
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or
part of any of the repository collections is not permitted, except that material may be duplicated by you for
your research use or educational purposes in electronic or print form. You must obtain permission for any
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not
an authorised user.

Hämäläinen, Perttu; Toikka, Juuso; Babadi, Amin; Liu, C Karen
Visualizing Movement Control Optimization Landscapes

Published in:
IEEE Transactions on Visualization and Computer Graphics

DOI:
10.1109/TVCG.2020.3018187

Published: 01/01/2022

Document Version
Publisher's PDF, also known as Version of record

Published under the following license:
CC BY

Please cite the original version:
Hämäläinen, P., Toikka, J., Babadi, A., & Liu, C. K. (2022). Visualizing Movement Control Optimization
Landscapes. IEEE Transactions on Visualization and Computer Graphics, 28(3), 1648-1660.
https://doi.org/10.1109/TVCG.2020.3018187

https://doi.org/10.1109/TVCG.2020.3018187
https://doi.org/10.1109/TVCG.2020.3018187

ACCEPTED TO IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 1

Visualizing Movement Control Optimization
Landscapes

Perttu Hämäläinen, Juuso Toikka, Amin Babadi, and C. Karen Liu

Abstract—
A large body of animation research focuses on optimization of movement control, either as action sequences or policy parameters.
However, as closed-form expressions of the objective functions are often not available, our understanding of the optimization problems
is limited. Building on recent work on analyzing neural network training, we contribute novel visualizations of high-dimensional control
optimization landscapes; this yields insights into why control optimization is hard and why common practices like early termination
and spline-based action parameterizations make optimization easier. For example, our experiments show how trajectory optimization
can become increasingly ill-conditioned with longer trajectories, but parameterizing control as partial target states—e.g., target angles
converted to torques using a PD-controller—can act as an efficient preconditioner. Both our visualizations and quantitative empirical
data also indicate that neural network policy optimization scales better than trajectory optimization for long planning horizons. Our
work advances the understanding of movement optimization and our visualizations should also provide value in educational use.

Index Terms—Visualization, Animation, Movement synthesis, Trajectory optimization, Policy optimization, Control optimization

F

1 Introduction

Much of computer animation research formulates ani-
mation as an optimization problem. It has been shown

that complex movements can emerge from minimizing a cost
function that measures the divergence from movement goals,
such as moving to a specific pose or location while minimizing
effort. In principle, this holds the promise of elevating an
animator to the role of a choreographer, directing virtual
actors and stuntmen through the definition of movement
goals. However, solving the optimization problems can be hard
in practice. It can require hours or even days of computing
time, which is highly undesirable for interactive applications
and the rapid iteration of movement goals; defining the goals
can be a non-trivial design problem in itself, requiring multiple
attempts to produce a desired aesthetic result.

Optimization problems can be divided into the four classes
of increasing difficulty illustrated in Fig. 1:

• Convex and well-conditioned Convexity refers to the
shape of the isocontours of the objective function, or
level sets in a general d-dimensional case. In the ideal
well-conditioned case, the isocontours are spherical,
and simple gradient descent recovers a direct path to
the optimum.

• Convex and ill-conditioned In ill-conditioned optimiza-
tion, the isocontours are elongated instead of spherical.
The gradient—coinciding with isocontour normals—
no longer points towards the optimum, and numerical
optimization may require more iterations.

• Non-convex and unimodal Non-convexity tends to
make optimization even harder, but numerical opti-

• Hämäläinen, Toikka, and Babadi are with the Department of
Computer Science at Aalto University.
E-mail: perttu.hamalainen@aalto.fi, juuso.toikka@aalto.fi,
amin.babadi@aalto.fi

• C. Karen Liu is with the Department of Computer Science at
Stanford University.
E-mail: karenliu@cs.stanford.edu

mization usually still converges if there are no local
optima to distract it.

• Non-convex and multimodal In this problem class,
the landscape has local optima which can attract op-
timization. Gradient-free, sampling-based approaches
like CMA-ES—common in animation research—may
still find the global optimum [1], but this can be
computationally expensive. Unfortunately, movement
optimization can easily fall into this class, e.g. due
to the discontinuities caused by colliding objects, and
multiple options for going around obstacles [2], [3].

Fig. 1: Common types of optimization landscapes. The sur-
faces denote the values of 2-dimensional (bivariate) objective
functions, with the isocontours displayed below the surface.
The black curves show the progress of gradient descent opti-
mization from an initial point.

ar
X

iv
:1

90
9.

07
86

9v
3

 [
cs

.L
G

]
 2

2
A

ug
 2

02
0

ACCEPTED TO IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2

Landscape visualizations like those in Fig. 1 provide useful
intuitions of optimization problems, and can help in refor-
mulating a problem into a more tractable form. In general,
one would like the objective function to be more convex, well-
conditioned, and unimodal. We know that problem modifi-
cations such as the choice of action space can greatly affect
movement optimization efficiency [4], but visualizing the ef-
fects on the optimization landscape is challenging because
of high problem dimensionality. High dimensionality and/or
non-differentiable physics simulators can also prevent ana-
lyzing problem conditioning through the eigenvalues of the
Hessian.

The primary inspiration of this paper comes from recent
work on visualizing neural network loss function landscapes
by Li et al. [5]. Strikingly, the paper shows that visualization
of random 2D slices of a high-dimensional objective function
can convey useful intuitions and predict the difficulty of op-
timization, even with highly complex networks with millions
of parameters. More specifically, the approach generates 3D
landscape plots of the objective function f(x) : Rd → R
by evaluating it along a plane (a 2D subspace in Rd) de-
fined by two random orthogonal basis vectors intersecting
the optimum. Li et al. [5] use the approach to illustrate
how deeper networks have more local optima, but adding
skip-connections greatly helps in making the landscape more
convex and unimodal.

Contribution: We contribute by showing that the ran-
dom slice visualization approach of Li et al. [5] can be applied
in the domain of movement optimization. Fig. 2 shows ex-
amples of this, visualizing the same objective function with
different random basis vectors. Furthermore, we use the visu-
alizations to investigate the following research questions:

• What is the effect of the number of timesteps – i.e.,
the planning horizon – on the optimization landscape?
(Section 4)

• What is the effect of the choice of action space on the
optimization landscape? (Section 5)

• What is the effect of converting instantaneous costs
into rewards through exponentiation? (Section 6)

• What is the effect of early termination of movement
trajectories or episodes, e.g., when deviating from a
target state? (Section 7)

• Do the visualizations predict actual optimization per-
formance, and generalize from simple to complex prob-
lems? (Sections 8 and 9).

Additionally, Section 10 provides a more theoretical inves-
tigation of the reliability and limitations of random 2D slice
visualizations. We conclude that such visualization is a useful
tool for diagnosing problems; the somewhat low sensitivity
is compensated by high specificity. Our visualizations also
explain why movement optimization best practices such as
early termination and parameterizing actions as target angles
work so well, which should make our work useful in teaching
computer animation and movement optimization.

