
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or 
part of any of the repository collections is not permitted, except that material may be duplicated by you for 
your research use or educational purposes in electronic or print form. You must obtain permission for any 
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not 
an authorised user.

Alipour, S.; Chenu, A.; Rezakhani, A. T.; del Campo, A.
Shortcuts to Adiabaticity in Driven Open Quantum Systems

Published in:
Quantum

DOI:
10.22331/q-2020-09-28-336

Published: 24/09/2020

Document Version
Publisher's PDF, also known as Version of record

Published under the following license:
CC BY

Please cite the original version:
Alipour, S., Chenu, A., Rezakhani, A. T., & del Campo, A. (2020). Shortcuts to Adiabaticity in Driven Open
Quantum Systems: Balanced Gain and Loss and Non-Markovian Evolution. Quantum, 4.
https://doi.org/10.22331/q-2020-09-28-336

https://doi.org/10.22331/q-2020-09-28-336
https://doi.org/10.22331/q-2020-09-28-336


Shortcuts to Adiabaticity in Driven Open Quantum Systems:
Balanced Gain and Loss and Non-Markovian Evolution
S. Alipour∗1, A. Chenu∗2,3, A. T. Rezakhani4, and A. del Campo2,3,5

1QTF Center of Excellence, Department of Applied Physics, Aalto University, P. O. Box 11000, FI-00076 Aalto, Espoo, Finland
2Donostia International Physics Center, E-20018 San Sebastián, Spain
3IKERBASQUE, Basque Foundation for Science, E-48013 Bilbao, Spain
4Department of Physics, Sharif University of Technology, Tehran 14588, Iran
5Department of Physics, University of Massachusetts, Boston, MA 02125, USA

A universal scheme is introduced to
speed up the dynamics of a driven open
quantum system along a prescribed tra-
jectory of interest. This framework gen-
eralizes counterdiabatic driving to open
quantum processes. Shortcuts to adia-
baticity designed in this fashion can be
implemented in two alternative physical
scenarios: one characterized by the pres-
ence of balanced gain and loss, the other
involves non-Markovian dynamics with
time-dependent Lindblad operators. As
an illustration, we engineer superadiabatic
cooling, heating, and isothermal strokes
for a two-level system, and provide a pro-
tocol for the fast thermalization of a quan-
tum oscillator.

Shortcuts to adiabaticity (STA) allow controlling
the evolution of a quantum system without the re-
quirement of slow driving [1–3]. The controlled
speedup of quantum processes is broadly recognized
as a necessity for the advance of quantum technolo-
gies, and STA have found a variety of applications,
including phase-space preserving cooling [4], pop-
ulation transfer [5, 6], and friction suppression in
finite-time thermodynamics [7–9], to name some rel-
evant examples. To date, STA have been demon-
strated in the laboratory using ultracold gases [10–
16], nitrogen-vacancy centers [17, 18], trapped ions
[19], superconducting qubits [20, 21], and other sys-
tems [1].

Despite this remarkable progress, the use of STA
has been predominantly restricted to tailor the dy-
namics of isolated driven systems. However, any
physical system is embedded in a surrounding envi-
ronment with which it can interact and exchange en-

∗These authors contributed equally to the work.

ergy, particles, etc. In such a setting, the dynamics
of the system is no longer-described by a Hamilto-
nian and is associated with a master equation [22]. A
notable exception concerns the dynamics of an iso-
lated system conditional to a given subspace of inter-
est. The dynamics can then be described in terms of
a non-Hermitian Hamiltonian, that generates loss and
gain when the system leaves the subspace of interest
and returns to it, respectively [23]. Scenarios charac-
terized by a balance of gain and loss arise naturally,
e.g., in the presence of a non-Hermitian potential that
breaks time-reversal symmetry but preserves parity-
time-reversal symmetry, i.e., in PT -symmetric quan-
tum mechanics [24–29].

Recent efforts on developing STA in open quan-
tum systems have predominantly focused on mitigat-
ing decoherence [1, 3]. Perturbative methods have
been put forward to inhibit unwanted transitions in
two- and three-level systems [30, 31], while the use
of decoherence-free subspaces in open quantum sys-
tems allow one to mitigate decoherence [32–34],

However, the use of STA to speed up open quan-
tum processes is expected to make possible a wide
range of applications such as design of novel cooling
techniques, information erasure [35], or the engineer-
ing of superadiabatic quantum machines [36]. In this
context, the engineering of STA in systems described
by non-Hermitian Hamiltonians has been advanced
in Refs. [37–40] while the control by STA of arbi-
trary nonunitary dynamics requires further progress.
A pioneering effort to this end introduced fast control
protocols for Markovian processes [41]. This guaran-
tees an independent evolution for the different Jordan
blocks forming the Lindblad operator, thus fulfilling
the notion of adiabaticity for open system introduced
in Ref. [42]. More recently, the fast thermaliza-
tion of a harmonic oscillator has been proposed via
the reverse engineering of a non-adiabatic Markovian
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master equation [43] and engineered dephasing [44].
A related study has shown the possibility of speed-
ing up the thermalization of a system oscillator lo-
cally coupled to a harmonic bath [45]. Engineering
of the system-bath coupling has also been proposed
to speed-up isothermal processes [46]. The fast driv-
ing between equilibrium and squeezed states has also
been presented [47].

