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Abstract. Multi-particle sources constitute an interesting new paradigm
following the recent development of on-demand single-electron sources.
Versatile devices can be designed using several single-electron sources,
possibly of different types, coupled to the same quantum circuit. How-
ever, if combined non-locally to avoid cross-talk, the resulting archi-
tecture becomes very sensitive to electronic decoherence. To circum-
vent this problem, we here analyse two-particle sources that operate
with several single-electron (or hole) emitters attached in series to the
same electronic waveguide. Using the Floquet scattering theory we
demonstrate how such a device can emit exactly two electrons with-
out exciting unwanted electron-hole pairs if the driving is adiabatic.
Going beyond the adiabatic regime, perfect two-electron emission can
be achieved by driving two quantum dot levels across the Fermi level
of the external reservoir. If a single-electron source is combined with
a source of holes, the emitted particles can annihilate each other in a
process which is governed by the overlap of their wave functions. Im-
portantly, the degree of annihilation can be controlled by tuning the
emission times, and the overlap can be determined by measuring the
shot noise after a beam splitter. In contrast to a Hong-Ou-Mandel ex-
periment, the wave functions overlap close to the emitters and not after
propagating to the beam splitter, making the shot noise reduction less
susceptible to electronic decoherence.

1 Introduction

On-demand single-electron sources [1,2,3,4] make it possible to perform quantum op-
tics experiments with electrons, and they form the basis of the rapidly developing field
of quantum coherent electronics [5,6]. Electronic counterparts of the famous Hanbury-
Brown and Twiss effect [7,8,9,10,11,12,13,14] and Hong-Ou-Mandel interference [8,
15,16,17,18,19,20] have already been demonstrated experimentally. Quantum tomog-
raphy of single-electron states has also been proposed and realized [21,22,23,24].
However, one challenging issue working with electrons is decoherence and relaxation
caused by neighboring electrons in the waveguides, which can significantly degrade
quantum effects, resulting for example in a non-perfect Pauli dip in the shot noise
(the fermionic analogue of the Hong-Ou-Mandel peak in quantum optics) [17]. Several
methods are currently being developed to prevent decoherence, including quantum

a e-mail: michael.moskalets@gmail.com



2 Will be inserted by the editor

Fig. 1. A composite two-electron source can be constructed from single-electron sources
located side by side. Here, two quantum capacitors in series are driven by separate gate
voltages. Each capacitor is formed by a circular edge state (in red) and a metallic top gate.
Electrons (in blue) are emitted into an edge state in the direction indicated by arrows.

environment engineering [25,26,27,28,29], and the emission of electrons high above
the Fermi level [24,30,31]. Still, recent experimental results on energy relaxation in-
dicate that the longest mean free path is achieved by emitting the electrons close
to the Fermi level [28]. For quantum information processing, it may thus be favor-
able to use single-electron sources that emit particles right on top of the Fermi sea,
for instance, a quantum capacitor [32,33,34,35], a leviton source [8,36,37,38], or the
recently proposed emitter based on time-dependent local gating [39].

While single-electron emitters have been investigated both experimentally and
theoretically, much less is known about more complex devices such as multi-particle
sources, although some experimental progress in this direction has already been re-
ported [8,40,41,42,43,44]. In this work, we analyze two-electron sources consisting
of several single-electron sources connected in series as illustrated in Fig. 1 [45]. Here
we show two quantum capacitors attached to the same edge state, but one may also
consider combinations of different types of emitters, for example by integrating a
quantum capacitor [32] with a source of levitons [8]. Importantly, as we will discuss
in detail, one can combine a single-electron emitter with a source of holes [16], which
will enable the controlled creation of superpositions of quantum states which have
different numbers of fermions. Note also that Coulomb interactions can presumably
affect the emission process itself [46,47], which has yet to be confirmed experimentally.
Here, we do not take this effect into account.

The rest of the paper is organized as follows: In Sec. 2, we provide a brief ac-
count of the excess correlation function formalism and demonstrate its usefulness
for the analysis of single and few-particle emitters. In Sec. 3, we outline the theory
of composite two-electron sources based on the scattering properties of the individ-
ual single-particle emitters. We provide several examples of composite two-particle
emitters in Sec. 4, and show that it is possible to emit exactly two electrons without
exciting unwanted electron-hole pairs if the driving is adiabatic. In a specific case, per-
fect two-electron emission can also be achieved in the non-adiabatic regime. Technical
details of our calculations are deferred to the Supplementary Material.
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2 Excess correlation function

The first-order correlation function is defined as G(1) (1; 2) = 〈Ψ̂ †(1)Ψ̂(2)〉, where Ψ̂
in our case is the field operator of electrons in the conductor of interest, and the
brackets 〈. . . 〉 denote the quantum-statistical average. The correlation function can
be calculated using any many-body formalism, and in Sec. 3 we show in particular
how it can be evaluated using scattering theory.

The correlation function G(1) is additive in the number of electrons, which makes
it a useful theoretical tool to characterize the excitations emitted by a source into
a conductor. We just need to calculate G(1) with the source turned on and off and
evaluate the difference known as the excess first-order correlation function [21,48,49]

G(1) (1; 2) = G(1)
on (1; 2)− G(1)

off (1; 2) . (1)

To be specific, we consider a chiral one-dimensional conductor and fix the spatial

coordinates at an arbitrary position downstream from the source, x
(0)
1 = x

(0)
2 = xD,

keeping only the times t1 and t2. For a linear (or linearized) dispersion relation,
E−µ = vµ (p− pµ), the correlation function at different coordinates can be calculated
using the substitution, tj → tj − vµ (xj − xD), with j = 1, 2, where µ is the Fermi
energy of the electrons in the conductor and vµ (pµ) is the velocity (momentum)
of electrons at energy E = µ. We restrict ourselves to non-interacting electrons,
where G(1) provides complete information about the injected particles, and we set
the temperature to zero to keep the discussion simple. For the purposes of this
study, we consider only regimes of perfect injection, when a controlled number of
particles is injected without excitation of unwanted electron-hole pairs.

2.1 Single-particle emission

If the source emits a single particle, the excess first-order correlation function reads [50]

G(1) (t1; t2) = η
e
i
~µ(t1−t2)

vµ
ψ∗ (t1)ψ (t2) , (2)

where η = +1 stands for the injection of an electron and η = −1 for a hole.
The wave function is normalized such that∫

dt |ψ (t)|2 = 1, (3)

having introduced the factor of 1/vµ in Eq. (2), so that we can formulate the nor-
malization condition as an integral over time, instead of over space. It turns out to

be convenient to introduce the formal factor e
i
~µ(t1−t2) to describe the injection of an

electron on top of the Fermi sea of the conductor, for example for a leviton source [51].
The correlation function is idempotent in the sense that∫

dtG(1) (t1; t)G(1) (t; t2) =
η

vµ
G(1) (t1; t2) , (4)

which is characteristic for a pure state. A discussion of single-particle emission at
non-zero temperatures, where the injected state is mixed rather than pure, can be
found in Refs. [52,53,54].
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2.2 Two-particle emission

For a source that emits two particles, we have [50]

G(1) (t1; t2) =
e
i
~µ(t1−t2)

vµ

2∑
α=1

ηαψ
∗
α (t1)ψα (t2) . (5)

If the source injects two particles of the same kind, two electrons or two holes, we
have η1η2 = +1, and the corresponding wave functions are orthogonal to each other,
meaning that their overlap integral

J =

∫
dtψ∗1 (t)ψ2 (t) , (6)

vanishes, J+ = 0 (here the subscript denotes the product sign η1η2). This fact is
the manifestation of the Pauli exclusion principle for fermions injected into the same
quantum channel, see e.g. Ref. [55].

By contrast, if the two-particle source emits one electron and one hole, η1η2 = −1,
the overlap integral is not necessarily zero, J− 6= 0. To clarify the physics behind this
observation, we need to analyse the two-particle wave function.

