theorem about the strong WB-1 bound, that we use several times
in our negative result.

I Theorem 13. Let X be a semi-permutation and let T be a partitioning tree for X. Let
U ⊆ V (T ) be a set of vertices of T such that the strips in {S(v) | v ∈ U} partition the
bounding box. Let {Xc, {Xs

v}v∈U} be the split of (X,T ) at U . Then:

WB(X) ≤ 4WB(Xc) + 8
∑
v∈U

WB(Xs
v) +O(|X|).

This result is somewhat surprising. One can think of the expression WB(Xc) +∑
v∈U WB(Xs

v) as a WB-1 bound obtained by first cutting along the lines that serve as
boundaries of the strips S(v) for v ∈ U , and then cutting the individual strips. However,
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WB(X) is the maximum of WBT (X) obtained over all trees T , including those that do not
obey this partitioning order. The proofs of both Theorems 12 and 13 are given in the full
version.

4 Separation of OPT and the Strong Wilber Bound

In this section we present our negative results, proving Theorem 1. We start by defining
several basic tools used in our construction in Section 4.1. From Section 4.2 onward, we
describe our construction and its analysis.

4.1 Basic Tools
Monotonically Increasing Sequence. We say that an input set X of points is monotonically
increasing iff X is a permutation, and moreover for every pair p, p′ ∈ X of points, if p.x < p′.x,
then p.y < p′.y must hold. It is well known that the value of the optimal solution of
monotonically increasing sequences is low, and we exploit this fact in our negative results.

I Observation 14. If X is a monotonically increasing set of points, then OPT(X) ≤ |X|−1.

Bit Reversal Sequence (BRS). We use the geometric variant of BRS, which is more
intuitive and easier to argue about. Let R ⊆ N and C ⊆ N be sets of integers (which are
supposed to represent sets of active rows and columns.) The instance BRS(i,R, C) is only
defined when |R| = |C| = 2i. It contains 2i points, and it is a permutation, whose sets of
active rows and columns are exactly R and C respectively; so |R| = |C| = 2i. We define the
instance recursively. The base of the recursion is instance BRS(0, {C}, {R}), containing a
single point at the intersection of row R and column C. Assume now that we have defined,
for all 1 ≤ i′ ≤ i, and any sets R′, C′ of 2i′ integers, the corresponding instance BRS(i,R′, C′).
We define instance BRS(i+ 1,R, C), where |R| = |C| = 2i+1, as follows.

Consider the columns in C in their natural left-to-right order, and define Cleft to be
the first 2i columns and Cright = C \ Cleft. Denote R = {R1, . . . , R2i+1}, where the rows
are indexed in their natural bottom to top order, and let Reven = {R2, R4, . . . , R2i+1}
and Rodd = {R1, R3, . . . , R2i+1−1} be the sets of all even-indexed and all odd-indexed
rows, respectively. Notice that |Cleft| = |Cright| = |Reven| = |Rodd| = 2i. The instance
BRS(i+ 1,R, C) is defined to be BRS(i,Rodd, Cleft) ∪ BRS(i,Reven, Cright).

For n = 2i, we denote by BRS(n) the instance BRS(i, C,R), where C contains all columns
with integral x-coordinates from 1 to n, and R contains all rows with integral y-coordinates
from 1 to n; see Figure 2 for an illustration.

It is well-known that, if X is a bit-reversal sequence on n points, then OPT(X) ≥
Ω(n logn).

B Claim 15. Let X = BRS(i, C,R), for any i ≥ 0 and any sets C and R of columns and rows,
respectively, with |R| = |C| = 2i. Then |X| = 2i, and OPT(X) ≥ WB(X)

2 ≥ |X|(log |X|−2)+1
2 .

Next, we present two additional technical tools that we use in our construction.