2 Related work
Spacetime optimization Much of the earlier work on ani-
mation as optimization focused on extensions of the seminal
work on spacetime optimization by Witkin and Kass [6], [7],

[8], [9], [10], where the optimized variables included the root
position and rotation as well as joint rotations for each ani-
mation frame. However, the synthesized motions were limited
by the need for prior knowledge of contact information, such
as when and which body parts should make contact with the
ground. This limitation was overcome by [11], who introduced
auxiliary optimized variables that specify the contact infor-
mation. However, the number of colliding body parts was still
limited.
Animation as simulation control In recent years, the
focus of research has shifted towards animation as a simu-
lation control problem. Typically, one optimizes simulation
control parameters such as time-varying actuation torques
of character joints, and an off-the-shelf physics simulator is
used to realize the movement. While spacetime optimization
can be performed with gradient-based optimization methods
like Sequential Quadratic Programming [6] or L-BFGS [11],
simulation control is commonly approached with sampling-
based, gradient-free optimization due to non-differentiable
dynamics and/or multimodality [2], [3], [12]. This is also what
our work focuses on; it remains as future work to extend our
visualizations to analyzing spacetime optimization.
Trajectory and policy optimization Two main classes
of approaches include trajectory and policy optimization.
In trajectory optimization, one optimizes the time-varying
control parameters directly, which can be done both offline
[13], [14], [15] or online, while the character moves and acts [2],
[3], [16]. In policy optimization, one optimizes the parameters
of a policy function such as a neural network that maps
character state to (approximately) optimal control, typically
independent of the current simulation time. This can be
done both using neuroevolution [17], [18] or Reinforcement
Learning (RL), which has recently proven powerful even with
complex humanoid movements [19], [20], [21], [22], [23]. Unfor-
tunately policy optimization/learning can be computationally
expensive with large neural networks, and may require careful
curriculum design [24]. On the other hand, it can produce
controllers that require orders of magnitude less computing
resources after training, compared to using trajectory opti-
mization to solve each required movement in an interactive
application such as a video game. Trajectory and policy
optimization approaches can also be combined [25], [26], [27],
which allows one to adjust the trade-off between training time
and runtime expenses. In this paper, we provide analyses of
both trajectory and policy optimization landscapes.
Visualizing optimization Many optimization visualizations
are problem-specific, utilizing the semantics of optimized
parameters [28]. Visualization is also used for letting a user
interact and inform optimization [29]; this, however, falls
outside the scope of this paper. Considering non-interactive,
generic methods applicable to continuous-valued optimiza-
tion, landscape visualizations like the ones in Fig. 1 are a
standard textbook method. Although it is technically trivial
to extend this to higher-dimensional problems by visualizing
the objective function on a random plane (a 2D subspace),
Li et al. [5] only recently demonstrated that such random
slices can provide meaningful insights and, likewise, have some
predictive power on the difficulty of very high-dimensional
optimization. Inspired by [5], we test the random slice visual-
ization approach in a new domain, and also provide additional

ACCEPTED TO IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 3

Fig. 2: Visualizing the inverted pendulum trajectory optimization objective of Equation 3 with different random basis vectors
and T = 100. Although the plots are not exactly similar, they all exhibit the same overall structure, i.e., multimodality and an
elongated, ill-conditioned optimum.

analyses of the method’s reliability and limitations. Other
common methods for visualizing high-dimensional optimiza-
tion include graphing the objective function along a straight
line from the initial point to the found optimum [30], [31],
[32], [33], or visualizing in a plane determined from the path
taken during optimization [30]. There are also examples of
visualizing movement optimization through a conversion to
an interactive game or puzzle; in this case, players perform
the optimization aided by predictive visualizations of how
different actions affect the simulation state [34].

In computer animation and movement control research,
objective functions are visualized occasionally, using various
approaches to reduce the objectives to 2D. For example,
Hämäläinen et al. [2] visualize contact discontinuities and
multimodality in a 2D toy problem, and Sok et al. [35] vi-
sualize a high-dimensional multimodal objective with respect
to two manually selected parameters. However, we know
of no previous paper that focuses on visualizing movement
optimization, or applies the 2D random slice approach of Li et
al. [5] to movement optimization.

3 Test Problem: Inverted Pendulum Balancing
This section describes the inverted pendulum balancing prob-
lem that is used throughout Sections 4-8, before testing
the visualization approach on the more complex simulated
humanoid of Section 9. The pendulum is depicted in Fig.
3. Although it is simple, it offers the following benefits for
analyzing movement optimization:
• In the trajectory optimization case, we know the true

optimum. As the pendulum dynamics are differen-
tiable, we can also compute the Hessian and its eigen-
values for further analysis. We implement this using
Autograd [36].

• In the policy optimization case, we can use a simple
P-controller as the parameteric policy, which admits
visualizing the full optimization landscape instead of
only low-dimensional slices.

The dynamics governing the angle αt, angular velocity
ωt, and control torque τt of the pendulum at timestep t are
implemented as:

ωt = ωt−1 + δ(τt + 0.5 l g sin(αt−1)), (1)
αt = αt−1 + δωt, (2)

where δ, l, and g are the simulation timestep, pendulum
length, and force induced by gravity, respectively. We use
δ = 0.1, l = 0.2, and g = 0.981.

Fig. 3: The inverted pendulum model. The force exerted by
gravity is denoted by g, and α denotes the angular deviation
from an upright position.

3.1 Trajectory Optimization
Most of our trajectory optimization visualizations are gener-
ated from the problem of balancing a simple inverted pendu-
lum, starting from an upward position such that the optimal
torque sequence τ1, ..., τT is all zeros. The subscripts denote
timestep indices and T is the planning horizon, i.e., the length
of the simulated trajectory. The optimization objective is
to minimize the trajectory cost C computed as the sum of
instantaneous costs:

C =
T∑
t=1

(α2
t + wτ2

t). (3)

The cost is minimized when the pendulum stays upright at
α = 0 with zero torques. The relative importance of state
cost α2

t and action cost τ2
t is adjusted by the multiplier w. We

use w = 1 unless specified otherwise. The cost landscape is
visualized in case of T = 100 in Fig. 2.

Some of our experiments convert the cost minimization
problem into a reward maximization problem, computing
trajectory reward R using exponentiated costs as

R =
T∑
t=1

(e−α
2
t + we−τ

2
t). (4)

The reward formulation has been recently used with stellar
results in the policy optimization of complex humanoid move-
ments [20]. Exponentiation is also used in framing optimal
control as estimation [37], [38].

3.2 Policy Optimization
In the case of policy optimization, we use the same pendu-
lum simulation, with a minor adjustment. Instead of directly
optimizing control torques, we use a policy τt = πθ(st),
parametrized by θ, where s denotes pendulum state. The

ACCEPTED TO IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 4

optimization objective is to either minimize the expected
trajectory cost, or maximize the expected reward, assuming
that each trajectory or “episode” is started from a random
initial state. As closed-form expressions for the expectations
are not available, we replace them by averages. These are
computed from 10 episodes, each started from a different
initial pendulum angle.

In all the pendulum policy optimization visualizations, we
use a simple P-controller as the policy:

πθ(st) = θαt. (5)

The benefit of this formulation is that we only have a single
policy parameter to optimize; thus, we can visualize the full
objective function, shown in Fig. 4. Despite the simplicity, this
provides a multimodal optimization problem with properties
similar to more complex problems. As shown in Fig. 4, there
is global optimum at approximately θ = −0.1, and also a false
optimum near θ = 0. At the false optimum, the action cost is
minimized simply by letting the pendulum hang downwards.
In a real-world case like controlling a simulated humanoid, the
false optimum corresponds to resting on the ground with zero
effort; readers familiar with humanoid control probably know
that such a behavior is easy to elicit by having too large an
effort cost.