2.3 Electron-hole emission and annihilation

The fermionic two-particle wave function is represented by the following Slater deter-
minant containing the single-particle wave functions, ψα,

ψ(2) (t1; t2) =

∣∣∣∣∣∣
ψ1 (t1) ψ2 (t1)

ψ1 (t2) ψ2 (t2)

∣∣∣∣∣∣ . (7)

The integral of the squared wave function gives us the number of injected particles,

N =

∫∫
dt1dt2

∣∣∣ψ(2) (t1; t2)
∣∣∣2 = 2

(
1− |J|2

)
, (8)

having used the normalization of the single-particle wave functions according to
Eq. (3) together with the definition of the overlap integral in Eq. (6).

Note that in the case of electron-hole injection, simply using G(1) for calculating
the number of particles is incorrect, since

∫
dtG(1) (t; t) gives us the difference, not

the sum of the number of injected particles.
If two particles of the same kind are injected, their wave functions are orthogonal,

J+ = 0, and the number of injected particles is N+ = 2, as expected. The injected
state |ψ(2)〉 is a two-particle state, |ψ(2)〉 = |ee〉 or |ψ(2)〉 = |hh〉, where e stands for
an electron and h stands for a hole.

If an electron and a hole are injected, their wave functions are not orthogonal,
J− 6= 0, and the number of injected particles is less than expected, N− < 2, accord-
ing to Eq. (8). One can interpret this suppression as being caused by the two injected
particles annihilating each other with a probability given by the squared overlap inte-
gral, |J−|2. One may think of the electron emitted by one source as being reabsorbed
by the other source which emits a hole (or vice versa) [45,56,57,58]. As such, the
emitted state is a coherent superposition of the two-particle electron-hole state, |eh〉,
and the state without any injected particles, the vacuum state |0〉,

|ψ(2)〉 =

√
1− |J−|2 |eh〉+ J− |0〉 . (9)
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As we now go on to show, the number of injected particles in Eq. (8) can be determined
from shot noise measurements at low temperatures [8,9].

2.4 Shot noise

Shot noise is generated if the stream of injected particles is partitioned on an electronic
beam splitter as illustrated in Fig. 2 [59,60,61,62,63]. We first emit particles into one
of the input arms using a periodically driven electron source, while the other input
channel is grounded, as indicated in the right panel of Fig. 2. In this case, the time-
averaged cross-correlations of the outgoing currents, Pout, is related to the excess
first-order correlation function of the incoming excitations as [64]

Pout

P0
= −

T0∫
0

dt

∞∫
−∞

dτ
∣∣∣vµG(1)(t + τ ; t)

∣∣∣2 . (10)

Here, the factor P0 = e2RT/T0 is given by the electron charge e, the reflection R
and transmission probabilities T = 1 − R of the beam splitter, and the period of
the drive T0. To keep the discussion simple, we assume that electrons injected in
different periods do not overlap. We can then extend the limits of the integral over t
to infinity. Upon substituting Eq. (5) into Eq. (10), combined with Eqs. (3) and (6),
we now arrive at an expression for the shot noise in the case η1η2 = −1, which reads

Pout

P0
= −N = −2

(
1− |J−|2

)
. (11)

This result shows that the shot noise is given by the product of two factors: One,−2P0,
is the shot noise produced by two independent particles. The other one, 1− |J−|2, is
the probability that the two particles do not annihilate each other.

Fig. 2. Non-local and local injection of fermions on a beam splitter. Left panel: If particles
are injected into different input arms, the overlap integral in Eq. (6) describes the scattering
on the beam splitter, subject to the Pauli exclusion principle for electron-electron or hole-
hole interference, J+ 6= 0, but not for the simultaneous arrival of an electron and a hole,
J− = 0. Right panel: If two particles are injected into the same input arm, the overlap
integral rather characterizes the injection process. The Pauli exclusion principle demands
that the overlap vanishes, J+ = 0, if two electrons or two holes are injected. Otherwise,
J− 6= 0 is the amplitude for the particles to annihilate each other according to Eq. (9).
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Note that in the case of electron-electron (or hole-hole) injection, the overlap
integral is zero, J+ = 0, and the shot noise, Eq. (10), is given by the sum of the
independent contributions of two particles, Pout = −2P0.

2.4.1 Annihilation versus the electronic Hong-Ou-Mandel effect

Equation (11) with the replacement of J− by J+ also describes the situation where
two electrons (or two holes) are injected into different input arms and interfere at
the beam splitter as in a Hong-Ou-Mandel interferometer [6,54,61,65]. Note that we
are discussing two-particle, not single-particle, interference in the following. Although
the equation is formally the same for the two cases, the physical interpretation of the
overlap integral in Eq. (6) is completely different.

In the non-local setup in the left panel of Fig. 2, the two sources emit particles into
different input channels, and the emitted electrons or holes (η1η2 = +1) are initially
uncorrelated. They interfere when they arrive at the beam splitter, where the Pauli
exclusion principle forces them to exit via different output arms [61]. In this case, the
overlap of the wave functions at the beam splitter determines the suppression of the
shot noise, and its exact value, J+ 6= 0, can be controlled by adjusting the relative
emissions times. On the other hand, if an electron and a hole are injected, η1η2 = −1,
they scatter on the beam splitter independently, since their energy is different such
that the Pauli exclusion principle does not apply, and the overlap integral vanishes,
J− = 0.

By contrast, in the local setup in the right panel of Fig. 2, the two emitters
are placed in the same input arm to make up a composite source. In this case, two
injected electrons (or holes) with η1η2 = +1 interfere already upon emission. The
Pauli exclusion principle forces the two injected electrons (or holes) to be in orthogonal
quantum states and the overlap must vanish, J+ = 0, independently of the emission
times. On the other hand, if one source emits an electron and the other a hole,
η1η2 = −1, the overlap integral is not necessarily zero, J− 6= 0 and it characterizes
correlations between the entire injected state and the vacuum (the untouched Fermi
sea) according to Eq. (9). More precisely, the overlap integral J− is just the quantum-
mechanical amplitude of the annihilation process, in which an electron injected by one
source is annihilated by a hole from the other source, such that no particles effectively
are emitted towards the beam splitter. Importantly, the value of the overlap integral,
J− 6= 0, can in this case be continuously tuned by changing the emission times.

We recall that we here consider zero temperature and refer the reader to Refs. [66,
67] for a discussion of electron-hole interference at nonzero temperatures in the non-
local setup and to Ref. [68] for a discussion of electron-electron interference at nonzero
temperatures in the local setup.

As we have seen, the shot noise suppression is clearly caused by different phys-
ical processes. In the non-local setup, the shot noise suppression occurs due to the
interference of identical particles at the beam splitter [69,70,71]. By contrast, for the
local setup, the shot noise suppression is due to the decreased number of injected
particles, since electron and holes may annihilate each other close to the emitters.
Shot noise suppression forms the basis of single-electron state tomography based on
Hong-Ou-Mandel interferometry [21], and one may anticipate that similar ideas can
be developed based on the annihilation effect for the local setup. Importantly, with
the sources placed close to each other as in the right panel of Fig. 2, the setup becomes
less susceptible to decoherence along the electron waveguide [27,72].
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3 Scattering theory of composite two-electron sources

We now describe the scattering theory of composite two-electron sources. To this end,
we first consider a single-particle emitter that is attached to a chiral one-dimensional
electron waveguide. The source is driven by a classical periodic field with period
T0 = 2π/Ω, for example an electric potential that is applied with a gate electrode.