In this paper, we introduce a universal scheme to
engineer STA in arbitrary open quantum systems.
Our work provides a generalization of the counter-
diabatic driving technique [5, 6, 48] to open quan-
tum processes. To this end, we consider the evolu-
tion of a quantum system described by a mixed state
along a prescribed trajectory of interest. We then
find the equation of motion that generates the desired
dynamics. The latter can be recast in terms of the
nonlinear evolution of a system in the presence of
balanced gain and loss. Alternatively, the dynamics
can be associated with a non-Markovian master equa-
tion with time-dependent Lindblad operators whose
explicit form is determined by the prescribed trajec-
tory. We demonstrated this framework by discussing
the controlled open quantum dynamics of a two-level
system and a driven quantum oscillator.

1 STA by counterdiabatic driving
Consider a quantum evolution of interest described
by the mixed state

%(t) =
r∑

n=1
λn(t)|nt〉〈nt|, (1)

of finite rank r = rank(%). We pose the problem
of enforcing the evolution of the system through this
trajectory.

Under unitary dynamics, eigenvalues of the density
matrix remain constant, λn(t) = λn(0)—denoted
briefly as λn. The equation of motion for the density
matrix in this case reads

∂t%(t) =
∑
n

λn (|∂tnt〉〈nt|+ |nt〉〈∂tnt|) , (2)

and can be recast as a Liouville-von Neumann equa-
tion, ∂t%(t) = −i[H1(t), %(t)] (with ~ = 1), when-
ever the dynamics is generated by the Hamiltonian

H1(t) = i
∑
n

(|∂tnt〉〈nt|−〈nt|∂tnt〉|nt〉〈nt|) . (3)

This Hamiltonian generates parallel transport along
each of the eigenstates |nt〉 and is often used in proofs
of the adiabatic theorem [49, 50].

In the context of control theory, the derivation of
H1(t) can be systematically achieved by the so-called
counterdiabatic (CD) driving technique, also known
as transitionless quantum driving [5, 6, 48]. Specif-
ically, CD assumes that |nt〉 are the eigenstates of a
reference system H0(t) that can be controlled by the
auxiliary field H1(t) so that the full dynamics is ac-
tually generated by H0(t) + H1(t). Yet, in the most
general setting, the instantaneous eigenstates used in
the specification of the trajectory (1) need not be the
eigenstates of the physical Hamiltonian of the sys-
tem. To identify a reference Hamiltonian in this case,
we choose %(t) to evolve as a thermal state,

%(t) = e−βH0(t)/Z0(t), (4)

where Z0(t) = Tr[e−βH0(t)] denotes the partition
function, and β is the inverse temperature (assuming
kB = 1). With this definition, the spectral decompo-
sition of the reference Hamiltonian reads

H0(t) =
∑
nEn|nt〉〈nt|, (5)

where the eigenvalues En = −β−1 log(Z0λn) are
time-independent, and so is the partition function. By
construction [H0(t), %(t)] = 0, and the state %(t) is a
solution of

∂t%(t) = −i[HCD(t), %(t)], (6)

where HCD(t) = H0(t) +H1(t).

2 CD driving of open quantum sys-
tems

In what follows we shall focus on the case where the
eigenvalues of the density matrix are time-dependent.
The von Neumann entropy of the state is then a func-
tion of time, and the dynamics is generally open
and nonunitary. Indeed, for an arbitrary change of
the eigenvalues {λn} the dynamics is generally non-
trace-preserving.

For a given time-dependence of λn(t), the equation
of motion for the trajectory %(t) can be analogously
derived as

∂t%(t)=−i[HCD(t), %(t)]+
∑
n∂tλn(t)|nt〉〈nt|. (7)

The dynamics is trace-preserving whenever∑
n λn(t) = 1, i.e.,

∑
n∂tλn(t) = 0. The equation

of motion (7) admits several physical interpretations
that we discuss below.
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2.1 Mixed evolution under balanced gain and
loss

The additional term in Eq. (7) can be associated with
the anti-Hermitian operator

− iΓ(t) = i

2
∑
n

∂tλn(t)
λn(t) |nt〉〈nt|. (8)

The equation of motion for %(t) is then generated
by the full non-Hermitian Hamiltonian H(t) =
HCD(t)− iΓ(t), i.e.,

∂t%(t) = −i
(
H(t)%(t)− %(t)H†(t)

)
= −i

[
HCD(t), %(t)

]
−
{
Γ(t), %(t)

}
. (9)

For arbitrary {λn}, this evolution is not necessarily
norm-preserving and the norm varies at a rate

∂tTr[%(t)] = −2Tr[Γ(t)%(t)] =
∑
n∂tλn(t). (10)

A norm-preserving evolution through the trajec-
tory %(t) is governed by the modified equation of mo-
tion

∂t% = −i(H%− %H†)− ∂tTr[%] %
= −i

[
HCD, %

]
+
(
2〈Γ〉%−

{
Γ, %

})
, (11)

where 〈Γ〉 = Tr[Γ%] and the time-dependence of all
terms has been dropped for brevity. Note that the re-
sulting equation is nonlinear in the quantum state %.
This dynamics thus takes the form of a mixed-state
evolution in the presence of balanced gain and loss
[51] with a time-dependent generator [52]. Balanced
gain and loss arises naturally in the study of PT -
symmetric quantum systems [24], that can be used
to describe a variety of experiments [25–29].