Exponentially Spaced Columns. Recall that we defined the bit reversal instance
BRS(`,R, C), where R and C are sets of 2` rows and columns, respectively, that serve
in the resulting instance as the sets of active rows and columns; the instance contains n = 2`
points. In the Exponentially-Spaced BRS instance ES-BRS(`,R), we are still given a set
R of 2` rows that will serve as active rows in the resulting instance, but we define the set
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C of columns in a specific way. For an integer i, Ci be the column whose x-coordinate is
i. We then let C contain, for each 0 ≤ i < 2`, the column C2i . Denoting N = 2n = 22` ,
the x-coordinates of the columns in C are {1, 2, 4, 8, . . . , N/2}. The instance is then defined
to be BRS(`,R, C) for this specific set C of columns. Notice that the instance contains
n = logN = 2` input points.

It is easy to see that any point set X = ES-BRS(`,R) satisfies OPT(X) = Ω(n logn). We
remark that this idea of exponentially spaced columns is inspired by the instance used by
Iacono [16] to prove a gap between the weak WB-1 bound and OPT(X). However, Iacono’s
instance is tailored to specific partitioning tree T , and it is clear that there is another
partitioning tree T ′ with OPT(X) = Θ(WBT ′(X)). Therefore, this instance does not give a
separation result for the strong WB-1 bound, and in fact it does not provide negative results
for the weak WB-1 bound when the input point set is a permutation.

Cyclic Shift of Columns. Suppose we are given a point set X, and let C′ = {C0, . . . , CN−1}
be any set of columns indexed in their natural left-to-right order, such that all points of X
lie on columns of C (but some columns may contain no points of X). Let 0 ≤ s < N be any
integer. We denote by Xs a cyclic shift of X by s units, obtained as follows. For every point
p ∈ X, we add a new point ps to Xs, whose y-coordinate is the same as that of p, and whose
x-coordinate is p.x+ s mod N . In other words, we shift the point p by s steps to the right
in a circular manner. Equivalently, we move the last s columns of C′ to the beginning of the
instance. The following claim, whose proof appears in the full version of the paper, shows
that the value of the optimal solution does not decrease significantly in the shifted instance.

B Claim 16. Let X be any point set that is a semi-permutation. Let 0 ≤ s < N be a shift
value, and let X ′ = Xs be the instance obtained from X by a cyclic shift of its points by s
units to the right. Then OPT(X ′) ≥ OPT(X)− |X|.

4.2 Construction of the Bad Instance
We construct two instances: instance X̂ on N∗ points, that is a semi-permutation (but is
somewhat easier to analyze), and instance X∗ in N∗ points, which is a permutation; the
analysis of instance X∗ heavily relies on the analysis of instance X̂. We will show that the
optimal solution value of both instances is Ω(N∗ log logN∗), but the cost of the Wilber
Bound is at most O(N∗ log log logN∗). Our construction uses the following three parameters.
We let ` ≥ 1 be an integer, and we set n = 2` and N = 2n.

First Instance. We now construct our first final instance X̂, which is a semi-permutation
containing N columns. Intuitively, we create N instances X0, X1, . . . , XN−1, where instance
Xs is an exponentially-spaced BRS instance that is shifted by s units. We then stack these
instances on top of one another in this order.

Formally, for all 0 ≤ j ≤ N − 1, we define a set Rj of n consecutive rows with integral
coordinates, such that the rows of R0,R1, . . . ,RN−1 appear in this bottom-to-top order.
Specifically, set Rj contains all rows whose y-coordinates are in {jn+ 1, jn+ 2, . . . , (j + 1)n}.

For every integer 0 ≤ s ≤ N − 1, we define a set of points Xs, which is a cyclic shift of
instance ES-BRS(`,Rs) by s units. Recall that |Xs| = 2` = n and that the points in Xs

appear on the rows in Rs and a set Cs of columns, whose x-coordinates are in {
(
2j + s

)
mod N : 0 ≤ j < n}. We then let our final instance be X̂ =

⋃N−1
s=0 Xs. From now on, we

denote N∗ = |X̂|. Recall that |N∗| = N · n = N logN .
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Observe that the number of active columns in X̂ is N . Since the instance is symmetric
and contains N∗ = N logN points, every column contains exactly logN points. Each row
contains exactly one point, so X̂ is a semi-permutation. (See Figure 2 for an illustration).