The effect of a periodic driving field can be described by a Floquet scattering
matrix SF, whose elements SF (En, E) are the photon-assisted amplitudes for an
electron with energy E to exchange n energy quanta of size ~Ω with the driving
field such that its energy becomes En = E + n~Ω [73]. The scattering amplitudes
relate the electron operators in second quantization before and after the source, â

and b̂, respectively, as

b̂ (En) = SF (En, E) â (E) (12)

for annihilation operators and

b̂† (En) = S∗F (En, E) â† (E) . (13)

for creation operators. The electrons before the source are in equilibrium and are
characterized by the Fermi distribution function

f(E) =
1

1 + exp
[
E−µ
kBθ

] , (14)

where µ is Fermi energy, the temperature is θ, and kB is the Boltzmann constant.
The quantum-mechanical average used in the definition of G(1) describes the fermionic
operators before the source, where the particles are in equilibrium and we have〈

â† (E) â (E′)
〉

= δ (E − E′) f(E). (15)

In the wide band limit, the excess first-order correlation function then becomes [74]

G(1)(t1; t2) =
1

hvµ

∫
dEf (E) e

i
~E(t1−t2) {S∗in(t1, E)Sin(t2, E)− 1} , (16)

where we have introduced the inverse Fourier transform of the Floquet amplitudes [75]

Sin (t, E) =

∞∑
n=−∞

e−inΩtSF (En, E) . (17)

These expressions allow us to describe dynamic single-electron emitters.

3.1 Composite sources

We can now describe two-particle sources composed of two single-particle emitters
connected in series [45]. If each source separately operates as an ideal single-particle
emitter, we can expect that the composite source will work as a two-particle emitter.

We place the two single-particle emitters, each described by the scattering matrices
SL

in and SR
in, in close proximity to form a composite source. To be specific, we choose

SL
in to describe first emitter upstream. The total scattering amplitude of the composite

source can then be calculated as [57]

Stot
in (t, E) =

∞∑
n=−∞

T0∫
0

dτ

T0
einΩ(τ−t)SR

in (t, En)SL
in (τ, E) , (18)
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where we have neglected the distance between the sources. At zero temperature and
in the wide band limit, the distance between the emitters can be accounted for simply
by adjusting the injection times of the two emitters.

The correlation function of the composite source can be calculated using Eq. (16)
by replacing Sin with Stot

in . The correlation function then consists of three terms,

G
(1)
tot = G

(1)
R +G

(1)
L + δG

(1)
LR, (19)

where G
(1)
j , j = L, R, is given in Eq. (16) with Sin replaced by Sjin, while the last

term accounts for the combined effect of the two single-particle emitters and reads

δG
(1)
LR =

1

hvµ

∫
dEf (E) e

i
~E(t1−t2)

∑
m,n

T0∫∫
0

dτ ′

T0

dτ

T0
e−imΩ(τ ′−t1)einΩ(τ−t2) (20)

×
{[
SR

in (t1, Em)
]∗
SR

in (t2, En)− 1
}{[

SL
in (τ ′, E)

]∗
SL

in (τ, E)− 1
}
.

With these expressions, we can now describe the composite two-particle sources.

4 Examples

We are now ready to discuss examples of composite two-particle sources. We restrict
ourselves to zero temperature, θ = 0, where the Fermi distribution is a step function,
f (E) = Θ (µ− E), with Θ (x) being the Heaviside function.

4.1 Adiabatic injection

If the scattering amplitude of each single-particle source, Sjin, is energy-independent,
the total amplitude is simply given by the product, Stot

in (t) = SR
in (t)SL

in (t) [45,55].
The expression for the correlation function also greatly simplifies. In particular, at
zero temperature, Eqs. (16), (19), and (20) in combination give us

G
(1)
j (t1; t2) =

e
i
~µ(t1−t2)

vµ

[
Sjin (t1)

]∗
Sjin (t2)− 1

2πi (t1 − t2)
, (21a)

G
(1)
tot (t1; t2) = G

(1)
R (t1; t2) +

[
SR

in (t1)
]∗
G

(1)
L (t1; t2)SR

in (t2) . (21b)

The last equation admits the following interpretation: the quantum state injected by
the composite source is the sum of the quantum state injected by the downstream
source and the state injected by the upstream source after being modified by the
downstream one. Although this might be a rather artificial interpretation, since we
can’t really divide the quantum phase-coherent system into parts, it provides a useful
description of what is happening in the system.

Equation (21) tells us that in the adiabatic case, if each source separately works
as a single-electron emitter, the two emitters form a perfect two-particle source which
excites no unwanted electron-hole pairs. Indeed, if the correlation function of each

individual source has the form given in Eq. (2), G
(1)
j (t1; t2) ∼ ψ∗j (t1)ψj (t2), j = L, R,

the correlation function of the composite source, G
(1)
tot, is given by Eq. (5) with, for

instance, ψ1 (t) = ψR (t) and ψ2 (t) = SR
in (t)ψL (t). We note that in the adiabatic

limit, the scattering amplitude of an emitter coupled to a chiral one-dimensional
channel is just a phase factor, Sjin = eiσj , so that the modulus is unity, |Sjin| = 1. For
this reason, ψ2 is normalized if ψL is also normalized. This line of reasoning can be
generalized to any number of sources operating in the adiabatic regime [51].
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4.2 Levitons

A paradigmatic example of an energy independent source is the case of an AC voltage
applied to a metallic contact from which a chiral edge state originates. The scattering

amplitude is the phase factor, Sin(t) = exp[−i (e/~)
∫ t
−∞ dt′V (t′)], where V (t) is the

time-dependent voltage [50]. If the voltage is a sequence of Lorentzian voltage pulses
of a definite amplitude [76,77,78,79,80,81,82,83,84,85],

eV (t) = η

∞∑
m=−∞

2~Γτ
(t− τ −mT0)

2
+ Γ 2

τ

, (22)

a sequence of single electrons (η = +1) or holes (η = −1) are injected [36,37,38]. These
particles are called levitons [8]. The parameter Γτ is the half-width of the density
profile of the wave packets. It also defines the energy of each leviton, E = ~/(2Γτ ) [38].
The parameter τ determines the position of the peak of the wave packet within the
period, 0 < τ < T0. In general, when T0 ∼ Γτ , the particles injected during different
periods are overlapping, the resulting state is thus strictly speaking a multi-particle
state, and the corresponding wave functions were analysed in Ref. [51].

To simplify our analysis of two Lorentzian voltage pulses being applied per period,
we consider the limiting case T0 � Γτ and restrict ourselves to a single long period.
This approach can also be employed when Floquet scattering theory is used to describe
a non-periodic process as we will see in Sec. 4.3 [53]. The applied voltage is then the
sum of two Lorentzian pulses, Vtot = VL + VR, with

eVj(t) = ηj
2~Γj

(t− τj)2
+ Γ 2

j

. (23)

Here, the time t extends over the full, long perid T0 � Γj . The voltages VL,R now
play the role of single-particle sources, while the total voltage Vtot effectively is our
composite two-particle source. The corresponding scattering amplitudes read [35]

Sjin (t) =
t− τj + iηjΓj
t− τj − iηjΓj

. (24)

According to Eq. (21), the correlation function of the composite source has the form
of Eq. (5) with η1 = ηR, η2 = ηL and the following wave functions [40,50]

ψ1 (t) =

√
ΓR/π

t− τR − iηRΓR
, ψ2 (t) =

√
ΓL/π

t− τL − iηLΓL

t− τR + iηRΓR

t− τR − iηRΓR
, (25)

which are normalized according to Eq. (3). When both voltages have the same sign,
ηL = ηR, the overlap integral in Eq. (6) is zero, J+ = 0, recalling that the subscript
stands for the sign of the product ηLηR. In other words, when both voltages excite
particles with the same charge (two electrons or two holes), the particles occupy
orthogonal states in accordance with the Pauli exclusion principle.