2.2 Lindblad-like form

Considering the prescribed trajectory (1) and its
derivative (7), one can recast the incoherent part

DCD(%) =
∑
n∂tλn(t)|nt〉〈nt| (12)

as an auxiliary CD dissipator in a Lindblad-like form
for a trace-preserving trajectory. Assuming a trace-
preserving evolution,

∑
n ∂tλn(t) = 0, we find the

time-dependent Lindblad operators and rates as (see
the appendixes)

Lmn(t) = |mt〉〈nt|, (13a)

γmn(t) = ∂tλm(t)
rλn(t) , (13b)

that are determined by (the spectral resolution of)
%(t)—and thus state-dependent. The resulting mas-
ter equation

∂t% =− i[HCD, %] (14)
+
∑
mnγmn

(
Lmn%L

†
mn − 1

2{L
†
mnLmn, %}

)
is generally non-Markovian, because of possibly neg-
ative rates. We remark that the existence of a
Lindblad-like master equation for an arbitrary dy-
namics has recently been proven in Ref. [53]. How-
ever, in the representation (7) like a Lindblad-like
master equation, the anticommutator term in Eq. (14)
identically vanishes and the dissipator reduces exclu-
sively to jumps in the instantaneous eigenbasis.

The equivalence of Eqs. (11) and (14) shows that
the nonlinear evolution of a mixed state under bal-
anced gain and loss can be represented by a non-
linear and generally non-Markovian master equation
with time-dependent Lindblad operators, determined
by choice of the trajectory (1).

We note that the time-evolution operator generated
by the CD Hamiltonian takes the form [48]

UCD(t, 0) =
∑
ne
iφn(t)|nt〉〈n0|, (15)

where the time-dependent phase φn(t) is the sum of
the dynamical and geometric contributions. In the
co-moving frame associated to UCD(t, 0), the master
equation for %̃(t) = U †CD(t, 0)%(t)UCD(t, 0) takes the
simple form

∂t%̃=
∑
mn

γmn
(
L̃mn%̃L̃

†
mn−

1
2{L̃

†
mnL̃mn, %̃}

)
, (16)

with L̃mn = |m0〉〈n0|. As a result, the time-
dependent Lindblad operators {Lmn} map to the
time-independent ones {L̃mn}, while keeping the
same rates γmn(t). This feature is specific to the
superadiabatic driving of open quantum systems and
differs from the general case that leads to more com-
plex time-dependent Lindblad operators [22].

3 Quantum speed limit for STA in
open quantum processes

Time-energy uncertainty relations identify character-
istic time scales in a physical process. Speed limits
sharpen this identification by providing a minimum
time for a physical processes to occur in terms of
the generator of the evolution. We next show how
speed limits relate the operation time of a protocol to
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the amplitude of the required unitary and nonunitary
CD terms. The geometric formulation of the quantum
speed limit [54] states that

τ > D(%(0), %(τ))/〈√gtt〉, (17)

where gtt is the metric for a given distance D, and
the time average 〈√gtt〉τ = (1/τ)

∫ τ
0 dt
√
gtt upper

bounds the speed of evolution.
The quantum Fisher information F is the metric

(with a 1/4 prefactor) associated with the Bures dis-
tance between quantum states

DB(%1, %2) = [2(1− F (%1, %2)]1/2 , (18)

that is defined in terms of the fidelity F (%1, %2) =
Tr
√√

%1%2
√
%1 between %1 and %2 [55]. The speed

limit (17) implies that the driving time of the pro-
cess is constrained by the ratio of the distance be-
tween quantum states D(%(0), %(τ)) and the velocity
at which is traversed 〈√gtt〉.

From Eq. (9), we can identify −2iH as a non-
Hermitian symmetric logarithmic derivative, satisfy-
ing 2∂t% = L% + %L† [56], based on which an upper
bound on the quantum Fisher information is obtained
as F = Tr[%L2] 6 4 Tr[H%H†]. As a result, the
quantum speed limit reads

τ >
DB(%(0), %(τ))

4〈Tr[(HCD − iΓ)%(t)(HCD + iΓ†)]1/2〉τ
.

(19)

The minimum time to implement a STA driving the
system from %(0) to %(τ) is thus not only governed by
the Hermitian system Hamiltonian HCD, but as well
by the term Γ governing gain and loss.

Alternatively, using the trace distance rather than
the Bures distance, the relevant metric is gtt =
‖∂t%‖21 ≡ (Tr[

√
(∂t%)2])2. Using Eqs. (9) and

(14) for ∂t% and the triangle inequality, one obtains
‖∂t%‖ 6 ‖[HCD, %]‖ + ‖{Γ, %}‖ for the gain-loss
equation and ‖∂t%‖ 6 ‖[HCD, %]‖ + ‖DCD‖ for the
Lindblad-like equation. In all of these bounds, both
the CD Hamiltonian and dissipator set the speed of
evolution.