Figure 2 An illustration of our construction. The figure on the left shows the instance
BRS(2, {1, 2, 3, 4}, {1, 2, 3, 4}). The figure on the right combines three copies X0, X1, X2 of the
corresponding exponentially-spaced instance, with horizontal shifts of 0, 1, and 2, respectively. The
red points show how copies of the same point in different sub-instances.

Lastly, we need the following bound on the value of the optimal solution of instance X̂.

I Observation 17. OPT(X̂) = Ω(N∗ log logN∗)

Proof. From Claims 15 and 16, for each 0 ≤ s ≤ N − 1, each sub-instance Xs has
OPT(Xs) ≥ Ω(n logn) = Ω(logN log logN). Therefore, OPT(X̂) ≥

∑N−1
s=0 OPT(Xs) =

Ω(N logN log logN) = Ω(N∗ log logN∗) (we have used the fact that N∗ = N logN). J

Second Instance. We now construct our second and final instance,X∗, that is a permutation.
In order to do so, we start with the instance X̂, and, for every active column C of X̂, we
create n = logN new columns (that we view as copies of C), C1, . . . , C logN , which replace
the column C. We denote this set of columns by B(C), and we refer it as the block of
columns representing C. Recall that the original column C contains logN input points of
X̂. We place each such input point on a distinct column of B(C), so that the points form a
monotonically increasing sequence (see the definition in Section 4.1). This completes the
definition of the final instance X∗. We obtain the following immediate bound on the optimal
solution cost of instance X∗.

B Claim 18. OPT(X∗) ≥ OPT(X̂) = Ω(N∗ log logN∗).

4.3 Upper Bound for WB(X̂)
In this section we prove the following theorem.

I Theorem 19. WB(X̂) ≤ O(N∗ log log logN∗).

In order to prove the theorem, consider again the instance X̂. Recall that it consists
of N instances X0, X1, . . . , XN−1 that are stacked on top of each other vertically in this
order. We rename these instances as X1, X2, . . . , XN , so Xj is exactly ES-BRS(logN), that
is shifted by (j − 1) units to the right. Recall that |X̂| = N∗ = N logN , and each instance
Xs contains exactly logN points. We denote by C the set of N columns, whose x-coordinates
are 1, 2, . . . , N . All points of X̂ lie on the columns of C. For convenience, for 1 ≤ j ≤ N , we
denote by Cj the column of C whose x-coordinate is j.
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Let σ be any ordering of the auxiliary columns in L, and let T = Tσ be the corresponding
partitioning tree. It is enough to show that, for any such ordering σ, the value of WBσ(X̂)
is bounded by O(N∗ log log logN∗). Recall that WBσ(X̂) is the sum, over all vertices
v ∈ V (T ), of cost(v). The value of cost(v) is defined as follows. If v is a leaf vertex, then
cost(v) = 0. Otherwise, let L = L(v) be the line of L that v owns. Index the points
in X ∩ S(v) by q1, . . . , qz in their bottom-to-top order. A consecutive pair (qj , qj+1) of
points is a crossing iff they lie on different sides of L(v). We distinguish between the two
types of crossings that contribute towards cost(v). We say that the crossing (qj , qj+1) is of
type-1 if both qj and qj+1 belong to the same shifted instance Xs for some 0 ≤ s ≤ N − 1.
Otherwise, they are of type-2. Note that, if (qj , qj+1) is a crossing of type 2, with qj ∈ Xs

and qj+1 ∈ Xs′ , then s, s′ are not necessarily consecutive integers, as it is possible that for
some indices s′′, Xs′′ has no points that lie in the strip S(v). We now let cost1(v) be the
total number of type-1 crossings of L(v), and cost2(v) the total number of type-2 crossings.
Note that cost(v) = cost1(v) + cost2(v). We also define cost1(σ) =

∑
v∈V (T ) cost1(v) and

cost2(σ) =
∑
v∈V (T ) cost2(v). Clearly, WBσ(X̂) = cost1(σ) + cost2(σ). In the full version of

the paper, we prove the following two theorems:

I Theorem 20. For every ordering σ of the auxiliary columns in L, cost1(σ) ≤
O(N∗ log log logN∗).