By contrast, if the two voltages VL and VR excite particles of opposite charge,
ηL = −ηR, the overlap integral is non-zero, and one may interpret this as the particle
generated by one source being annihilated by the other with probability |J−|2. Indeed,
using Eqs. (6), (8), and (25), the number of emitted particles reads [38]

N = 2
(

1− |J−|2
)
≤ 2, |J−|2 =

4ΓLΓR

τ2 + (ΓL + ΓR)
2 , (26)
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where τ = τL − τR is the time difference between the two voltage pulses. If the
electron and hole wave packets have the same width, ΓL = ΓR, and are injected
simultaneously, τ = 0, the annihilation is complete and no particles are emitted,
N = 0 [45]. For this reason, we can refer to a hole-like leviton as an anti-leviton,
and we see how a leviton created by one voltage pulse and a hole created by another
voltage pulse can completely annihilate each other. Of course, in this simple case, the
voltage pulses simply cancel each other, such that the total applied voltage vanishes.

Interestingly, the overlap integral in Eq. (26) has the same time dependence as
the wave function squared in Eq. (25), however, with both the amplitude and the
width of the wave packet being renormalized. This fact can be used to access the
time-dependent density profile of a single-electron wave packet via a time-averaging
measurement like the shot noise measurement described by Eq. (11).

4.3 Non-adiabatic injection

We now move on to non-adiabatic particle injection. Theory predicts that an electron
and a hole injected in an irreversible decay process do not annihilate each other [57].
Therefore, one may speculate that complete annihilation only occurs in the adiabatic
regime. To support this expectation, we now discuss a single-particle source that can
be tuned from the adiabatic to the non-adiabatic regime. Specifically, we consider
single-particle emission into a Fermi sea from a single quantum level that can be varied
linearly in time with rapidity c. The corresponding scattering amplitude reads [35]

Sin(t, E) = 1− 2

∞∫
0

dξe−ξe−i
t−τ
Γτ

ξeiζξ
2

eiζ
E−µ
E ξ , (27)

where τ is the time when the quantum level would cross the Fermi energy µ, if there
were no coupling. The width of the injected wave packet due to the coupling to the
Fermi sea is denoted by Γτ . This width determines the time window during which
the broadened quantum-dot level crosses the Fermi level. The coupling strength can
also be characterized by the dwell time, τD, which is the time it takes an electron to
decay from the quantum level at a fixed energy above the Fermi level. In addition, the
crossing time Γτ depends on the rapidity c. Thus, the parameter that enters Eq. (27)
is defined as Γτ = ~/(2cτD). Moreover, the parameter ζ is given by the ratio of the
two characteristic time scales, ζ = τD/Γτ , and it controls how adiabatic the driving
is. Specifically, with ζ = 0, we recover the adiabatic solution in Eq. (24). Finally,
E = ~/(2Γτ ) is the energy of the injected particle relative to the Fermi level [64].

The wave function of the injected particle reads Ψ(t) = e−
i
~µtψ(t) with [35]

ψ (t) =
1√
π |Γτ |

∞∫
0

dξe−ξe−i
t−τ
Γτ

ξeiζξ
2

. (28)

The wave function is normalized according to Eq. (3), and we note that the two pa-
rameters Γτ and ζ both depend on the rapidity c. If the rapidity is positive (negative),
c > 0 (c < 0), an electron (hole) is injected. To take this into account, we use ηΓτ and
ηζ, with both Γτ and ζ being positive, and η = 1(−1) for electron (hole) injection.

4.3.1 Two-particle injection

We now take two quantum dot levels as above and attach them in series to a chiral
waveguide. As before, we use the subscript L for the upstream source and R for the
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downstream source. The scattering amplitude of each source reads

Sjin(t, E) = 1− 2

∞∫
0

dξe−ξe
−iηj

t−τj
Γj

ξ
eiηjζjξ

2

e
iζj

E−µ
Ej

ξ
, j = L, R, (29)

where the last exponential factor does not contain ηj , since the ratio ζj/Ej is the same
for electron (ηj = 1) and hole (ηj = −1) injection.

Based on this expression, we can calculate the scattering amplitude of the com-

posite source Stot
in using Eq. (18) and, furthermore, the correlation function G

(1)
tot using

Eq. (16). The calculation is in principle straightforward, however, it is rather lengthy,
and the details are presented in Appendix A of the Supplementary Material.

At zero temperature, the result has the form of Eq. (5) with η1 = ηR and ψ1(t) =
ψR(t), where ψR is the wave function of a particle that would be injected by the
downstream source on its own,

ψR (t) =
1√
πΓR

∞∫
0

dξe−ξe
−iηR

t−τR
ΓR

ξ
eiηRζRξ

2

. (30)

For the second contribution in Eq. (5), we have η2 = ηL and the wave function

ψ2 (t) =
1√
πΓL

∞∫
0

dξe−ξe
−iηL

t−τL
ΓL

ξ
eiηLζLξ

2

×

1− 2

∞∫
0

dχe−χe
−iηR

t−τR
ΓR

χ
eiηRζRχ

2

e
iηLζR

ΓR
ΓL

2ξχ

 . (31)

The wave function is normalized as shown in Appendix B of the Supplementary
Material. Note that the equation above consists of two distinct terms, ψ2 = ψL+δψLR,
as compared to Eqs. (19) and (20). First, ψL is given by Eq. (30) with the subscript
R replaced by L, i.e., it represents a particle injected upstream in the absence of a
downstream source. Second, δψLR describes the joint effect of the two sources. The
term δψLR is important, because it is responsible for the orthogonalization of ψ1 and
ψ2 if ηLηR = +1 and for the annihilation effect if ηLηR = −1.

It is easy to show that the two wave functions are orthogonal, if ηL = ηR. In other
words, the overlap integral in Eq. (6) vanishes, J+ = 0, with the subscript refer-
ring to the sign of the product ηLηR. The details of these calculations are presented
in Appendix C of the Supplementary Material. Hence, if the sources emit particles
of the same kind, electrons or holes, the resulting two-particle state contains parti-
cles in orthogonal states as required by the Pauli exclusion principle. By contrast, if
ηL = −ηR, the two wave functions are no longer orthogonal (see Appendix D of the
Supplementary Material for further details), and we have

J− (t̄) =
2
√
ΓRΓL

ΓR + ΓL

∞∫
0

dξe−ξeit̄ξeiζ̄ξ
2

, t̄ =
ηRτR + ηLτL
ΓR + ΓL

, ζ̄ = ηL
Γ 2

RζR + Γ 2
LζL

(ΓR + ΓL)
2 . (32)

As already discussed, a nonzero overlap integral, J− 6= 0, indicates that the par-
ticles partially annihilate each other according to Eqs. (8) and (26), and the degree

of annihilation, |J−|2, can be accessed through shot noise measurements as shown
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Fig. 3. The overlap integral |J−|2 in Eq. (32) as a function of the scaled time delay τ ≡ t̄
for the renormalized non-adiabaticity parameter ζ ≡ ζ̄ = 0, 2, 4. The overlap integral is given
in units of 2

√
ΓRΓL/ (ΓR + ΓL).

in Eq. (11). We note that for adiabatic injection, ζL = ζR= 0, Eq. (32) agrees with
Eq. (26).

Similar to the case of leviton injection in Eq. (26) and the subsequent discus-
sion, the overlap integral J− (−t̄) in Eq. (32) has the form of the wave function of
a single emitter, but with the renormalized nonadiabaticity parameter ζ → ζ̄, cf.
ψ ([t− τ ] /Γτ ) in Eq. (28). Therefore, for a composite source consisting of two identi-
cal emitters, one can experimentally access the time-dependent electron density profile
injected by a single-particle source by measuring the probability of annihilation as a
function of the time delay between the emitters.