4 Examples

4.1 Strokes for a two-level system

Consider a two-level system described by a time-
dependent Hamiltonian

H0(t) = 1
2
(
∆(t)σz + Ω(t)σx

)
, (20)

where σz and σx are the Pauli matrices.
The instantaneous eigenstates read E±(t) =
±
√

Ω2(t) + ∆2(t)/2 = ±|Ω(t)|/(2 sin θ(t)), where
θ(t) = arctan(Ω(t)/∆(t)) and the corresponding
eigenstates are

|+t〉 = cos(θ(t)/2)|0〉+ sin(θ(t)/2)|1〉,
|−t〉 = sin(θ(t)/2)|0〉 − cos(θ(t)/2)|1〉, (21)

with σz|0〉 = |0〉 and σz|1〉 = −|1〉. We consider the
system to be described by the time-dependent mixed
state %(t) =

∑
α=± λα(t)|αt〉〈αt|. Thus, the tar-

get trajectory % is already diagonal in the eigenbasis
of the uncontrolled system Hamiltonian H0(t). The
auxiliary control term required to guide the dynamics
is known to be of the form [5, 6, 48]

H1 = 1
2
∂t∆ Ω− ∂tΩ ∆

Ω2 + ∆2 σy, (22)

so that the full dynamics is generated byHCD = H0+
H1. The dynamics is open when the eigenvalues λ±
are time-dependent.

The first approach we have introduced relies on the
presence of gain and loss, for which the dynamics is
generally no longer trace-preserving, i.e., λ− + λ+ is
time-dependent and different from unity. Such evolu-
tion is generated by the non-Hermitian Hamiltonian
H = HCD − iΓ, where

Γ =
∂tλ+

2
( 1
λ−
|−t〉〈−t| −

1
λ+
|+t〉〈+t|

)
. (23)

Under balanced gain and loss, the trace-preserving
property is restored by the nonlinear equation (11)
with this choice of Γ.

Alternatively, STA in an open two-level system can
be associated with a Lindblad-like master equation
with the Lindblad operators

L+−(t) = |+t〉〈−t|, L−+(t) = L†+−(t). (24)

The rates are given by γ+−(t) = ∂tλ+
2λ− and γ−+(t) =

∂tλ−
2λ+

.
Assume that the system is initially prepared

in a thermal state at inverse temperature β(0),
%(0) =

∑
α=± λα(0)|α0〉〈α0|, where λα =

e−β(0)Eα(0)/Z(0) with Z(0) = e−β(0)E−(0) +
e−β(0)E+(0). We focus on description of thermody-
namic protocols for which the target trajectory %(t) is
an instantaneous thermal state with inverse tempera-
ture β(t), i.e.,

%(t) =
∑
α=±

eα
β(t)

2

√
Ω2(t)+∆2(t)

2 cosh[β(t)
2
√

Ω2(t) + ∆2(t)]
|αt〉〈αt|.

(25)

Accepted in Quantum 2020-09-15, click title to verify. Published under CC-BY 4.0. 4



��� ��� ��� ��� ��� ���

-���

-���

���

���

���

t/tf
<latexit sha1_base64="oWh0D7gVovbfQ2OxeXY+XBTIlf8="></latexit>

�+�
<latexit sha1_base64="zVJ2OgfLp7vbBD6eTnPf3Ym6/Vw=">AAAC+3icbVLLbtNAFJ2YVwmPtrBkMyJFqiCN7KCqLBAqAlVsEEU0baXEisbjm3jUGXvquUaEkb+DLYgdYsu/wN8wdi0UpxzJusf3ceb4eiIthUHf/9Pxrly9dv3G2s3urdt37q5vbN47NlmRcxjxTGb5acQMSJHCCAVKONU5MBVJOInOXlX1k4+QG5GlR7jQECo2T8VMcIYuFW5N5kwpNrVPdsqt6UbPH/g16GUSNKRHGhxONzu/J3HGCwUpcsmMGQe+xtAaKWIwZXdSGNCMn7E5jB1NmQIT2tp0SR+5TExnWe6eFGmdXZ6wTBmzUFHfRcUwqWLVafpxHfsIn5BnSjupqm5aw5HqR5FasYCzZ6EVqS4QUn7hYFZIihmtVkNjkQNHuXCE8Vyg4JQnLGcc3QJbSlxFuZgnWPsynEkodMVDi9p9fG3Tnf0a3FZyOHCvB0wJubDvjoLS6s+8tO3yh4RpWKqq0gosu7QF+3znBTX0MR0Hg+FuSF2nEnu4rPXWmXgpdcIiQDupLNVy/4RXFP+D5mh3F4LVP3+ZHA8HwdPB8P2wt7/d3Io18oA8JNskIHtkn7whh2REODknX8hX8s0rve/eD+/nRavXaWbukxa8X38B03bqdQ==</latexit>

��+
<latexit sha1_base64="dQ1j791ZQOCsxGRNLzZvXgTziCs="></latexit>

�+�
<latexit sha1_base64="zVJ2OgfLp7vbBD6eTnPf3Ym6/Vw="></latexit>

��+
<latexit sha1_base64="dQ1j791ZQOCsxGRNLzZvXgTziCs="></latexit>

��� ��� ��� ��� ��� ���
-���
-���
-���
���
���
���
���

t/tf
<latexit sha1_base64="oWh0D7gVovbfQ2OxeXY+XBTIlf8="></latexit>

��+
<latexit sha1_base64="dQ1j791ZQOCsxGRNLzZvXgTziCs="></latexit>

�+�
<latexit sha1_base64="zVJ2OgfLp7vbBD6eTnPf3Ym6/Vw="></latexit>

Figure 1: Left: Time-dependence of the rates in an
isothermal process at inverse temperature β = 1, keep-
ing Ω constant with initial ∆(0) = 1 and final ∆(tf ) =
−1. Right: Time-dependence of the rates for the su-
peradiabatic cooling (blue) and heating (red) of a two-
level system. Taking ∆ = Ω as the unit of frequency,
the process corresponds to cooling a thermal state from
β(0) = 1 to β(tf ) = 2 and heating a thermal state from
β(0) = 2 to β(tf ) = 1.