Fig. 4: Average episode cost (Equation 3) with T = 200, as
a function of the P-controller policy parameter θ, and action
cost weight w. A large w makes the local and true optima
more equally good compared to the surrounding regions. This
makes it more likely that a global Monte Carlo optimization
method like CMA-ES will get attracted to the false optimum.
The success of local gradient-based optimization depends on
which cost basin the optimization is initialized in.

4 Effect of trajectory length
Figures 5 and 6 visualize the inverted pendulum trajectory
and policy optimization landscapes, with different trajectory
and episode lengths T . The figures yield two main insights:

• Trajectory optimization can become increasingly non-
separable and ill-conditioned with large T .

• In both trajectory and policy optimization, the land-
scapes become more multimodal with large T .

4.1 Trajectory Optimization
The trajectory optimization landscapes of Fig. 5 are aug-
mented with visualizations of the Hessian matrices of the
cost function at the optimum. This allows further analysis
of some important properties. A diagonal Hessian means that
the optimization problem is separable, and the variables can

Fig. 5: Effect of trajectory length T on inverted pendulum
trajectory optimization. The optimization problem becomes
increasingly ill-conditioned and non-separable with longer ac-
tion sequences. The bottom row shows the Hessian matrices at
the optimal points with increasing T . κ denotes the condition
number of the Hessian.

Fig. 6: Effect of trajectory length T on inverted pendulum tra-
jectory policy optimization. Local optima become pronounced
with large T , as the agent has more time to diverge and
accumulate cost far from the desired states.

be optimized independent of each others. Strong off-diagonal
elements imply that if one changes a variable, then one must
also change some other variable to remain at the bottom of
the valley in the landscape.

On the other hand, the eigenvalues of the Hessian measure
curvature along the eigenvectors; the condition number κ,
which denotes the ratio of the largest to smallest eigenval-
ues of the Hessian, is generally considered as a predictor of
optimization difficulty. In the ideal case, the Hessian is a
(scaled) identity matrix, i.e., a diagonal matrix where all the
eigenvalues are the same; this indicates both separability and
no ill-conditioning with κ = 1.

Intuitively, the ill-conditioning with a large T can be
explained by the fact that perturbing an action of the optimal
trajectory will lead to state divergence that accumulates over
time. Thus, the total state cost is more sensitive to earlier
actions, which leads to large differences in the Hessian eigen-
values. Non-separability stems from a need to adjust later
actions to correct the state divergence. On the other hand,
with a small T , the state has less time to diverge, and the τ2

action cost dominates; this gives rise to the constant diagonal
structure of the Hessian, as actions of all timesteps contribute
equally and independently to the cost.

More formally, we may rewrite the cost function (Equation
3) of the trajectory optimization as:

C =
T∑
t=1

αt(τ1, · · · , τt)2 +
T∑
t=1

wτ2
t , (6)

emphasizing that the state αt depends on the past actions τ1

ACCEPTED TO IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 5

to τt. The Hessian of the cost function can then be expressed
as:

∂2C
∂τ 2 = 2

T∑
t=1

(
∇ταt(∇ταt)T + αt

∂2αt
∂τ 2

)
+ 2wI. (7)

The last term of Equation 7 is a diagonal matrix that does
not depend on T , while the first term results in off-diagonal
elements accumulated over time. As T grows larger, the first
term begins dominating the second one, hence the decrease in
separability (i.e., the fading diagonal shown in Fig. 5).

The increase of the condition number follows from the
causality of the dynamics—future actions do not affect past
states. This means that when t = 1, the first term of Equation
7 is a T × T matrix that has only one nonzero element at the
upper-left corner, while, when t = T , the nonzero elements
occupy the entire matrix. Summing up all the matrices from
t = 1 to t = T , the first term of the Hessian will have
larger values toward the upper-left corner, as evidenced by
the bright areas in Fig. 5. The longer T is, the more disparate
the upper-left and bottom-right corners become, leading to
larger condition numbers.

Although it is well known that the difficulty of solving
a trajectory optimization increases proportionally with the
length of the planning horizon, our visualization shows that
the difficulty is not solely caused by the increase in the size of
the problem, but also by the increasingly ill-conditioned and
non-separable objective function. Section 5 explains how the
choice of action parameters can act as an efficient precondi-
tioner.

4.2 Policy Optimization
In policy optimization, the optimized parameters have no
similar dependency to the horizon T , as the effect of each
policy parameter on the objective is averaged over all states.
The separability of policy parameters depends on the function
representation of the policy. For example, if the policy is
represented as a multi-layer nonlinear neural network, the
Hessian of the objective function is bound to be inseparable,
as the neuron weights across layers are multiplied with each
other when passing data through the network.

However, a longer horizon in policy optimization can in-
duce a multimodal landscape in the objective function (Fig.
6). An explanation is that a longer time budget enables strate-
gies that are not possible when the horizon is shorter. The
“mollification” of the landscape at shorter horizons explains
why policy optimization may benefit from a curriculum in
which the planning horizon is gradually increased. The Ope-
nAI Five Dota 2 bots provide a recent impressive example of
this, gradually increasing the γ parameter of Proximal Policy
Optimization [19] during training1.

5 Effect of the Choice of Action Space
In the previous section, we saw that minimizing effort as the
sum of squared actions gives rise to a strong constant diagonal
in the Hessian, which in principle leads to better conditioned
optimization. Parameterizing actions as torques, and having
a squared torque cost term, is also common in continuous
control benchmark problems such as OpenAI Gym MuJoCo

1. https://blog.openai.com/openai-five/

Fig. 7: Effect of episode length T on inverted pendulum tra-
jectory optimization, when parameterizing actions as target
angles. Remarkably, as opposed to the torque parameteriza-
tion of Fig. 5, the landscape becomes much less ill-conditioned
with large T .

[39]. However, [4] showed that parameterizing actions as tar-
get joint angles can make policy optimization more effective.
The target poses that the policy outputs are converted to
joint torques, typically using a P- or PD-controller. Such pose-
based control is also common in earlier work on trajectory
optimization [2], [3], [40], [41], often claimed to give better re-
sults than optimizing raw torques; despite this, comprehensive
comparisons of control parameterizations are rare.

Fig. 7 shows that using actions as target angles ᾱ does
indeed scale better to long horizons. The strong constant
diagonal of the Hessian does not fade out as much, and the
condition number κ grows much slower with larger T . We com-
pute the torques using a PD-controller: τ = kp(ᾱ− α) + kdω,
using kp = 1 and kd = −1. The optimal ᾱ sequence is all
zeros, as the pendulum starts from an upright position with
zero velocity.

An explanation for the effectiveness of the target angle
parameterization is that actions represent (partial) target
states. This makes the optimization of state cost or reward
terms more separable and well-conditioned, and the Hessian
closer to a scaled identity matrix. The optimal action at
each timestep is more independent of preceding actions; a
reasonable strategy is to always drive the pendulum towards
the desired α = 0. This explains why the Hessian is closer to
diagonal. Furthermore, with the state-based control, perturb-
ing early actions leads to less cumulative state divergence;
hence, all actions contribute more equally to the cost. This
explains why the spread of the diagonal values is low.

It should be noted that when using target joint angles with
a character with an unactuated root, the parameterization
cannot fully remove the dependencies between the actions of
different timesteps. Deviations in initial actions can still lead
to divergence, e.g. falling out of balance, which needs to be
corrected by later actions.