In Fig. 3, we show the overlap |J−|2 as a function of the time delay between par-
ticle emissions for different values of the non-adiabaticity parameter. The maximum
annihilation takes place in the case of adiabatic injection, ζL = ζR = 0 (black line). In
this case, a zero time delay (τ = 0) leads to the transfer of an electron from one source
to the other. Beyond the adiabatic regime, an increase in the rapidity suppresses the
degree of annihilation at the maximum, and also it increases the asymmetry of the
peaks. This behavior is in full agreement with a similar modification of the single-
electron wave functions found in Ref. [35]. The wavy structure on the left slope is a
manifestation of quantum-mechanical interference in time that occurs during tunnel-
ing from a quantum level, whose position changes with time [53]. An experimental
observation of such a delicate quantum effect would be an important step towards the
development of a time-resolved detector of single- and few-electron quantum states.

5 Conclusions

We have presented a Floquet scattering theory of composite two-particle sources
composed of several single-particle emitters connected in series to a chiral waveguide.
The setup can include more than two single-particle emitters, and the individual
emitters may be of different types. For example, the combination of a leviton source



Will be inserted by the editor 13

with a quantum capacitor is within experimental reach, and it would enable the use
of one source to characterize the other [84].

Using our theory, we have analysed several situations where ideal two-particle
injection can be achieved. In particular, we have considered adiabatic injection us-
ing emitters with an energy-independent scattering amplitude. If both single-particle
emitters operate under ideal conditions, the composite source emits exactly two parti-
cles without exciting any unwanted electron-hole pairs. An example of such an emitter
is provided by a leviton source.

Going beyond the adiabatic regime, we have analysed a setup with two quantum
levels that are shifted with a constant rapidity across the Fermi level of the external
reservoir. This setup enables perfect two-particle injection both for adiabatic and
non-adiabatic working conditions, where the injected wave packets have symmetric
and asymmetric density profiles, respectively.

As an interesting new application of composite two-particle sources, we have ex-
amined the regime where one source injects an electron and the other a hole. In this
case, the electron and the hole may annihilate each other, effectively meaning that
one source reabsorbs the particle that was emitted by the other. If the probability of
annihilation is less than one, a superposition of a two-fermion state and the vacuum
state is formed. The amplitude of the annihilation process is given by the overlap of
the injected single-particle quantum states. This fact can be used to develop single-
electron tomography protocols based on this reabsorption effect. The advantage of
our approach lies in the compactness of the setup, which helps avoiding decoherence,
which is a major problem for quantum coherent electronics.
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48. C. Grenier, R. Hervé, G. Fève, P. Degiovanni, Mod. Phys. Lett. B 25, 1053 (2011).
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A Two-particle source composed of two quantum levels raising at a
constant rapidity

The scattering amplitude of the composite source, Stot
in , is calculated using Eq. (18)

of the main text with Sjin being the scattering amplitude of a single source j = L, R.
Recall that the source with a scattering amplitude SL

in is located upstream the source
with a scattering amplitude SR

in.

For definiteness, we consider both sources to be in a single-electron injection
regime, which is described by the scattering amplitude given in Eq. (29) of the main
text with ηL = ηR = +1,

SR
in(t, ε) = 1−

∞∫
0

dξRe
− ξR2 e

−iξR t
2ΓR eiξ

2
R
ζR
4 e

i εER
ξR

ζR
2 , (A.1a)

SL
in(t, ε) = 1−

∞∫
0

dξLe
− ξL2 e

−iξL
t−τL
2ΓL eiξ

2
L
ζL
4 e

i εEL
ξL

ζL
2 . (A.1b)

Note that the notation here is slightly different from Eq. (29) of the main text. First,
we introduced ε = E − µ, and second, the integration variable is doubled, 2ξ → ξj .
Without loss of generality, here we set τR = 0.

The total correlation function, G
(1)
tot = G

(1)
R + G

(1)
L + δG

(1)
LR, Eq. (19) of the main

text, is represented as the sum of three terms. The first two, G
(1)
j (j = L, R) with

G
(1)
j (t1; t2) =

e
i
~µ(t1−t2)

vµ
ψ∗j (t1)ψj (t2) , (A.2a)

ψj (t) =
1√
πΓj

∞∫
0

dξe−ξe
−iξ

t−τj
Γj eiξ

2ζj , (A.2b)

are the contribution due to each source working independently. The additional con-

tribution δG
(1)
LR, Eq. (20) of the main text, is due to the joint work of both sources.

To calculate the latter term we proceed as follows. First, we consider the two
factors, PL = −1 + SL∗

in (τ ′, E)SL
in (τ, E) and PR = −1 + SR∗

in (t1, Em)SR
in (t2, En),

separately and simplify them. Recall that En = E + n~Ω.
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A.1 The factor PL

We represent this factor as the sum of three terms, PL = AL +BL + CL, with

AL = −
∞∫

0

dξ′Le
− ξ
′
L
2 e

iξ′L
τ′−τL
2ΓL e−i(ξ

′
L)

2 ζL
4 e
−i εEL ξ

′
L
ζL
2 , (A.3)

BL = −
∞∫

0

dξLe
− ξL2 e

−iξL
τ−τL
2ΓL eiξ

2
L
ζL
4 e

i εEL
ξL

ζL
2 ,

CL =

∞∫
0

dξ′Le
− ξ
′
L
2 e

iξ′L
τ′−τL
2ΓL e−i(ξ

′
L)

2 ζL
4 e
−i εEL ξ

′
L
ζL
2

∞∫
0

dξLe
− ξL2 e

−iξL
τ−τL
2ΓL eiξ

2
L
ζL
4 e

i εEL
ξL

ζL
2 .

Then we split the third term as CL = DL + EL, with

DL =

∞∫
0

dae−
a
2 e
ia
τ′−τL
2ΓL e−ia

2 ζL
4 e
−i εEL a

ζL
2

∞∫
0

dξLe
−ξLe

−iξL τ−τ
′

2ΓL e−iaξL
ζL
2 ,

EL =

∞∫
0

dae−
a
2 e
−ia τ−τL2ΓL eia

2 ζL
4 e

i εEL
a
ζL
2

∞∫
0

dξ′Le
−ξ′Le

iξ′L
τ′−τ
2ΓL eiaξ

′
L
ζL
2 . (A.4)

In these terms we introduced a > 0 instead of ξ′L = ξL + a for DL and instead of
ξL = ξ′L +a for EL. Then, we rearrange the four terms, AL, BL, DL and EL, as follows,
PL = FL +GL, where

FL = DL +AL =

∞∫
0

dae−
a
2 e
ia
τ′−τL
2ΓL e−ia

2 ζL
4 e
−i εEL a

ζL
2

×

 ∞∫
0

dξLe
−ξLe

−iξL τ−τ
′

2ΓL e−iaξL
ζL
2 − 1

 , (A.5)

and

GL = EL +BL =

∞∫
0

dae−
a
2 e
−ia τ−τL2ΓL eia

2 ζL
4 e

i εEL
a
ζL
2

×

 ∞∫
0

dξ′Le
−ξ′Le

−iξ′L
τ−τ′
2ΓL eiaξ

′
L
ζL
2 − 1

 . (A.6)

A.2 The factor PR

Analogously, we transform the second factor and get PR = FR +GR, with

FR =

∞∫
0

dae−
a
2 e
ia

t1
2ΓR e−ia

2 ζR
4 e−imΩ2ΓRa

ζR
2 e
−i εER a

ζR
2

×

 ∞∫
0

dξRe
−ξRe

−iξR
(
t2−t1
2ΓR

+a
ζR
2 −(n−m)Ω2ΓR

ζR
2

)
− 1

 , (A.7)
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and

GR =

∞∫
0

dae−
a
2 e
−ia t2

2ΓR eia
2 ζR

4 einΩ2ΓRa
ζR
2 e

i εER
a
ζR
2

×

 ∞∫
0

dξ′Re
−ξ′Re

−iξ′R
(
t2−t1
2ΓR

−a ζR2 −(n−m)Ω2ΓR
ζ
2

)
− 1

 . (A.8)

A.3 Collecting it all together

With the above notation, Eq. (20) of the main text becomes

δG
(1)
LR =

e
i
~µ(t1−t2)

vµ

∑
m,n

T0∫∫
0

dτ ′

T0

dτ

T0
e−imΩ(τ ′−t1)einΩ(τ−t2)

× 1

4πΓR

∞∫
0

dxe
ix

(t2−t1)
2Γ

R (FL +GL) (FR +GR) , (A.9)

where we introduced x = −ε/ER. Recall that for the zero temperature of interest
here, the integral over energy ε = E − µ in Eq. (20) of the main text runs from −∞
up to 0 with f(E) = 1 throughout this interval. Now we integrate over x.