I Theorem 21. For every vertex v ∈ V (T ), cost2(v) ≤ O(logN) +O(cost1(v)).

Notice that from the latter theorem, we get that cost2(σ) ≤ O(cost1(σ)) + O(|V (T )| ·
logN) = O(N∗ log log logN∗) + O(N logN) = O(N∗ log log logN∗). Combining the two
theorems together completes the proof of Theorem 19.

4.4 Upper Bound for WB(X∗)
In this section we show that WB(X∗) = O(N∗ log log logN∗), completing the proof of
Theorem 1. Recall that instance X∗ is obtained from instance X̂ by replacing every active
column C of X∗ with a block B(C) of columns, and then placing the points of C on the
columns of B(C) so that they form a monotone increasing sequence, while preserving their
y-coordinates. The resulting collection of all blocks B(C) partitions the set of all active
columns of X∗. We denote this set of blocks by B1, . . . ,BN . The idea is to use Theorem 13
in order to bound WB(X∗).

Consider a set of lines L′ (with half-integral x-coordinates) that partition the bounding
box B into strips, where the ith strip contains the block Bi of columns, so |L′| = (N −1). We
consider a split of instance X∗ by L′: This gives us a collection of strip instances {Xs

i }1≤i≤N
and the compressed instance Xc. Notice that the compressed instance is precisely X̂, and
each strip instance Xs

i is a monotone increasing point set.
Since each strip instance Xs

i is monotonously increasing, from Observation 14 and
Claim 9, for all i, WB(Xs

i ) ≤ O(OPT(Xs
i )) ≤ O(|Xs

i |). From Theorem 13, we then get that:
WB(X∗) ≤ 4WB(X̂)+8

∑
i WB(Xs

i )+O(|X∗|) ≤ 4WB(X̂)+O(|X∗|) ≤ O(N∗ log log logN∗).

5 Guillotine Bounds

In this section we consider an extension of the Wilber bound which we call the Guillotine
bound. The Guillotine bound GB(X) extends WB(X) by allowing both vertical and horizontal
partitioning lines. Specifically, given the bounding box B, we let L be any vertical or
horizontal line crossing B, that separates X into two subsets X1 and X2. We define the
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number of crossings of L exactly as before, and then recurse on both sides of L as before.
This partitioning scheme can be represented by a binary tree T , where every vertex of the tree
is associated with a rectangular region of the plane. We denote the resulting bound obtained
by using the partitioning tree T by GBT (X), and we define GB(X) = maxT GBT (X). We
show that GB is a lower bound on the optimal solution cost in the following lemma, whose
proof is deferred to the full version.

I Lemma 22. For any point set X that is a permutation, GB(X) ≤ 2OPT(X).

The Consistent Guillotine bound restricts the Guillotine bound by maximizing only over
partitioning schemes that are “consistent” in the following sense: suppose that the current
partition of the bounding box B, that we have obtained using previous partitioning lines, is
a collection {R1, . . . , Rk} of rectangular regions. We need to choose a vertical or a horizontal
line L that spans the whole bounding box B, that is, L intersects the boundary of B in two
points. Once line L is chosen, for every rectangular region Ri that intersects L, we must
partition Ri into two sub-regions using the line L, and then count the number of consecutive
pairs of points in X∩Ri that cross the line L. In other words, we must partition all rectangles
R1, . . . , Rk consistently with respect to the line L. In contrast, in the Guillotine bound, we
are allowed to partition each area Ri independently. From the definitions, the value of the
Guillotine bound GB(X) is always at least as large as the value of the Consistent Guillotine
bound, denoted by cGB(X), on any input sequence X, which is at least as large as WB(X).
We generalize our negative result to the Consistent Guillotine bound in the following theorem,
whose proof appears in the full version of the paper.

I Theorem 23. For every integer n′, there is an integer n ≥ n′, and a set X of points
that is a permutation with |X| = n, such that OPT(X) ≥ Ω(n log logn) but cGB(X) ≤
O(n log log logn).