We can also see the effect of action choice from the
dynamics of the pendulum. Using torques as actions directly,
the dynamic equation for the angle can be expressed as:

αt = αt−1 + δωt−1 + δ2(τt + 0.5 l g sin(αt−1)), (8)

where the dependency to past states and actions is primarily
due to the first two terms. When using target angles as

ACCEPTED TO IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 6

actions, we replace τt with ᾱt−1 − αt−1 − ωt−1 and arrive
at a slightly different dynamic equation:

αt = (1−δ2)αt−1 +(δ−δ2)ωt−1 +δ2(ᾱt−1 +0.5 l g sin(αt−1)).
(9)

Now, the previous angle αt−1 and velocity ωt−1 have
smaller multipliers (1 − δ2) and (δ − δ2). This discount is
applied recursively over time, such that the angle and ve-
locity at n time steps ago are discounted by (1 − δ2)n and
(δ − δh)n. Using the same reasoning of causality as described
in Section 4.1, the exponential reduction in dependency on
previous states makes the Hessian of the cost function better
conditioned (Equation 7).

5.1 Pose splines
In many papers, long action sequences are parameterized as
”pose splines”, i.e. parameteric curves that define the target
pose of the controlled character over time, which are then
implemented using P- or PD-controllers [2], [15], [40]. The
discussion above provides a strong motivation for this, as such
parameterization achieves two things at once:

• Better separability and conditioning of the problem
due to the choice of action space.

• Improved avoidance of ill-conditioning with long ac-
tion sequences; in effect, the control points of a spline
can be thought of as a shorter sequence of higher-
level actions, each of which defines the instantaneous
actions for multiple timesteps.

Naturally, using splines has aesthetic motivations as well,
as they result in smoother motion with less frame-by-frame
noise.

Experimental results comparing spline-based optimization
with direct optimization of action sequences are provided in
Section 9.

6 Effect of using rewards instead of costs
Fig. 8 shows the inverted pendulum trajectory optimization
landscape using the reward function of Equation 4. Compar-
ing this to Fig. 5, one notices the following:

• With large T , the landscape structures are essentially
the same for both the cost function (Equation 3) and
the reward function (Equation 4), with an elongated
optimum and some local optima. The Hessian and
κ(T) at the optimal point are the same in both cases.
Thus, in principle, the reward function should be as
easy or hard to optimize as the cost function.

• On the other hand, at T = 10, the reward landscape
shows some additional non-convexity. This suggests
that in practice, the reward function may cause a
performance hit in optimization. Section 8 provides
evidence of this.

The main difference of the functions is that the sum of ex-
ponentiated costs is more tolerant to temporary deviations. A
sum-of-squares cost function heavily penalizes the cost being
large in even a single timestep, whereas the exponentiation
clamps the rewards in the range [0, 1]. In principle, an agent
could exploit the reward formulation by only focusing on some
reward terms. We interpret the ridges in Fig. 8 (T = 10) as
manifestations of this.

Fig. 8: Effect of trajectory length T on inverted pendulum tra-
jectory optimization using the reward formulation of Equation
4. The landscape behaves similarly to the cost minimization
in Fig. 5, except for the additional non-convexity at T = 10,
and overall sharper ridges.

In Section 8, we shall see that the reward function can
indeed result in worse optimization performance. However,
the next section discusses how using rewards instead of costs
can be more desirable when combined with the technique of
early termination.

7 Effect of early termination
Standard continuous control policy optimization benchmark
tasks [39], [42] utilize early termination of simulated episodes;
this means that if the agent deviates from some desired region
of the state space, e.g. a bipedal agent loses balance, the state
is considered a terminal one; the agent stops receiving any
rewards, and is reset to an initial state. Typically, termination
greatly speeds up policy optimization, e.g. [20]. As far as we
know, early termination has not been utilized in trajectory
optimization, but there are no obstacles for this.

Figures 9 and 10 show the effect of terminating trajectories
and episodes if |α| > 2.0, i.e. if the pendulum deviates
significantly from the desired upright pose. From the figures,
one can gain two key insights:

• Termination can greatly improve landscape convexity
by removing false optima. The pendulum cannot re-
ceive rewards from the local optimum of hanging down-
wards if termination prevents it from experiencing the
corresponding states.

• If the rewards are not strictly non-negative, new false
optima are introduced to the landscape. Naturally, if
the agent is experiencing costs or negative rewards, a
good strategy may be to terminate episodes as early
as possible, which is what happens at the θ = 0.5
local optimum in Fig. 10 (second subfigure from left,
when termination is used with cost minimization). The
problem can be mitigated by adding a termination
penalty to the cost of the terminal simulation step,
or a so-called alive bonus for all non-terminal states.
This yields a clearly more convex landscape.

Although an alive bonus is used in many papers and bench-
mark tasks [24], [39], [43], we feel the danger of combining
termination and negative rewards is not emphasized enough
in previous literature. Our visualization highlights that the
early termination can be a double-edged sword—it can be

ACCEPTED TO IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 7

Fig. 9: Effect of early termination on inverted pendulum trajectory optimization landscape. Termination without an alive
bonus increases multimodality of cost minimization, but makes reward maximization more convex.

Fig. 10: Effect of termination on policy optimization. In cost minimization, termination creates a local minimum at θ = 0.5,
which drives the pendulum to termination to avoid accumulating more costs. Termination removes local optima when combined
with an alive bonus or using rewards instead of costs.

harmful when the reward function consists of a mixture of
positive and negative terms that are not well-balanced. Our
visualization technique suggests that a good default strategy
may be to use a combination of termination and rewards
instead of costs. This way, one does not need to fine-tune the
termination penalty or alive bonus. Furthermore, converting
costs to rewards through exponentiation limits the results to
the range [0, 1], which is beneficial for most RL algorithms
that feature some form of value function learning with neural
networks. On the other hand, as shown in the next section, it
can result in slower convergence.

8 Do visualizations predict optimization perfor-
mance?
Fig. 11 tests how well the visualizations of the previous
sections predict actual optimization performance in the in-
verted pendulum trajectory optimization. The figure com-
pares quadratic costs to exponentiated rewards, and actions
parameterized as torques to target angles implemented using
a P-controller as in Section 5. To keep the figure readable, we
did not include curves with and without termination; this does
not make a big difference in the simple pendulum problem,
and termination is further investigated in the next section.
All the optimizations were performed using CMA-ES [44],
[45], which is common in animation research, and is known
to perform well with multimodal optimization tasks. A pop-
ulation size of 100 was used. To allow comparing both costs
and rewards, progress is graphed as the Euclidian distance
from the true optimum.

The results indicate that parameterizing actions as target
angles is considerably more efficient, as predicted by the
visualizations of Section 5. The exponential transform of costs

to rewards degrades performance, in line with the observations
of Section 6.

Fig. 11: Inverted pendulum trajectory optimization results,
plotted as the mean of 10 runs of CMA-ES. We compare
both cost minimization and reward maximization with actions
parameterized both as torques and target angles. As predicted
by our visualizations, the angle parameterization scales better
for large T , and the reward maximization is less efficient.

9 Generalizability to more complex agents
This section tests the generalizability and usefulness of the
visualization approach with a more complex agent, using
both policy optimization and trajectory optimization. We use
the 3D humanoid locomotion test from the Unity Machine
Learning Agents framework [46] shown in Fig. 12. The test is
designed for policy optimization; we modify it to also support
trajectory optimization by starting each episode/trajectory
from a fixed initial state, without randomization. We have
also modified the code and environment to be fully determin-

ACCEPTED TO IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 8

Fig. 12: 3D humanoid locomotion test from Unity Machine
Learning Agents framework.

istic, i.e., non-reproducible simulation is not corrupting the
landscape visualizations.