A.4 The energy integration

A.4.1 The term with the product FLFR

In this case, we need to evaluate the next integral IFF =
∫∞

0
dxe

ix
(t2−t1)

2Γ
R FLFR. Recall

that the limit x→∞ corresponds to E � µ, where the exponential factor e
ix

(t2−t1)
2Γ

R

should be treated as vanishing [48,86]. So, we need to evaluate the following integral,

IFF = JFF

∞∫
0

daLe
− aL2 e

iaL
τ′−τL
2ΓL e−ia

2
L
ζL
4

×
∞∫

0

daRe
− aR2 e

iaR
t1

2ΓR e−ia
2
R
ζR
4 e−imΩ2ΓRaR

ζR
2 , (A.10)

with

JFF =

∞∫
0

dxe
ix

(
(t2−t1)

2Γ
R

+aLC
ζL
2 +aR

ζR
2

) ∞∫
0

dξLe
−ξLe

−iξL τ−τ
′

2ΓL e−iaLξL
ζL
2 − 1


×

 ∞∫
0

dξRe
−ξRe

−iξR
(
t2−t1
2ΓR

+aR
ζR
2 −(n−m)Ω2ΓR

ζR
2

)
− 1

 . (A.11)

Here we introduced C = ΓL/ΓR = ER/EL.
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After integrating out x we get, IFF = I
(1)
FF + I

(2)
FF , where

I
(1)
FF =

∞∫
0

daLe
− aL2 e

iaL
τ′−τL
2ΓL e−ia

2
L
ζL
4

i
(
τ−τ ′
2ΓL

+ aL
ζL
2

)
−1− i

(
τ−τ ′
2ΓL

+ aL
ζL
2

)
×
∞∫

0

daRe
− aR2 e

iaR
t1

2ΓR e−ia
2
R
ζR
4 e−imΩ2ΓRaR

ζR
2

×
∞∫

0

dξRe
−ξRe

−iξR
(
t2−t1
2ΓR

+aR
ζR
2 −(n−m)Ω2ΓR

ζR
2

)
, (A.12)

and

I
(2)
FF =

∞∫
0

daLe
− aL2 e

iaL
τ′−τL
2ΓL e−ia

2
L
ζL
4

×
i
(
τ−τ ′
2ΓL

+ aL
ζL
2

)
−1− i

(
τ−τ ′
2ΓL

+ aL
ζL
2

) −i (n−m)Ω2ΓR
ζR
2 − iaLC

ζL
2

i
(

(t2−t1)
2ΓR

+ aLC
ζL
2 + aR

ζR
2

)
×
∞∫

0

daRe
− aR2 e

iaR
t1

2ΓR e−ia
2
R
ζR
4 e−imΩ2ΓRaR

ζR
2

×
∞∫

0

dξRe
−ξRe

−iξR
(
t2−t1
2ΓR

+aR
ζR
2 −(n−m)Ω2ΓR

ζR
2

)
. (A.13)

To simplify I
(2)
FF , let us remember that this term is under summation over n and

m in Eq. (A.9). This summation together with integrations over τ and τ ′ gives us
τ − τ ′ = t2 − t1 + aRΓRζR. Using this relation, we find

I
(2)
FF =

1

C

∞∫
0

daLe
− aL2 e

iaL
τ′−τL
2ΓL e−ia

2
L
ζL
4
−i (n−m)Ω2ΓR

ζR
2 − iaLC

ζL
2

−1− i
(
τ−τ ′
2ΓL

+ aL
ζL
2

)
×
∞∫

0

daRe
− aR2 e

iaR
t1

2ΓR e−ia
2
R
ζR
4 e−imΩ2ΓRaR

ζR
2

×
∞∫

0

dξRe
−ξRe

−iξR
(
t2−t1
2ΓR

+aR
ζR
2 −(n−m)Ω2ΓR

ζR
2

)
. (A.14)
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Now, the sum IFF = I
(1)
FF + I

(2)
FF , becomes

IFF =
1

C

(
i (n−m)Ω2ΓR

ζR
2
− i τ − τ

′

2ΓR

)

×
∞∫

0

daLe
− aL2 e

iaL
τ′−τL
2ΓL e−ia

2
L
ζL
4

×
∞∫

0

dξLe
−ξLe

−iξL τ−τ
′

2ΓL e−iaLξL
ζL
2

×
∞∫

0

daRe
− aR2 e

iaR
t1

2ΓR e−ia
2
R
ζR
4 e−imΩ2ΓRaR

ζR
2

×
∞∫

0

dξRe
−ξRe

−iξR
(
t2−t1
2ΓR

+aR
ζR
2 −(n−m)Ω2ΓR

ζR
2

)
, (A.15)

where we represented the denominator as an integral over ξL.

Finally, we go over from aj = ξ′j − ξj , j = L, R, back to ξ′j ,

IFF =
1

C

(
i (n−m)Ω2ΓR

ζR
2
− i τ − τ

′

2ΓR

)

×
∞∫
ξL

dξ′Le
− ξ
′
L
2 e

iξ′L
τ′−τL
2ΓL e−i(ξ

′
L)

2 ζL
4

×
∞∫

0

dξLe
− ξL2 e

−iξL
τ−τL
2ΓL eiξ

2
L
ζL
4

×
∞∫
ξR

dξ′Re
− ξ
′
R
2 e

iξ′R
t1

2ΓR e−i(ξ
′
R)

2 ζR
4 e−imΩ2ΓRξ

′
R
ζR
2

×
∞∫

0

dξRe
− ξR2 e

−iξR t2
2ΓR eiξ

2
R
ζR
4 einΩ2ΓRξR

ζR
2 . (A.16)

A.4.2 The other terms

The terms with factors FLGR, GLFR, and GLGR in Eq. (A.9) can be represented as
Eq. (A.16), but with different limits of integration. Together, they cover the area of

integration over various ξ’s from 0 to ∞. Then, the additional contribution δG
(1)
LR,
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Eq. (A.9), reads

δG
(1)
LR =

1

C

∑
m,n

T0∫∫
0

dτ ′dτ

T 2
0

e−imΩ(τ ′−t1)einΩ(τ−t2)

4πΓRvµ

(
i (n−m)Ω2ΓR

ζR
2
− i τ − τ

′

2ΓR

)

×
∞∫

0

dξ′Le
− ξ
′
L
2 e

iξ′L
τ′−τL
2ΓL e−i(ξ

′
L)

2 ζL
4

×
∞∫

0

dξLe
− ξL2 e

−iξL
τ−τL
2ΓL eiξ

2
L
ζL
4

×
∞∫

0

dξ′Re
− ξ
′
R
2 e

iξ′R
t1

2ΓR e−i(ξ
′
R)

2 ζR
4 e−imΩ2ΓRξ

′
R
ζR
2

×
∞∫

0

dξRe
− ξR2 e

−iξR t2
2ΓR eiξ

2
R
ζR
4 einΩ2ΓRξR

ζR
2 . (A.17)