Our negative results do not extend to the general GB bound, while our divide-and-conquer
framework can naturally be adapted to work with GB. We leave open an interesting question
of establishing the worst-case gap between the value of OPT and that of the Guillotine bound,
and we hope that combining the Guillotine bound with our algorithmic framework will lead
to better online and offline approximation algorithms.

6 The Algorithms

In this section we provide the high level intuition for the proof of Theorem 2. A more detailed
description appears in the Appendix. Both the polynomial time and the sub-exponential
time algorithms follow the same framework. We start with a high-level overview of this
framework. For simplicity, assume that the number of active columns in the input instance
X is an integral power of 2. The key idea is to decompose the input instance into smaller
sub-instances, using the split instances defined in Section 3. We solve the resulting instances
recursively and then combine the resulting solutions.

Suppose we are given an input point set X that is a semi-permutation, with |X| = m,
such that the number of active columns is n. We consider a balanced partitioning tree T ,
where for every vertex v ∈ V (T ), the line L(v) that v owns splits the strip S(v) in the middle,
with respect to the active columns that are contained in S(v). Therefore, the height of the
partitioning tree is logn.

Consider now the set U of vertices of T that lie in the middle layer of T . We consider the
split of (X,T ) at U , obtaining a new collection of instances (Xc, {Xs

i })ki=1 where k = Θ(
√
n).

Note that each resulting strip instance Xs
i contains Θ(

√
n) active columns, and so does the

compressed instance Xc.
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We recursively solve each such instance and then combine the resulting solutions. The
key to the algorithm and its analysis is to show that there is a collection Z of O(|X|) points,
such that, if we are given any solution Y c to instance Xc, and, for all 1 ≤ i ≤ k, any solution
Yi to instance Xs

i , then Z ∪ Y c ∪
(⋃N

i=1 Yi

)
is a feasible solution to instance X. We also

show that the total number of input points that appear in all instances that participate in
the same recursive level is bounded by O(OPT(X)). This ensures that in every recursive
level we add at most O(OPT(X)) points to the solution, and the total solution cost is at
most O(OPT(X)) times the number of the recursive levels, which is bounded by O(log logn).

In order to obtain the sub-exponential time algorithm, we restrict the recursion to D levels,
and then solve each resulting instance directly in time r(X)c(X)O(c(X)). This approach gives
an O(D)-approximation algorithm with running time at most poly(m) · exp

(
n1/2Ω(D) logn

)
as desired. A more detailed description of the algorithm appears in the Appendix.
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A A Detailed Description of the Algorithms

In this section we provide additional details for the proof of Theorem 2. Due to lack of space,
some of the proofs are deferred to the full version.

A.1 Special Solutions
Our algorithm will produce feasible solutions of a special form, that we call special solutions.
Recall that, given a semi-permutation point set X, the auxiliary columns for X are a set L
of vertical lines with half-integral coordinates. We say that a solution Y for X is special iff
every point of Y lies on an row that is active for X, and on a column of L. In particular,
special solutions are by definition non-canonical (see Figure 3 for an illustration). The main
advantage of the special solutions is that they allow us to easily use the divide-and-conquer
approach. We use the following observation, whose proof appears in the full version of the
paper.
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(a) Canonical Solution. (b) Special Solution.

Figure 3 Canonical and T -special solutions of X. The input points are shown as circles; the
points that belong to the solution Y are shown as squares.

I Observation 24. There is an algorithm, that, given a set X of points that is a semi-
permutation, and a canonical solution Y for X, computes a special solution Y ′ for X, such
that |Y ′| ≤ 2|X|+ 2|Y |. The running time of the algorithm is O(|X|+ |Y |).

If σ is any ordering of the auxiliary columns in L, and T = Tσ is the corresponding
partitioning tree, then any point set Y that is a special solution for X is also called a T -special
solution (although the notion of the solution Y being special does not depend on the tree
T , this notion will be useful for us later; in particular, a convenient way of thinking of a
T -special solution is that every point of Y must lie on an active row of X, and on a column
that serves as a boundary for some strip S(v), where v ∈ V (T ).)