One can engineer different processes of interest
which are of this type. For example, in a supera-
diabatic isothermal stroke, the state is always in a
thermal form at a given reference inverse temperature
β(t) = β(0), regardless of the rate at which H0(t) is
driven. Nonadiabatic excitations are cancelled by the
auxiliary termH1 in Eq. (22), while the thermal form
of λ±(t) is guaranteed by the Lindblad operators and
rates. For arbitrary ∆(t) and Ω(t), they read

L+− = |+〉〈−|, L−+ = |−〉〈+|, (26)

γαα′ = α β

2
∆ ∂t∆ + Ω ∂tΩ√

∆2 + Ω2

(
eα
′β
√

∆2+Ω2 + 1
)−1

,

where α, α′ ∈ {±} and α 6= α′.
A typical modulation in time is shown in Fig. 1

for a two-level system to evolve along STA for an
isothermal stroke induced by driving of ∆(t) while
keeping Ω constant. Specifically, ∆(t) is chosen as a
fifth-order polynomial in time interpolating between
the initial and final values. The rates have opposite
signs, vanish identically at the avoided crossing, and
flip signs during the subsequent evolution.

It is possible to look as well for cooling and heating
protocols characterized by a time-dependent inverse
temperature β(t) keeping H0 constant, as required,
e.g., in a quantum Otto cycle. In such a case, H1 van-
ishes, and the cooling and heating strokes are imple-
mented by time-independent Lindblad operators with
time-dependent rates,

γαα′(t) = α ∂tβ(t)
2

√
∆2 + Ω2

e−α′
√

∆2+Ω2β(t) + 1
, (27)

where α, α′ ∈ {±} and α 6= α′. The time-
dependence of the rates is explicitly illustrated for
both cooling and heating processes in Fig. 1, for

constant values of ∆ and Ω, and β(t) interpolating
between β(0) and β(tf ) again as a fifth-order poly-
nomial. The non-Markovian character of the evo-
lution is manifest given the time-dependence of the
Lindblad operators and the opposite sign of the cor-
responding rates.

Beyond these two prominent examples, more gen-
eral strokes can be considered. The required Lindblad
operators in the most general setting are provided in
the appendixes. We also note that in all cases the cor-
responding operator Γ associated with gain and loss
can be conveniently expressed in terms of the rates as

Γ(t) = γ−+(t)|+t〉〈+t| − γ+−(t)|−t〉〈−t|. (28)

In the following, we consider another example in
which the real physical dynamics of the system keeps
its state always in the Gibbsian form with a time-
dependent temperature.

4.2 STA for equilibration of a thermalizing
atom

Consider a two-level atom in a thermal bosonic bath
at inverse temperature βB(0). The dynamics of the
atom under some conditions can be described by [57–
59]

∂t%S = −i
[
HS , %S

]
(29)

+
∑
j,k|(j 6=k)γjk(Ljk%SL

†
jk −

1
2{L

†
jkLjk, %S}),

where j, k ∈ {0, 1}, and

HS = ω0
2 σz, L10 = |1〉〈0| = σ−, L01 = |0〉〈1| = σ+,

(30)
γ10 = γ

(
n̄ (ω0, βB(0)) + 1

)
, γ01 = γn̄.

Here, n̄
(
ω0, βB(0)

)
= (eβBω0−1)−1 is the mean bo-

son number in a mode with frequency ω0, and γ is a
time-independent constant indicating the strength of
the coupling between the atom and the thermal bath.

If the atom is initially in a thermal state %S(0) =
e−βS(0)HS/ZS(0), its instantaneous state is obtained
by solving the above master equation, which gives
a Gibbsian thermal state %S(t) = e−βS(t)HS/ZS(t),
with

βS(t)=−1
ω0

log 1−e−γ̃ttanhΘS+(e−γ̃t−1)tanhΘB

1+e−γ̃ttanhΘS−(e−γ̃t−1)tanhΘB
.

(31)
Here Θk = ω0 βk(0)/2 (k ∈ {S,B}), γ̃ =
γ coth ΘB , and ZS(t) = Tr[e−βS(t)HS ].
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Figure 2: Left: Time dependence of the rates γ10 (red,
dashed) and γ01 (blue, solid) in Eq. (14) for a ther-
malizing atom in the case of heating, when βS = 0.1,
βB = 0.01, ω0 = 2, and γ = 0.005. The inset corre-
sponds to the cooling case, with βS ↔ βB . With these
parameters, the rates for the Lindblad master equation of
the subsystem in Eqs. (29) and (30) become constant;
γ01 = 4.95 and γ10 = 5.05. Right: Inverse temper-
ature of the system for the Lindblad master equation
(dashed) and for the STA (solid). The dependence in
time is shown for the case of heating (see inset for the
cooling case) with the same set of parameters as in the
left panel.