The action space is 39-dimensional, with actions defined
as both joint target angles, as well as maximum torques that
the joint motors are allowed to use for reaching their targets.
We optimize with planning horizons of 1, 3, 5, and 10 seconds,
resulting in 585, 1755, 2925, and 5850 optimized variables.
The actions define target angles and maximum torques for
the 16 joints of the humanoid. As the global optima are
not known, we visualize the landscapes around the optima
found in each test, following Li et al. [5]. We use a simulation
timestep of 1/75 seconds, with control actions repeated for 5
timesteps, i.e., taking 15 actions per second.

As detailed below in Sections 9.1-9.4, the results support
our earlier findings:

• 2D visualization slices reveal that trajectory optimiza-
tion is highly multimodal, with optima that become
narrower as the length of the planning horizon in-
creases.

• As hypothesized in Section 5.1, utilizing a spline pa-
rameterization results in a more well-behaving land-
scape.

• Termination based on agent state reduces local optima
in both trajectory and policy optimization.

• Policy optimization with neural network policies scales
better for long planning horizons, with the landscape
remaining essentially unchanged as the planning hori-
zon grows. Notably, policy optimization was more ef-
ficient than optimizing a single long trajectory, even
though our policy network has over 2M parameters to
optimize, i.e., orders of magnitude more.

9.1 Trajectory Optimization
For trajectory optimization we use the recent highly scal-
able CMA-ES variant called LM-MA-ES [47]—as the physics
simulator is not differentiable, gradient-based methods are
not applicable. We visualize the landscapes around the op-
timum found by LM-MA-ES. Similar to CMA-ES, LM-MA-
ES is a quasi-parameter-free method, typically only requiring
adjustments to the iteration sampling budget (population
size): this is increased from the recommended value for more
difficult problems. The recommended budget—a logarithmic
function of the number of variables—did not produce robust
results. Instead, we used a 10 times larger budget in all the
optimization runs.

We first tested trajectory optimization on action sequences
of up to 5 seconds, i.e., up to 2925 optimized variables.
This turned out to be a difficult task, resulting in somewhat
unstable gaits even after hours of CPU time.

Fig. 13: Trajectory optimization landscapes of humanoid loco-
motion with different planning horizons. Termination removes
local optima, producing a smoother landscape.

Here, 2D slice visualizations provided useful diagnostic
information, revealing the difficult multimodality of the op-
timization problem. Fig. 13 shows the landscapes around
the found local optimum for each tested planning horizon.
Although there is a clear optimum in the center, the rest of
the landscape is noisy and ill-conditioned. This is exacerbated
with the longer planning horizons.

Fig. 13 also shows that termination helps remove local
optima, and produces a smoother landscape. In the humanoid
locomotion test, termination takes place when a body part
other than the feet touches the ground.

9.2 Trajectory Optimization with Splines
In an effort to better handle long planning horizons, we tested
trajectory optimization with spline-based parameterization.
Instead of setting target angles and maximum torques for
joints once every 5 timesteps, we interpolated the actions
for each timestep using Catmull-Rom splines. The control
points of the splines were optimized using LM-MA-ES, akin
to the method presented by Hämäläinen et al. [2] for online
optimization. Fig. 14 shows how this slightly improves the
landscapes, with reduced noise and gentler slopes towards the
optimum.

To provide a more direct comparison to optimizing action
sequences without splines, Fig. 15 shows the non-spline tra-
jectory optimization landscape around the action sequences
resulting from the optimized splines of Fig. 14. Without the
spline parametrization, the 3s and 5s landscapes degenerate,
becoming noisier and more ill-conditioned.

Although trajectory optimization with splines results in
cleaner landscapes and qualitatively better and smoother
movement than non-spline trajectory optimization, finding
good long trajectories required hours of CPU time. This
motivated us to also test policy optimization, as explained
below.

9.3 Policy Optimization
We trained a neural network policy for solving the humanoid
locomotion task using Proximal Policy Optimization (PPO)
[19] and different planning horizons. PPO utilizes episodic

ACCEPTED TO IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 9

Fig. 14: Spline-parameterized trajectory optimization land-
scapes of humanoid locomotion. The landscapes exhibit less
noise than the trajectory optimization landscapes of Fig. 13

Fig. 15: Non-spline trajectory optimization landscapes around
action sequences resulting from evaluating the optimal splines
of Fig. 14. The landscapes become noisier and introduce more
elongated ridges and valleys.

experience collection, i.e., the agent is started from some
initial state, and explores states and actions until a terminal
state, or maximum episode length, is reached. We used the
planning horizon as the episode length.

The resulting landscapes, shown in Fig. 16, show a signifi-
cant improvement in convexity, sphericity, and unimodality.
The landscape also remains essentially unchanged with a
longer planning horizon.

9.4 Scalability of Trajectory and Policy Optimization
The policy optimization visualizations suggest that as tra-
jectory lengths increase, policy optimization should be more
efficient than trajectory optimization. Fig. 17 provides evi-
dence supporting this hypothesis. It compares optimization
progress with different planning horizons and the three op-
timization strategies: LM-MA-ES, LM-MA-ES with splines,
and PPO. With a trajectory length of 5 seconds, PPO already
shows improved performance over the other methods, and the
advantage is dramatically larger with 10 second trajectories.
However, this comes with a caveat: with a neural network

Fig. 16: Policy optimization landscapes of humanoid locomo-
tion. As opposed to trajectory optimization, the task scales
well with increasing planning horizon. Termination removes
local optima.

Fig. 17: Best trajectory or episode reward as a function of
timesteps simulated during optimization, with different plan-
ning horizons and optimization approaches. The graphs show
the mean and standard deviation of 5 independent optimiza-
tion runs. Policy optimization with PPO scales significantly
better for long planning horizons.

policy, there is more overhead per simulation step, as each
optimization iteration requires training the policy and value
networks using multiple minibatch gradient updates. Opti-
mizing for 5 million timesteps with PPO was approximately
4 times slower than with LM-MA-ES in our tests, when
measured in wall-clock time, using a single 4-core computer.

Interestingly, although the spline landscapes look slightly
better in Fig. 14, spline trajectory optimization results in
slightly lower rewards with a given simulation budget. A
plausible explanation for this is that the Unity locomotion
test has a very simple reward function that trajectory opti-
mization can exploit with unnatural and jerky movements,
as shown on the supplemental video2 at 03:01. From a pure
reward maximization perspective, a spline parameterization

2. https://youtu.be/5v lsGCahSI

https://youtu.be/5v_lsGCahSI

ACCEPTED TO IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 10

Fig. 18: Replicating the result of Fig. 17 in 4 OpenAI
Gym MuJoCo tasks (Walker2d-v2, Hopper-v2, HalfCheetah-
v2, Humanoid-v2), using 3 optimization methods (CMA-ES,
PPO, and SAC), planning horizons 1s, 5s, 10s, and 20s, and
10 independent optimization runs per method and task. Each
learning curve aggregates the results from all 4 tasks, using
normalized episode/trajectory rewards.

that enforces a degree of smoothness may not be ideal and
one may expect more gains if the reward function favors
smooth movement. In general, best results are achieved when
the action parameterization induces a useful prior for the
optimization task.