A.2 Redundant Points and Reduced Point Sets
Consider a semi-permutation X, that we think of as a potential input to the Min-Sat
problem. We denote X = {p1, . . . , pm}, where the points are indexed in their natural
bottom-to-top order, so (p1).y < (p2).y < . . . < (pm).y. A point pi is said to be redundant,
iff (pi).x = (pi+1).x = (pi−1).x. We say that a semi-permutation X is in the reduced form if
there are no redundant points in X; in other words, if pi−1, pi, pi+1 are three points lying
on three consecutive active rows, then their x-coordinates are not all equal. We use the
following observation and lemma, whose proofs appear in the full version of the paper.

I Observation 25. Let X be a semi-permutation, and let X ′ ⊆ X be any point set, that is
obtained from X by repeatedly removing redundant points. Then OPT(X ′) ≤ OPT(X).

I Lemma 26. Let X be a semi-permutation, and let X ′ ⊆ X be any point set, that is
obtained from X by repeatedly removing redundant points. Let Y be any feasible solution for
X ′ such that every point of Y lies on a row that is active for X ′. Then Y is also a feasible
solution for X.

From Lemma 26, whenever we need to solve the Min-Sat problem on an instance X, it is
sufficient to solve it on a sub-instance, obtained by iteratively removing redundant points
from X. We obtain the following immediate corollary of Lemma 26.

I Corollary 27. Let X be a semi-permutation, and let X ′ ⊆ X be any point set, that is
obtained from X by repeatedly removing redundant points. Let Y be any special feasible
solution for X ′. Then Y ′ is also a special feasible solution for X.

Lastly, we need the following lemma, which is a simple application of the Wilber bound.

I Lemma 28. Let X be a point set that is a semi-permutation in reduced form. Then
OPT(X) ≥ |X|/4− 1.
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A.3 The Algorithm Description
Suppose we are given an input set X of points that is a semi-permutation. Let T be any
partitioning tree for X. We say that T is a balanced partitioning tree for X iff for every
non-leaf vertex v ∈ V (T ) the following holds. Let v′ and v′′ be the children of v in the tree T .
Let X ′ be the set of all input points lying in strip S(v), and let X ′′, X ′′′ be defined similarly
for S(v′) and S(v′′). Let c be the number of active columns in instance X ′, and let c′ and c′′
be defined similarly for X ′′ and X ′′′. Then we require that c′, c′′ ≤ dc/2e.

Given a partitioning tree T , we denote by Λi the set of all vertices of T that lie in the ith
layer of T – that is, the vertices whose distance from the root of T is i (so the root belongs to
Λ0). The height of the tree T , denoted by height(T ), is the largest index i such that Λi 6= ∅.
If the height of the tree T is h, then we call the set Λdh/2e of vertices the middle layer of
T . Notice that, if T is a balanced partitioning tree for input X, then its height is at most
2 log c(X).

Our algorithm takes as input a set X of points that is a semi-permutation, a balanced
partition tree T for X, and an integral parameter ρ > 0.

Intuitively, the algorithm uses the splitting operation to partition the instance X into
subinstances that are then solved recursively, until it obtains a collection of instances whose
corresponding partitioning trees have height at most ρ. We then either employ dynamic
programming, or use a trivial O(log c(X))-approximation algorithm. The algorithm returns
a special feasible solution for the instance. Recall that the height of the tree T is bounded
by 2 log c(X) ≤ 2 logn. The following two theorems will be used as the recursion basis.

I Theorem 29. There is an algorithm called LeafBST-1 that, given a semi-permutation
instance X of Min-Sat in reduced form, and a partitioning tree T for it, produces a feasible
T -special solution for X of cost at most 2|X|+ 2OPT(X), in time |X|O(1) · c(X)O(c(X)).

I Theorem 30. There is an algorithm called LeafBST-2 that, given a semi-permutation
instance X of Min-Sat in reduced form, and a partitioning tree T for it, produces a feasible
T -special solution of cost at most 2|X|height(T ), in time poly(|X|).