Equation (14) suggests another dynamical equa-
tion realizing the same trajectory %S(t). Since H0 =
HS is time-independent,H1 will be zero as well. The
Lindblad operators are given in terms of the eigen-
states of HS as Lmn = |m〉〈n| where m,n ∈ {0, 1},
and the rates are obtained from Eq. (13b) by con-
sidering that λ0 = e−βS(t)ω0/2/ZS(t) and λ1 =
eβS(t)ω0/2/ZS(t) can also be identified simply as %00
and %11, respectively (see the appendixes). While
the Lindblad operators here are equal to those in
Eq. (29), the rates in the Markovian master equation
(29) are positive constants. By contrast, the rates in
Eq. (14) are time-dependent and negative for some
time intervals, as illustrated in Fig. 2. Nonetheless,
in both cases equilibration with the bath at tempera-
ture βB takes infinite time.

A STA in finite time tf can be associated
with a trajectory %̃S(t) = e−β̃S(t)HS/ZS(t) and
a modified inverse temperature β̃S(t) satisfying
β̃S(tf ) = βB . Using Eq. (14), the Lind-
blad operators remain unchanged, as in Eq. (30),
whereas the rates are obtained from Eq. (13b) as
γ01 = −(ω0/4) ∂tβ̃S(t) e−β̃S(t)ω0 and γ10 =
(ω0/4)∂tβ̃S(t) eβ̃S(t)ω0 . In Fig. 2, the right panel
shows the temperature for a typical function as β̃S(t)
such that at tf = 5 the system state thermalizes, i.e.,
%̃S(tf ) = e−βBHS/Tr[e−βBHS ].

4.3 Fast thermalization of a quantum oscillator

We next consider the fast thermalization of a quan-
tum oscillator using the general scheme presented in

Sec. 2. This illustrate an application of the proposed
scheme for an infinite rank density matrix, that can
be implemented with current technology. Alternative
approaches for the fast thermalization of an oscillator
have been recently presented in Ref. [43, 44].

Consider the time-dependent Hamiltonian H0 =
p̂2

2m + 1
2mω

2
t x̂

2 with instantaneous thermal state
%(t) = e−βtH0/Tr[e−βtH0 ]. In the basis of the in-
stantaneous Fock states |nt〉, the thermal state is di-
agonal, %(t) =

∑
n λn(t)|nt〉〈nt|, with probabili-

ties λn(t) = unt (1 − ut)−1 that are generally time-
dependent due to the modulation of the frequency and
temperature, where ut = e−βt~ωt . The thermal state
evolves according to Eq. (7), where the commutator
[H0, %(t)] = 0 and the counterdiabatic Hamiltonian
term H1 is given by [60–62]

H1 = − ω̇t
4ωt
{x̂, p̂}. (32)

This term can in principle be engineered in a trapped
ion as suggested in Ref. [9]. We show below a
scheme for implementing in the laboratory the uni-
tarily equivalent trajectory %̃(t) = Ux%(t)U †x, where

Ux = ei
m
2~αtx̂

2
, (33)

and αt is a frequency to be determined. Such tra-
jectory maps an initial thermal state into a final ther-
mal state of different temperature provided αt van-
ishes at the beginning and end of the protocol. Di-
rect computation of its time derivative gives ∂t%̃ =
i
~

[
m
2 α̇t x̂

2, %̃
]

+ Ux(∂t%)U †x, which admits a form
similar to Eq. (7), i.e,

∂t%̃ = − i
~

[H̃CD, %̃] + D̃CD(%̃), (34)

where the counterdiabatic Hamiltonian in the rotating
frame reads

H̃CD = i~U̇xU †x + Ux(H0 +H1)U †x, (35)

and the dissipator is given by

D̃CD(%̃) =
∑
nλ̇n(t)Ux|nt〉〈nt|U †x. (36)

By explicit computation, the counterdiabatic
Hamiltonian Eq. (35) can be recast as

H̃CD = p̂2

2m+1
2mω̃

2
t x̂

2−
(
αt
2 + ω̇t

4ωt

)
{x̂, p̂}, (37)

with time-dependent frequency

ω̃2
t = ω2

t + α2
t + αt

ω̇t
ωt
− α̇t. (38)
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It proves convenient to define αt = Ωt − ω̇t/(2ωt),
so that

H̃CD = p̂2

2m + 1
2mω̃

2
t x̂

2 − Ωt

2 {x̂, p̂}. (39)

As shown in App. C, by further choosing

Ωt = −1
2
ω̇t
ωt

+ u̇t
1− u2

t

, (40)

the dissipator in the rotating frame equals

D̃CD(%̃) = 1
i~

[Ωt

2 {x̂, p̂} −mαtΩtx̂
2, %̃

]
−γt[x̂, [x̂, %̃]], (41)

with a time-dependent dephasing strength

γt = mωt
~

u̇t
(1− ut)2 . (42)

Combining the explicit forms of H̃CD and D̃CD(%̃)
in Eq. (34) results in the master equation of a time-
dependent quantum oscillator subject to dephasing in
the coordinate representation, i.e.,

∂t%̃ = 1
i~

[
p̂2

2m + 1
2mω̃

2
CDx̂

2, %̃

]
− γt[x̂, [x̂, %̃]].