Fig. 18 replicates the result of Fig. 17 with other agents
and optimization methods, providing additional evidence that
policy optimization scales better to long planning horizons.
To generate the figure, we conducted trajectory and policy
optimizations using 4 common OpenAI Gym [39] MuJoCo
agents and locomotion tasks (or “environments” in the Gym
lingo): 2D monopedal hopper (Hopper-v2), 2D bipedal walker
(Walker2d-v2), 2D half quadruped (HalfCheetah-v2), and
3D humanoid (Humanoid-v2). In policy optimization, we
tested both PPO and Soft Actor-Critic (SAC) [48], a more
recent method that is growing in popularity. We used the
Stable Baselines [49] PPO and SAC implementations with
their default settings. In trajectory optimization, we used
CMA-ES instead of LM-MA-ES, as it was easily available
for the Python-based Gym framework. For each task and
optimization method, we performed 10 independent training
runs with different random seeds. To allow aggregating the
convergence curves of all tasks in a single plot, we normalized
the episode/trajectory rewards of each task over all opti-
mization runs and methods to the range [0,1]. We used the
default MuJoCo reward functions and episode termination,
but removed the initial state randomization to allow direct
comparison of trajectory and policy optimization, similar to
the Unity humanoid tests above. We used a control frequency
of 20Hz for all the tasks.

10 Properties and limitations of random 2D slice
visualizations
So far, we have provided many examples of random 2D slice vi-
sualizations of high-dimensional objective functions. We have

also demonstrated that such visualizations have predictive
power regarding the difficulty of optimization. However, as
information is obviously lost in only evaluating the objective
along a 2D slice, this section provides further analysis of the
limitations of the approach. To allow investigating how the
mathematical properties of objective functions manifest in the
visualized slices, this section focuses on simple test functions
with closed-form expressions. Such simple expressions are
not available for real-life movement optimization objectives
that depend on complex simulated dynamics, typically imple-
mented using a black-box physics simulator.

10.1 2D Visualizations are Optimistic About Ill-
conditioning

Consider the following cost function:

f(x) =
k∑
i=1

x2
i + ε

d∑
i=k+1

x2
i (10)

= ||x:k||2 + ε||xk:||2, (11)

where ε is a small constant, i.e., f(x) mostly depends only on
the first k optimized variables. x:k denotes the projection of
x into the subspace of the first k dimensions. xk: denotes the
projection into the remaining dimensions. The Hessian of f(x)
is diagonal, containing the curvatures along the unit vectors as
the diagonal elements. Curvature along the first k unit vectors
equals 2 and curvature along the rest of the dimensions is 2ε.
Thus, if k 6= 0 and k 6= d, the condition number κ = 1/ε.

Geometrically, the isosurfaces of f(x) are n-spheres elon-
gated by a factor of 1/

√
ε along the last d−k dimensions. The

visualized 2D isocontours correspond to the intersections of
the isosurfaces with the visualization plane. This is illustrated
in Fig. 19 and on the supplemental video for d = 3.

Fig. 19: The isosurfaces, random visualization planes, and 2D
visualization isocontours for Equation 11 in the case of d = 3.

Investigating Fig. 19 reveals a basic property of the 2D
visualizations: with the convex quadratic objective of Equa-
tion 11, the elongation of the 2D isocontours is less than or
equal to the true elongation of the isosurfaces. In other words,
κ2D ≤ κ.

This property follows from the isocontours corresponding
to planar intersections of the isosurfaces. First, as illustrated
in the middle of Fig. 19, it is possible to rotate the visualiza-
tion plane such that the isocontours display less elongation.
Second, the isocontours cannot display more than the real
elongation; the visualized elongation is at maximum when one
plane basis vector aligns with a direction of high elongation
(vertical axis in the middle of Fig. 19), and the other basis
vector aligns with a direction of low elongation, in which case
the isocontours display the correct κ2D = κ = 1/ε.

ACCEPTED TO IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 11

Fig. 20: Contour plots of random slices of f(x) in Equation
12 with different k and d. Visualized ill-conditioning is more
accurate with small k.

10.2 2D Visualizations Show Ill-conditioning More Accu-
rately With Low Intrinsic Dimensionality
It turns out that visualization accuracy depends on the in-
trinsic dimensionality k. To analyze this, let us consider the
extreme case of ε = 0, i.e.,

f(x) = f(x:k) = ||x:k||2. (12)

Fig. 20 shows the contour plots of random 2D slices with
different k and d. With low k, the visualized ill-conditioning
is more accurate, independent of full problem dimensionality
d. Deriving a closed-form expression of κ2D as a function of d
and k is beyond the scope of this paper. However, as shown
below, k = 1 and k = d result in the correct κ2D = ∞ and
κ2D = 1, respectively.

Let u,v ∈ Rd denote the slice basis vectors, with orthogo-
nality uTv = 0. On the visualization plane, x = p1u + p2v =
[u v]p, where p denotes the 2D position on the plane. Sim-
ilarly, x:k = [u:k v:k]p, and the objective can be expressed
as:

f(x:k) = ||[u:kv:k]p||2 (13)

= pT
[
uT:ku:k uT:kv:k
vT:ku:k vT:kv:k

]
p (14)

= pTAp. (15)

Because A is symmetric, the Hessian of the quadratic form
w.r.t. p is:

H(f(x:k)) = A + AT = 2A. (16)

The condition number κ2D = κ(H(f(x:k)) = κ(A), as
the condition number is invariant to scaling the Hessian by a
constant.

With k=1, the vectors u:k = [u1],v:k = [v1], and the
determinant becomes zero:

det(A) = uT:ku:kvT:kv:k − uT:kv:kvT:ku:k (17)
= u1u1v1v1 − u1v1v1u1 = 0. (18)

This indicates at least one zero eigenvalue and, since A is
not a null matrix, some eigenvalue must also be nonzero, i.e.,
κ(A) = max(eig(A))/min(eig(A)) =∞.

Fig. 21: Contour plots of random slices of multimodal test
functions with different d. Large d can make multimodality
less apparent, although it can be compensated by using unnor-
malized visualization basis vectors (bottom row). On the first
row, the visualization plane is centered at the origin, between
the optima. On the second row, it is centered at the optimum.

When k grows from 1 to d, the vectors u:k,v:k gradually
become closer to u,v, i.e., unit-length and orthogonal. Thus,
the off-diagonal elements become zero and A becomes the
identity matrix, with κ(A) = 1.

Although the quadratic f(x) was chosen to be separable
for easier mathematical analysis, the result generalizes to the
arbitrarily rotated case.

10.3 2D Visualizations Can Be Optimistic About Multi-
modality
Fig. 21 shows contour plots of random visualization slices
with different dimensionality d, using two multimodal test
functions. Rastrigin’s function is a standard multimodal opti-
mization test function with the global minimum at the origin
and infinitely many local minima:

fRastrigin(x) = 10d+
d∑
i=1

[x2
i − 10 cos(2πxi)] (19)

Additionally, we use the following bimodal function:

fBimodal(x) = e−
1
2 ||x−1||2 + 0.8e− 1

2 ||x+1||2 , (20)

where 1 denotes a vector of ones. We visualize this function
both around the origin and around the dominant mode at 1.