The proofs of both theorems are deferred to the full version of the paper. We now provide
a schematic description of our algorithm. Depending on the guarantees that we would like
to achieve, whenever the algorithm calls procedure LeafBST, it will call either procedure
LeafBST-1 or procedure LeafBST-2; we specify this later.

Algorithm 1 RecursiveBST(X,T, ρ).

1. Keep removing redundant points from X until X is in reduced form.
2. IF T has height at most ρ,
3. return LeafBST(X,T )
4. Let U be the set of vertices lying in the middle layer of T .
5. Compute the split (Xc, {Xs

v}v∈U ) of (X,T ) at U .
6. Compute the corresponding sub-trees (T c, {T sv }v∈U ) of T .
7. For each vertex v ∈ U , call to RecursiveBST with input (Xs

v , T
s
v , ρ), and let Yv be

the solution returned by it.
8. Call RecursiveBST with input (Xc, T c, ρ), and let Ŷ be the solution returned by it.
9. Let Z be a point set containing, for each vertex v ∈ U , for each point p ∈ Xs

v , two
copies p′ and p′′ of p with p′.y = p′′.y = p.y, where p′ lies on the left boundary of S(v),
and p′′ lies on the right boundary of S(v).

10. return Y ∗ = Z ∪ Ŷ ∪ (
⋃
v∈U Yv)
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A.4 Analysis
We start by showing that the solution that the algorithm returns is T -special in the following
observation, whose proof appears in the full version of the paper.

I Observation 31. Assuming that LeafBST(X,T ) returns a T -special solution, the solution
Y ∗ returned by Algorithm RecursiveBST(X,T, ρ) is a T -special solution.

We next turn to prove that the solution Y ∗ computed by Algorithm
RecursiveBST(X,T, ρ) is feasible. In order to do so, we will use the following imme-
diate observation.

I Observation 32. Let Y ∗ be the solution returned by Algorithm RecursiveBST(X,T, ρ),
and let u ∈ U be any vertex. Then:

Any point y ∈ Y ∗ that lies in the interior of S(u) must lie on an active row of instance
Xs
u.

Any point y ∈ Y ∗ that lies on the boundary of S(u) must belong to in Ŷ ∪ Z. Moreover,
the points of Ŷ ∪ Z may not lie in the interior of S(u).
If R is an active row for instance Xs

u, then set Z contains two points, lying on the
intersection of R with the left and the right boundaries of S(u), respectively.

The following theorem, whose proof is deferred to the full version of the paper, shows
that the algorithm returns a feasible solution.

I Theorem 33. Assume that the recursive calls to Algorithm RecursiveBST return a
feasible special solution Ŷ for instance Xc, and for each v ∈ U , a feasible special solution Yv
for the strip instance Xs

v . Then the point set Y ∗ = Z ∪ Ŷ ∪ (
⋃
v∈U Yv) is a feasible solution

for instance X.

In order to analyze the solution cost, consider the final solution Y ∗ to the input instance
X. We distinguish between two types of pints in Y ∗: a point p ∈ Y ∗ is said to be of type 2
if it was added to the solution by Algorithm LeafBST, and otherwise we say that it is of
type 1. We start by bounding the number of points of type 1 in Y ∗.

B Claim 34. The number of points of type 1 in the solution Y ∗ to the original instance X is
at most O(log(height(T )/ρ)) · OPT(X).

Proof. Observe that the number of recursive levels is bounded by λ = O(log(height(T )/ρ)).
This is since, in every recursive level, the heights of all trees decrease by a constant factor,
and we terminate the algorithm once the tree heights are bounded by ρ. For each 1 ≤ i ≤ λ,
let Xi be the collection of all instances in the ith recursive level, where the instances are in
the reduced form. Notice that the only points that are added to the solution by Algorithm
RecursiveBST directly are the points in the sets Z. The number of such points added
at recursive level i is bounded by

∑
X′∈Xi 2|X ′|. It is now sufficient to show that for all

1 ≤ i ≤ λ,
∑
X′∈Xi |X

′| ≤ O(OPT(X)). We do so using the following observation.

I Observation 35. For all 1 ≤ i ≤ λ,
∑
X′∈Xi OPT(X ′) ≤ OPT(X).