(43)

where

ω̃2
CD = ω2

t − α2
t − α̇t (44)

=
[
ω2
t −

3
4

(
ω̇t
ωt

)2
+ ω̈t

2ωt

]
− Ω2

t − Ω̇t + Ωt
ω̇t
ωt
,

and γt is given by Eq. (42) and Ωt by Eq. (40).
The case of unitary dynamics in which the eigenval-
ues {λn} are constant corresponds to Ωt = 0, i.e.,
αt = −ω̇t/(2ωt). The first term in square brackets
on the right-hand side (RHS) of Eq. (44) is indeed
that used for the (local) counterdiabatic driving of a
driven oscillator in the absence of coupling to a bath
[9, 62, 63]. The dynamics described by Eq. (43) gen-
eralizes the case of unitary evolution to account for
the controlled driving of an open quantum oscilla-
tor (i.e., when the eigenvalues {λn} of the density
matrix are time-dependent) from an initial thermal
state to a final thermal state in arbitrary time. The
implementation of a STA by counterdiabatic driving
for the fast thermalization of a quantum oscillator is
achieved by a simultaneous modulation of the driv-
ing frequency and the dephasing strength. The dy-
namics associated with Eq. (43) can be readily imple-
mented in the laboratory. It requires the control of the

trap frequency and dephasing strength. The latter can
be engineered for γt > 0 using noise as a resource
via stochastic parametric driving, or through continu-
ous quantum measurements, as recently proposed in
Ref. [44]. While the counterdiabatic driving protocol
derived here requires similar experimental resources
to the ones for STA based on reverse-engineering of
the dynamics [44], the time modulations of the driv-
ing frequency and the dephasing strength need not be
equal, and generally differ, between the two proto-
cols. In addition, their experimental implementation
is at reach with current technology in trapped ions
[9, 64] and ultracold gases [10].

To illustrate a specific protocol we consider a refer-
ence trajectory %(t) describing the evolution from an
initial thermal state of frequency ω0 at inverse tem-
perature β0 to a final thermal state with frequency
ω(tf ) = ωf and inverse temperature β(tf ) = βf .
For instance, %(t) can be specified by choosing the
interpolating ansatze

ωt = ω0 + (ωf − ω0)[10s3 − 15s4 + 6s5], (45)
βt = β0 + (βf − β0)[10s3 − 15s4 + 6s5], (46)

with s = t/tf , where tf is the duration of the process.
The polynomial functions are monotonic as a func-
tion of time. The required experimental controls to
implement the unitarily equivalent trajectory %̃(t) are
ω̃CD in Eq. (44) and γt in Eq. (42) with ut = e−βt~ωt ,
shown in Fig. 3. Specifically, a heating stroke in-
volving a trap compression shows that the required
counterdiabatic modulation of the trapping frequency
exhibits a nonmonotonic behavior involving of se-
quence of tight compressions and decompressions,
overshooting the reference modulation. Along the
process, the dephasing strength takes predominantly
positive values, thus suppressing coherences in the
position eigenbasis. counterdiabatic cooling strokes
are more challenging to implement than counterdia-
batic heating strokes. First, the dephasing strength
takes negative values throughout the cooling stroke,
enhancing coherences in the position representation.
Second, the square frequency of the trap exhibits as
well a nonmonotonic behavior characterized, acquir-
ing transient negative values associated with a purely
imaginary frequency, e.g., the inversion of the trap
into an anti-trap. Such inversions are also common to
counterdiabatic driving for unitary processes when-
ever the duration of the process is comparable to ω−1

0
[4]. While the inversion of the trap is not free from
technical difficulties, its realization has been facil-
itated by the development of the painting potential
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Figure 3: Counterdiabatic driving of an open driven quantum quantum oscillator. Heating stroke (top): Left:
Modulation of the inverse-temperature with βf = β0/10. Center: Monotonic reference modulation of the trapping
square frequency ω2

t /ω
2
0 compared with the nonmonotonic counterdiabatic modulation ω̃2

cd/ω
2
0 , with ωf = 2ω0.

Right: Time-dependent dephasing strength in units of mω0/~. The bottom row shows the engineering of a cooling
stroke with ωf = ω0/2 and βf = 10β0. Negative values of ω̃2

cd/ω
2
0 are associated with trap inversion.

technique and the use of digital micromirror devices
[65] as suggested in Ref. [66].

5 Summary and conclusions

We have introduced a universal scheme to design
shortcuts to adiabaticity in open quantum systems, in-
teracting with an environment. This scheme provides
the generalization of counterdiabatic driving [5, 6],
also known as transitionless quantum driving [48], to
open quantum systems. It is based on first prescribing
a target trajectory for the evolution of the system, and
then determining the required auxiliary Hamiltonian
terms and dissipators that generate it.