A.5 The inverse Fourier transformation

To simplify the terms with n and m, we use −imΩe−imΩτ ′ → ∂
∂τ ′ e

−imΩτ ′ and

inΩeinΩτ → ∂
∂τ e

inΩτ . The integration by parts over τ and τ ′ results in the following

[
i (n−m)Ω2ΓR

ζR
2
− i τ − τ

′

2ΓR

]
⇒ − 1

C

([
∂

∂τ ′
+

∂

∂τ

]
2ΓR

ζR
2

+ i
τ − τ ′

2ΓR

)
.(A.18)

After taking the derivative over τ and τ ′, we perform summation over n and m and
integration over τ and τ ′ in Eq. (A.17), using τ ′ = t1− ξ′RΓRζR and τ = t2− ξRΓRζR,
and get

δG
(1)
LR =

∞∫
0

dξ′Le
− ξ
′
L
2 e

iξ′L
t1−τL
2ΓL e−i(ξ

′
L)

2 ζL
4 e−i

ξ′Lξ
′
R

C

ζR
2

×
∞∫

0

dξLe
− ξL2 e

−iξL
t2−τL
2ΓL eiξ

2
L
ζL
4 ei

ξLξR
C

ζR
2

× 1

4πΓLvµ

∞∫
0

dξ′Re
− ξ
′
R
2 e

iξ′R
t1

2ΓR e−i(ξ
′
R)

2 ζR
4

×
∞∫

0

dξRe
− ξR2 e

−iξR t2
2ΓR eiξ

2
R
ζR
4

×
(
i
t1 − t2
2ΓR

+ iΓR
ζR
2

[
(ξL − ξ′L)

ΓL
+

(ξR − ξ′R)

ΓR

])
. (A.19)
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A.6 Further processing

The last factor in Eq. (A.19) can be formally represented as follows,

i
t1 − t2
2ΓR

+ i
ζR
2

[
(ξL − ξ′L)

C
+ (ξR − ξ′R)

]
⇒ 1 +

∂

∂ξ′R
+

∂

∂ξR
, (A.20)

where differentiation is applied on the whole integrand. As a result, we have three

contributions, δG
(1)
LR = δG

(1)
LR,1 + δG

(1)
LR,2 + δG

(1)
LR,3.

To evaluate the term with ∂/∂ξ′R, we integrate over ξ′R by parts, resulting in −1,
and get

δG
(1)
LR,1 =

−1

4πΓLvµ

∞∫
0

dξ′Le
− ξ
′
L
2 e

iξ′L
t1−τL
2ΓL e−i(ξ

′
L)

2 ζL
4

×
∞∫

0

dξLe
− ξL2 e

−iξL
t2−τL
2ΓL eiξ

2
L
ζL
4 ei

ξLξR
C

ζR
2

×
∞∫

0

dξRe
− ξR2 e−iξR

t2
2Γτ eiξ

2
R
ζ
4 . (A.21)

Similarly, we evaluate the term with ∂/∂ξR,

δG
(1)
LR,2 =

∞∫
0

dξ′Le
− ξ
′
L
2 e

iξ′L
t1−τL
2ΓL e−i(ξ

′
L)

2 ζL
4 e−i

ξ′Lξ
′
R

C

ζR
2

×
∞∫

0

dξLe
− ξL2 e

−iξL
t2−τL
2ΓL eiξ

2
L
ζL
4

× (−1)

4πΓLvµ

∞∫
0

dξ′Re
− ξ
′
R
2 e

iξ′R
t1

2ΓR e−i(ξ
′
R)

2 ζR
4 . (A.22)

And finally, the term with 1 in Eq. (A.20) results in the following

δG
(1)
LR,3 =

∞∫
0

dξ′Le
− ξ
′
L
2 e

iξ′L
t1−τL
2ΓL e−i(ξ

′
L)

2 ζL
4 e−i

ξ′Lξ
′
R

C

ζR
2

×
∞∫

0

dξLe
− ξL2 e

−iξL
t2−τL
2ΓL eiξ

2
L
ζL
4 ei

ξLξR
C

ζR
2

× 1

4πΓLvµ

∞∫
0

dξ′Re
− ξ
′
R
2 e

iξ′R
t1

2ΓR e−i(ξ
′
R)

2 ζR
4

×
∞∫

0

dξRe
− ξR2 e

−iξR t2
2ΓR eiξ

2
R
ζR
4 . (A.23)



8 Will be inserted by the editor

Combining δG
(1)
LR, given by the sum of Eqs. (A.21) - (A.23), with G

(1)
L , Eq. (A.2)

for j = L, we represent the scattering amplitude of the composite source as follows,

G
(1)
tot = G

(1)
R +G

(1)
LR, where

G
(1)
LR (t1; t2) =

e
i
~µ(t1−t2)

vµ
ψ∗2 (t1)ψ2 (t2) . (A.24)

The function ψ2 (t) is given in Eq. (31) of the main text with ηL = ηR = +1 and
τR = 0.

B Normalization of the wave function ψ2, Eq. (31) of the main text

Here we show that the following function is normalized,

ψ2 (t) =
1√
πΓL

∞∫
0

dξe−ξe
−iξ t−tLΓL eiξ

2ζL (B.1)

− 1

2
√
πΓL

∞∫
0

dξLe
− ξL2 e

−iξL
t−tL
2ΓL eiξ

2
L
ζL
4

∞∫
0

dξRe
− ξR2 e

−iξR t
2ΓR eiξ

2
R
ζR
4 eiξLξR

ζR
2C .

Notice some change of integration variables compared to original Eq. (31) of the main
text. For definiteness, we consider the case of ηL = ηR = +1. The other cases are
analysed in a similar way. Recall that here we set τR = 0.

We need to evaluate the following integral (x = t/ΓL)

∞∫
−∞

dx |ψ2 (Γτx)|2 = I1 + I2 + I3, (B.2)

which we represented as the sum of three terms. The first term is the following
(xL = τL/ΓL),

I1 =
1

π

∞∫
−∞

dx

∣∣∣∣∣∣
∞∫

0

dξe−ξe−i(t−xL)ξeiζLξ
2

∣∣∣∣∣∣
2

= 1. (B.3)

This is evaluated trivially and represents the fact that the wave function injected by
a single source, ψ1, Eq. (28) of the main text, is normalized. To demonstrate that ψ2,
Eq. (B.1), is also normalized, we need to show that I2 = −I3.

B.1 The term I2

First, we evaluate

I2 = − 1

π
Re

∞∫
−∞

dx

∞∫
0

dξe−ξeiξ(x−xL)e−iξ
2ζL

×
∞∫

0

dξLe
− ξL2 e−iξL

x−xL
2 eiξ

2
L
ζL
4 eiξLξR

ζR
2C

∞∫
0

dξRe
− ξR2 e−iξRx

C
2 eiξ

2
R
ζR
4 . (B.4)



Will be inserted by the editor 9

The integral over x gives us

I2 = − 1

π
Re

∞∫
0

dξe−ξe−iξxLe−iξ
2ζL

∞∫
0

dξLe
− ξL2 eiξL

xL
2 eiξ

2
L
ζL
4 eiξLξR

ζR
2C

×
∞∫

0

dξRe
− ξR2 eiξ

2
R
ζR
4 2πδ

(
ξ − ξR

C

2
− ξL

1

2

)
. (B.5)

Recall that C = ΓL/ΓR. To get rid of the δ-function, we integrate over ξ and use
ξ = ξR

C
2 + ξL

1
2 . Note that such integration can always be done, because ξ > 0 for

any ξR > 0, ξL > 0, and C > 0. As a result, we have,

I2 = −2Re

∞∫
0

dξRe
−ξR 1+C

2 eiξ
2
R
ζR−C

2ζL
4 e−iξR

CxL
2

∞∫
0

dξLe
−ξLeiξLξR

ζR−C
2ζL

2C . (B.6)

We can now carry out the integral over ξL and get

I2 = −2Re

∞∫
0

dξR
e−ξR

1+C
2 eiξ

2
R
ζR−C

2ζL
4 e−iξR

CxL
2

1− iξR ζR−C2ζL
2C

. (B.7)