Assume first that the observation is correct. For each instance X ′ ∈ Xi, let T ′ be the
partitioning tree associated with X ′. From Lemma 28, |X ′| ≤ O(OPT(X ′)). Therefore, the
number of type-1 points added to the solution at recursive level i is bounded by O(OPT(X)).
We now turn to prove Observation 35.
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Proof of Observation 35. The proof is by induction on the recursive level i. It is easy to
see that the claim holds for i = 1, since, from Observation 25, removing redundant points
from X to turn it into reduced form cannot increase OPT(X).

Assume now that the claim holds for level i, and consider some level-i instance X ′ ∈ Xi.
Let (Xc, {Xs

u}u∈U ) be the split of (X ′, T ′) that we have computed. Then, from Theorem 12,∑
v∈U OPT(Xs

v) + OPT(Xc) ≤ OPT(X ′). Since, from Observation 25, removing redundant
points from an instance does not increase its optimal solution cost, the observation follows. J

C

In order to obtain an efficient O(log logn)-approximation algorithm, we set ρ to be a
constant (it can even be set to 1), and we use algorithm LeafBST-2 whenever the algorithm
calls to subroutine LeafBST. Observe that the depth of the recursion is now bounded
by O(log logn), and so the total number of type-1 points in the solution is bounded by
O(log logn) · OPT(X). Let I denote the set of all instances to which Algorithm LeafBST
is applied. Using the same arguments as in Claim 34,

∑
X′∈I |X ′| = O(OPT(X)). The

number of type-2 points that Algorithm LeafBST adds to the solution for each instance
X ′ ∈ I is bounded by O(|X ′| · ρ) = O(|X ′|). Therefore, the total number of type-2 points
in the solution is bounded by O(OPT(X)). Overall, we obtain a solution of cost at most
O(log logn) · OPT(X), and the running time of the algorithm is polynomial in |X|.

Finally, in order to obtain the sub-exponential time algorithm, we set the parameter ρ to be
such that the recursion depth is bounded byD. Since the number of active columns in instance
X is c(X), and the height of the partitioning tree T is bounded by 2 log c(X), while the depth of
the recursion is at most 2 log(height(T )/ρ), it is easy to verify that ρ = O

(
log c(X)

2D/2

)
= log c(X)

2Ω(D) .
We use algorithm LeafBST-1 whenever the algorithm calls to subroutine LeafBST. As
before, let I be the set of all instances to which Algorithm LeafBST is applied. Using
the same arguments as in Claim 34,

∑
X′∈I(|X ′| + OPT(X ′)) = O(OPT(X)). For each

such instance X ′, Algorithm LeafBST-1 produces a solution of cost O(|X ′|+ OPT(X ′)).
Therefore, the total number of type-2 points in the final solution is bounded by O(OPT(X)).
The total number of type-1 points in the solution is therefore bounded by O(D) ·OPT(X)
as before. Therefore, the algorithm produces a factor-O(D)-approximate solution. Finally,
in order to analyze the running time of the algorithm, we first bound the running time of
all calls to procedure LeafBST-1. The number of such calls is bounded by |X|. Consider
now some instance X ′ ∈ I, and its corresponding partitioning tree T ′. Since the height of
T ′ is bounded by ρ, we get that c(X ′) ≤ 2ρ ≤ 2log c(X)/2Ω(D) ≤ (c(X))1/2Ω(D) . Therefore,
the running time of LeafBST-1 on instance X ′ is bounded by |X ′|O(1) · (c(X ′))O(c(X′)) ≤
|X ′|O(1) · exp (O(c(X ′) log c(X ′)) ≤ |X ′|O(1) · exp

(
c(X)1/2Ω(D) · log c(X)

)
.

The running time of the remainder of the algorithm, excluding the calls to LeafBST-1, is
bounded by poly(|X|). We conclude that the total running time of the algorithm is bounded
by |X|O(1) · exp

(
c(X)1/2Ω(D) · log c(X)

)
≤ poly(m) · exp

(
n1/2Ω(D) · logn

)
.
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