The resulting dynamics admits different physical
realizations. It can be associated with a driven sys-
tem in the presence of balanced gain and loss, a sce-
nario that occurs naturally, e.g., in PT -symmetric
quantum mechanics. Alternatively, it can be imple-
mented via a non-Markovian evolution in which the
equation governing the dynamics takes a generalized
Lindblad-like form. The latter is readily accessible in
a variety of platforms—including trapped ions, Ryd-
berg atoms, and superconducting qubits, among other
examples—by using, e.g., digital quantum simulation
techniques [67–71]. Our formalism thus enables to
engineer superadiabatic open processes to speed up,
i.e., heating, cooling, and isothermal strokes.

We have applied this framework to the engineer-
ing of strokes in an open two-level system. In ad-
dition, we have provided an experimentally-friendly
protocol for the the controlled thermalization of a

driven quantum oscillator, that can be implemented
with current technology in trapped ions and ultra-
cold gases. The framework introduced here should
find broad applications in quantum thermodynamics,
and more generally, in quantum technologies requir-
ing the fast control of an open system embedded in
an environment.
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A Lindblad-like master equation
In this section, we verify that the dissipator

D(%) =
∑
mnγmn

(
Lmn%L

†
mn − 1

2{L
†
mnLmn, %}

)
,

(47)

with the choice of the time-dependent Lindblad op-
erators and rates given in the main text, satisfies the
identity

D(%) =
∑
m∂tλm(t)|mt〉〈mt|. (48)

Employing the explicit form of Lmn in Eq. (47) one
finds

D(%) =
∑
mn

∂tλm(t)
r (|mt〉〈mt| − |nt〉〈nt|).(49)
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Noting that
∑r
n=1 1 = r = rank(%) and∑r

m=1 ∂tλm(t) = ∂tTr[%], it follows that

D(%) =
∑
m∂tλm(t)|mt〉〈mt|

− (1/r)∂tTr[%]
∑
n |nt〉〈nt|. (50)

As the second term on the RHS vanishes identically
for a norm-preserving evolution, this completes the
proof of Eq. (48).

B Lindblad operators for arbitrary
strokes in two-level systems

Consider the trajectory described by the instanta-
neous thermal state of a two-level system

%(t) =
∑
α=±

eα
β
2
√

Ω2+∆2

2 cosh[β2
√

Ω2 + ∆2]
|αt〉〈αt|, (51)

where β, ∆, and Ω are time-dependent. The Lindblad
operators are L+− = |+〉〈−| and L−+ = |−〉〈+|, as
in Eq. (25) in the main text, with rates

γ+−(t) = ∆2∂tβ + Ω (Ω∂tβ + β∂tΩ) + β∆∂t∆
2
√

∆2 + Ω2
(
e−β
√

∆2+Ω2 + 1
) ,

γ−+(t) = −∆2∂tβ + Ω (Ω∂tβ + β∂tΩ) + β∆∂t∆
2
√

∆2 + Ω2
(
eβ
√

∆2+Ω2 + 1
) .

C Thermalization of a quantum oscil-
lator

We provide details to establish the equivalence of the
different master equations for the fast thermalization
of a quantum oscillator. To do this, we use the co-
ordinate representation. The thermal state of a har-
monic oscillator is known to be described by a Gaus-
sian density matrix,

%(x, x′, t)=〈x|%(t)|x′〉=Nte
−At(x2+x′2)−2Ctxx′ ,

(52)
with normalization constant Nt =

√
2(At + Ct)/π.

The real parametersAt = k2
t (1+u2

t )/(2(1−u2
t )) and

Ct = −k2
t ut/(1−u2

t ) follow from the inverse length
kt =

√
mωt/~ and the normalization factor Nt =

kt
√

(1− ut)/(π(1 + ut)). This gives the coordinate
representation of the dissipator (34) as

〈x|D̃CD(%̃)|x′〉 = ∂%(x, x′, t)
∂t

ei
mαt

2~ (x2−x′2)

=
(Ṅt

Nt
−Ȧt(x2+x′2)−2Ċtxx′

)
%̃(x, x′, t). (53)

Given the explicit form of Nt, choosing Ωt =
− Ṅt
Nt

, as in Eq. (40), leads to Ȧt + 2ΩtAt = −Ċt −
2ΩtCt ≡ γt. The latter corresponds to a dephasing
strength, and allows recasting the dissipator as

〈x|D̃CD(%̃)|x′〉 =
[
Ωt

(
2A(x2+x′2)+4Cxx′−1

)
−γt(x− x′)2

]
%̃(x, x′, t). (54)

We wish to rewrite this last expression in operator
form. To that end we note that [H0, %(t)] = 0 and
thus [UH0U

†, %̃(t)] = 0, whence it follows that

[{x̂, p̂}, %̃] = 2
α

[
p̂2

2m + 1
2m(ω2

t + α2
t )x̂2, %̃

]
.

(55)

Explicit computation using the coordinate rep-
resentation of the trajectory, %̃(x, x′, t) =
%(x, x′, t)ei

mαt
2~ (x2−x′2), yields

〈x|[{x̂, p̂}, %̃(t)]|x′〉 = 2mαt(x2 − x′2)%̃(x, x′, t)
+ 2i~(2A(x2 + x′2) + 4Cxx′ − 1)%̃(x, x′, t).

(56)

As a result, the dissipator admits the operator form of
the dissipator given in the main text, Eq. (41).
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