B.2 The term I3

I3 =
1

4π

∞∫
−∞

dx

∞∫
0

dξRe
− ξR2 e−ixξR

C
2 eiξ

2
R
ζR
4

×
∞∫

0

dξLe
− ξL2 e−iξL

x−xL
2 eiξ

2
L
ζL
4 eiξLξR

ζR
2C

×
∞∫

0

dχRe
−χR

2 eixχR
C
2 e−iχ

2
R
ζR
4

×
∞∫

0

dχLe
−χL

2 eiχL
x−xL

2 e−iχ
2
L
ζL
4 e−iχLχR

ζR
2C . (B.8)

After integrating out x we have,

I3 =
1

4π

∞∫
0

dξRe
− ξR2 eiξ

2
R
ζR
4

∞∫
0

dχRe
−χR

2 e−iχ
2
R
ζR
4

×
∞∫

0

dξLe
− ξL2 eiξL

xL
2 eiξ

2
L
ζL
4 eiξLξR

ζR
2C

×
∞∫

0

dχLe
−χL

2 e−iχL
xL
2 e−iχ

2
L
ζL
4 e−iχLχR

ζR
2C

×2πδ

(
ξR
C

2
+ ξL

1

2
− χR

C

2
− χL

1

2

)
. (B.9)
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To get rid of the δ-function, we integrate over ξL and use ξL = −CξR + CχR + χL.
The condition ξL > 0 demands ξR < χR +χL/C. For the sake of simplicity, we rescale
χL → CχL, and shift ξR → ξR + χR. As a result I3 becomes

I3 = C

∞∫
0

dχRe
−χR

∞∫
0

dχLe
−χLC

χL∫
−χR

dξR

×e−ξR
1−C

2 e−iξ
2
R
ζR−C

2ζL
4 e−iξR

CxL
2 eiχLξR

ζR−C
2ζL

2 . (B.10)

Further, we split the interval of integration over ξR into two intervals, one from 0 to
χL and the other from −χR to 0, and represent I3 = I3,1 + I3,2.

B.2.1 The term I3,1

The first contribution is the following

I3,1 = C

∞∫
0

dχRe
−χR

∞∫
0

dχLe
−χLC

χL∫
0

dξR

×e−ξR
1−C

2 e−iξ
2
R
ζR−C

2ζL
4 e−iξR

CxL
2 eiχLξR

ζR−C
2ζL

2 . (B.11)

We integrate over χR, change the order of integration,

∞∫
0

dχL

χL∫
0

dξR ⇒
∞∫

0

dξR

∞∫
ξR

dχL, (B.12)

and integrate over χL. After these steps, we arrive at the following,

I3,1 =

∞∫
0

dξR
e−ξR

1+C
2 eiξ

2
R
ζR−C

2ζL
4 e−iξR

CxL
2

1− iξR ζR−C2ζL
2C

. (B.13)

B.2.2 The term I3,2

In the second term, we change the sign of ξR and after transformations similar to the
ones above, we find

I3,2 = C

∞∫
0

dξR
e−ξR

1+C
2 e−iξ

2
R
ζR−C

2ζL
4 eiξR

CxL
2

C + iξR
ζR−C2ζL

2

. (B.14)

It is obvious that I3,2 = (I3,1)
∗
, therefore, I3 = 2ReI3,1. Comparing Eq. (B.7) and

the double real part of Eq. (B.13), we arrive at I2 = −I3, as expected.
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C The overlap integral J+ for ψ1 from Eq. (30) and ψ2 from
Eq. (31) of the main text

Notice some change of integration variables compared to original Eqs. (30) and (31)
of the main text. In particular, in ψ1 we use χR instead of ξ and ψ2 is used in the
form given in Eq. (B.1).

We set ηL = ηR = +1 and τR = 0, and represent the overlap integral defined
in Eq. (6) of the main text as the sum of two terms, J+ = J1+ + J2+, where
(x = t/ΓL, xL = τL/ΓL),

J1+ =

√
C

π

∞∫
−∞

dx

∞∫
0

dχRe
−χReiχRxCe−iχ

2
RζR

∞∫
0

dξe−ξe−iξxeiξLxeiξ
2ζL

= 2
√
C

∞∫
0

dχRe
−χR(1+C)e−iχ

2
R(ζR−C2ζL)eiχRCxL , (C.1)

and

J2+ = −
√
C

2π

∞∫
−∞

dx

∞∫
0

dχRe
−χReiχRxCe−iχ

2
RζR

×
∞∫

0

dξLe
− ξL2 e−iξLx

1
2 eiξL

xL
2 eiξ

2
L
ζL
4

×
∞∫

0

dξRe
− ξR2 e−iξRx

C
2 eiξ

2
R
ζR
4 eiξLξR

ζR
2C . (C.2)

To evaluate J2+, first we integrate over x. This results in 2πδ (CχR − ξL − ξRC).
Then, we integrate over ξL = CχR − CξR > 0 preserving χR > ξR. Further, we
introduce new variables, x̄ = (χR + ξR) /2 and x = χR− ξR, transforming the area of
integration as ∫ ∞

ξR

dχR

∫ ∞
0

dξR ⇒
∫ ∞

0

dx

∫ ∞
x/2

dx̄, (C.3)

integrating over x̄, we get

J2+ = −2
√
C

∞∫
0

dxe−x(1+C)e−ix
2(ζR−ζLC2)eixCxL . (C.4)

Comparing the equation above and Eq. (C.1) we see that J1+ + J2+ = 0. Therefore,
indeed the two wave functions are orthogonal to each other. In the same way one
can show that ψ1, Eq. (30) of the main text, and ψ2, Eq. (31) of the main text, are
orthogonal in the regime of a hole injection, ηL = ηR = −1.
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D The overlap integral J− for ψ1 from Eq. (30) and ψ2 from
Eq. (31) of the main text

Here we set ηL = −1, ηR = +1, and τR = 0. In ψ1 we use χR instead of ξ. Now the
function ψ2 looks as follows,

ψ2 (t) =
1√
πΓL

∞∫
0

dξe−ξe
iξ
t−tL
ΓL e−iξ

2ζL − 1

2
√
πΓL

∞∫
0

dξLe
− ξL2 e

iξL
t−tL
2ΓL e−iξ

2
L
ζL
4

×
∞∫

0

dξRe
− ξR2 e

−iξR t
2ΓR eiξ

2
R
ζR
4 e−iξLξR

ζR
2C . (D.1)

The overlap integral defined in Eq. (6) of the main text is represented as the sum of
two terms, J− = J1− + J2−, where (x = t/ΓL, xL = τL/ΓL, C = ΓL/ΓR),

J1− =

√
C

π

∞∫
−∞

dx

∞∫
0

dχRe
−χReiχRxCe−iχ

2
RζR

×
∞∫

0

dξe−ξeiξL(x−xL)e−iξ
2ζL = 0, (D.2)

and

J2− =
2
√
C

π

∞∫
−∞

dx

∞∫
0

dχRe
−χReiχRxCe−iχ

2
RζR

×
∞∫

0

dξLe
−ξLeiξL(x−xL)e−iξ

2
LζL

∞∫
0

dξRe
−ξRe−iξRxCeiξ

2
RζRe−i2ξLξR

ζR
C . (D.3)

The integration over x results in 2πδ (χC + ξL − ξRC). Integrating subsequently over
ξL, we take into account that ξL is positive: ξL = ξRC − χC > 0⇒ ξR > χ. Then we
make a shift ξR → ξR + χ, and integrate over χ,

J2− = 2
√
C

∞∫
0

dξRe
−ξR(1+C)e−iξ

2
R(ζR+ζLC

2)e−iξRCxL . (D.4)

The equation above is nothing but Eq. (32) of the main text with ξ = ξR (1 + C) and
ηj ’s introduced.