Fig. 21 reveals two key insights:

• Multimodality becomes less apparent with increasing
dimensionality d. The exception is the first row, where
visualized multimodality only depends on plane rota-
tion independent of d. This is because the visualization
plane intersects the origin; in this case, the optima
are always equally far from the plane and thus have
similar influence on the visualized fBimodal(x). How-
ever, when the plane intersects the optimum at 1, the
other optimum tends to lie increasingly far from the

ACCEPTED TO IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 12

plane with increasing d, having a negligible effect on
the visualization.

• The visualization of Rastrigin’s function illustrates
how landscape features may scale differently with di-
mensionality. Rastrigin’s central mode becomes more
dominant with large d. At the bottom of Fig. 21, we
demonstrate how this can be compensated by omitting
the unit-length normalization of the slice basis vectors,
and instead normalizing them to the mean of their
sampled lengths. Each basis vector element is sampled
uniformly in the range [−1, 1].

10.4 If 2D Visualizations Show Problems, There Really
Are Problems
Visualized ill-conditioning is real The results above in-
dicate that 2D visualizations have limited sensitivity as a di-
agnostic tool for detecting ill-conditioning and multimodality.
Fortunately, κ2D ≤ κ also means that the visualizations have
high specificity, i.e. if the 2D isocontours are elongated, the
problem is indeed ill-conditioned.

Visualized non-convexity indicates real non-
convexity For a convex unimodal objective, the 2D visual-
ization is likewise convex and unimodal. This follows from
the intersection of two convex sets being convex. Each 2D
isocontour encloses a set that is the intersection of two convex
subsets of Rd, i.e., the visualization plane and the volume
enclosed by the corresponding isosurface. However, other non-
convexity can be confused with multimodality. Consider a
curved, banana-shaped 3D isosurface. It is possible to in-
tersect this with a plane such that the resulting isocontours
comprise two ellipses.

10.5 Summary of Limitations
In summary, random 2D visualization slices of high-
dimensional objectives tend to be optimistic about both ill-
conditioning and multimodality. However, this limitation is
mitigated by the visualizations not showing illusory non-
convexity or ill-conditioning. In other words, as a diagnostic
tool for detecting problems, random 2D visualizations have low
sensitivity compensated by high specificity.

Mitigating the low sensitivity is a potential topic for future
work. For instance, if computing eigenvectors and eigenvalues
of the Hessian or its low-rank approximation (e.g., [50]) is not
too expensive, one could visualize using a 2D basis formed
by the eigenvectors with lowest and highest eigenvalues. This
way, the visualization would be in line with the condition
number and show ill-conditioning with higher sensitivity. In
this paper, however, we have focused on random visualization
slices due to their simplicity and prior success in visualizing
neural network loss landscapes [5]. Furthermore, at least for
large policy networks with millions of parameters, computing
eigenvector approximations is quite expensive.

11 Conclusion
We have presented several novel visualizations of continuous
control trajectory and policy optimization landscapes, demon-
strating the usefulness of the random 2D slice visualization
approach of Li et al. [5] in this domain. We have also presented
a mathematical analysis of the limitations of the random 2D
slice visualizations.

Our visualizations provide new intuitions of movement op-
timization problems and explain why common best practices
are powerful. The visualization approach can be used as a
diagnostic tool for understanding why optimization does not
converge, or progresses slowly. Even when a global optimum
is not known, as in Section 9, it can be useful to plot the land-
scape around a found optimum: If the optimized movement is
not satisfactory or one optimization approach performs worse
than another, visualization can provide insights on why this is
the case, e.g., due to ill-conditioning or multimodality.

We acknowledge that some of our results—e.g. the effi-
ciency of episode termination—are already known to experi-
enced readers. We do, however, provide novel visual evidence
of the underlying reasons; for example, we show how termina-
tion based on agent state removes local optima in the space
of optimized actions or policy parameters. This contributes
to the understanding of movement optimization, and, as rep-
resentative images are known to increase understanding and
recall [51], it should also have pedagogical value in educating
new researchers and practitioners.

To conclude, the key insights from our work can be sum-
marized as:

• Random 2D slice visualizations are useful in analyzing
high-dimensional movement optimization landscapes,
and can predict movement optimization efficiency.

• The curse of dimensionality hits trajectory optimiza-
tion hard, as it can become increasingly ill-conditioned
with longer planning horizons. Policy optimization
scales better in this regard. Perhaps counterintuitively,
optimizing a neural network policy can be more effi-
cient than optimizing a single action trajectory with
orders of magnitude less parameters.

• Parameterizing actions as (partial) target states—e.g.
target angles that the character’s joints are driven
towards—is strongly motivated, as opposed to opti-
mizing raw control torques. It can make trajectory
optimization more well-conditioned and separable.

• Combining the two points above, one can explain the
power of the common practice of optimizing splines
that define time-varying target poses; pose param-
eterization leads to more well-conditioned optimiza-
tion, and the spline control points define a shorter
sequence of macro actions, which further counteracts
ill-conditioning caused by sequence length. However,
the smoothness constraints that splines impose on
movements may not be ideal for all reward functions.

• Using early termination appears strongly motivated,
as it typically results in a more convex landscape
in both trajectory and policy optimization. However,
combining termination with costs or negative rewards
is dangerous, which our visualizations clearly illus-
trate.

In our future work, we aim to investigate the parame-
terization of actions as target states for complex controlled
agents with unactuated roots. We hypothesize that this can
be implemented for both trajectory and policy optimization,
using a general-purpose neural network controller trained for
reaching the target states.

ACCEPTED TO IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 13

Acknowledgements
This research has been supported by Academy of Finland
grant 299358.

References
[1] N. Hansen and S. Kern, “Evaluating the cma evolution strategy

on multimodal test functions,” in International Conference on
Parallel Problem Solving from Nature. Springer, 2004, pp. 282–
291.

[2] P. Hämäläinen, S. Eriksson, E. Tanskanen, V. Kyrki, and
J. Lehtinen, “Online Motion Synthesis Using Sequential Monte
Carlo,” ACM Transactions on Graphics, vol. 33, no. 4, p. 51,
2014.

[3] P. Hämäläinen, J. Rajamäki, and C. K. Liu, “Online Control of
Simulated Humanoids Using Particle Belief Propagation,” ACM
Transactions on Graphics, vol. 34, no. 4, p. 81, 2015.

[4] X. B. Peng and M. van de Panne, “Learning locomotion skills
using deeprl: does the choice of action space matter?” in Pro-
ceedings of the ACM SIGGRAPH/Eurographics Symposium on
Computer Animation. ACM, 2017, p. 12.

[5] H. Li, Z. Xu, G. Taylor, C. Studer, and T. Goldstein, “Visual-
izing the loss landscape of neural nets,” in Advances in Neural
Information Processing Systems, 2018, pp. 6389–6399.

[6] A. Witkin and M. Kass, “Spacetime constraints,” in Proc.
SIGGRAPH ’88. New York, NY, USA: ACM, 1988, pp. 159–
168. [Online]. Available: http://doi.acm.org/10.1145/54852.
378507

[7] M. F. Cohen, “Interactive spacetime control for animation,”
in Proc. SIGGRAPH ’92. New York, NY, USA: ACM, 1992,
p. 293–302. [Online]. Available: http://doi.acm.org/10.1145/
133994.134083

[8] A. C. Fang and N. S. Pollard, “Efficient synthesis of physically
valid human motion,” ACM Trans. Graph., vol. 22, no. 3, pp.
417–426, 2003. [Online]. Available: http://doi.acm.org/10.1145/
1201775.882286

[9] A. Safonova, J. K. Hodgins, and N. S. Pollard, “Synthesizing
physically realistic human motion in low-dimensional, behavior-
specific spaces,” ACM Trans. Graph., vol. 23, no. 3, pp. 514–521,
2004. [Online]. Available: http://doi.acm.org/10.1145/1186562.
1015754

[10] K. Wampler and Z. Popović, “Optimal gait and form for animal
locomotion,” in ACM Transactions on Graphics (TOG), vol. 28,
no. 3. ACM, 2009, p. 60.

[11] I. Mordatch, E. Todorov, and Z. Popović, “Discovery of complex
behaviors through contact-invariant optimization,” ACM Trans.
Graph., vol. 31, no. 4, p. 43:1–43:8, Jul. 2012. [Online]. Available:
http://doi.acm.org/10.1145/2185520.2185539

[12] L. Liu, K. Yin, M. van de Panne, T. Shao,
and W. Xu, “Sampling-Based Contact-Rich Motion
Control,” ACM Transactions on Graphics, vol. 29,
no. 4, pp. 128:1–128:10, Jul. 2010. [Online]. Available:
http://doi.acm.org/10.1145/1778765.1778865

[13] J. T. Ngo and J. Marks, “Spacetime constraints revisited,” in
Proc. SIGGRAPH ’93. New York, NY, USA: ACM, 1993,
p. 343–350. [Online]. Available: http://doi.acm.org/10.1145/
166117.166160

[14] M. Al Borno, M. de Lasa, and A. Hertzmann, “Trajectory
optimization for full-body movements with complex contacts,”
IEEE Transactions on Visualization and Computer Graphics,
vol. 19, no. 8, pp. 1405–1414, 2013.

[15] K. Naderi, J. Rajamäki, and P. Hämäläinen, “Discovering and
synthesizing humanoid climbing movements,” ACM Transac-
tions on Graphics (TOG), vol. 36, no. 4, p. 43, 2017.

[16] Y. Tassa, T. Erez, and E. Todorov, “Synthesis and stabilization
of complex behaviors through online trajectory optimization,”
in Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ
International Conference on. IEEE, 2012, pp. 4906–4913.

[17] T. Geijtenbeek, M. van de Panne, and A. F. van der Stappen,
“Flexible Muscle-Based Locomotion for Bipedal Creatures,”
ACM Transactions on Graphics, vol. 32, no. 6, 2013.

[18] F. P. Such, V. Madhavan, E. Conti, J. Lehman, K. O. Stanley,
and J. Clune, “Deep neuroevolution: genetic algorithms are a
competitive alternative for training deep neural networks for
reinforcement learning,” arXiv preprint arXiv:1712.06567, 2017.

[19] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” arXiv preprint
arXiv:1707.06347, 2017.

[20] X. B. Peng, P. Abbeel, S. Levine, and M. van de Panne, “Deep-
mimic: Example-guided deep reinforcement learning of physics-
based character skills,” arXiv preprint arXiv:1804.02717, 2018.

[21] S. Lee, M. Park, K. Lee, and J. Lee, “Scalable muscle-actuated
human simulation and control,” ACM Transactions on Graphics
(TOG), vol. 38, no. 4, pp. 1–13, 2019.

[22] K. Bergamin, S. Clavet, D. Holden, and J. R. Forbes, “Drecon:
data-driven responsive control of physics-based characters,”
ACM Transactions on Graphics (TOG), vol. 38, no. 6, pp. 1–
11, 2019.

[23] S. Park, H. Ryu, S. Lee, S. Lee, and J. Lee, “Learning predict-
and-simulate policies from unorganized human motion data,”
ACM Transactions on Graphics (TOG), vol. 38, no. 6, pp. 1–
11, 2019.

[24] W. Yu, G. Turk, and C. K. Liu, “Learning symmetric and low-
energy locomotion,” ACM Transactions on Graphics (TOG),
vol. 37, no. 4, p. 144, 2018.

[25] S. Levine and V. Koltun, “Guided policy search,” in Interna-
tional Conference on Machine Learning, 2013, pp. 1–9.

[26] I. Mordatch and E. Todorov, “Combining the benefits of func-
tion approximation and trajectory optimization.” in Robotics:
Science and Systems, 2014, pp. 5–32.

[27] J. J. Rajamäki and P. Hämäläinen, “Continuous control monte
carlo tree search informed by multiple experts,” IEEE transac-
tions on visualization and computer graphics, 2018.

[28] C. V. Jones, “Visualization and optimization,” ORSA Journal
on Computing, vol. 6, no. 3, pp. 221–257, 1994.

[29] D. Meignan, S. Knust, J.-M. Frayret, G. Pesant, and N. Gaud,
“A review and taxonomy of interactive optimization methods in
operations research,” ACM Transactions on Interactive Intelli-
gent Systems (TiiS), vol. 5, no. 3, p. 17, 2015.

[30] I. J. Goodfellow, O. Vinyals, and A. M. Saxe, “Qualitatively
characterizing neural network optimization problems,” arXiv
preprint arXiv:1412.6544, 2014.

[31] N. S. Keskar, D. Mudigere, J. Nocedal, M. Smelyanskiy,
and P. T. P. Tang, “On large-batch training for deep learn-
ing: Generalization gap and sharp minima,” arXiv preprint
arXiv:1609.04836, 2016.

[32] L. Dinh, R. Pascanu, S. Bengio, and Y. Bengio, “Sharp minima
can generalize for deep nets,” arXiv preprint arXiv:1703.04933,
2017.

[33] L. N. Smith and N. Topin, “Exploring loss function topology
with cyclical learning rates,” arXiv preprint arXiv:1702.04283,
2017.

[34] P. Hämäläinen, X. Ma, J. Takatalo, and J. Togelius, “Predictive
physics simulation in game mechanics,” in Proceedings of the
Annual Symposium on Computer-Human Interaction in Play.
ACM, 2017, pp. 497–505.

[35] K. W. Sok, M. Kim, and J. Lee, “Simulating biped behaviors
from human motion data,” in ACM SIGGRAPH 2007 Papers,
ser. SIGGRAPH ’07. New York, NY, USA: Association for
Computing Machinery, 2007, p. 107–es. [Online]. Available:
https://doi.org/10.1145/1275808.1276511

[36] D. Maclaurin, D. Duvenaud, and R. P. Adams, “Autograd: Ef-
fortless gradients in numpy,” in ICML 2015 AutoML Workshop,
2015.

[37] E. Todorov, “General duality between optimal control and esti-
mation,” in Decision and Control, 2008. CDC 2008. 47th IEEE
Conference on. IEEE, 2008, pp. 4286–4292.

[38] E. Todorov, “Efficient computation of optimal actions,” Proceed-
ings of the national academy of sciences, vol. 106, no. 28, 2009.

[39] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schul-
man, J. Tang, and W. Zaremba, “Openai gym,” arXiv preprint
arXiv:1606.01540, 2016.

[40] M. Al Borno, M. De Lasa, and A. Hertzmann, “Trajectory opti-
mization for full-body movements with complex contacts,” IEEE
transactions on visualization and computer graphics, vol. 19,
no. 8, pp. 1405–1414, 2013.

[41] J. Rajamäki and P. Hämäläinen, “Augmenting sampling
based controllers with machine learning,” in Proceedings
of the ACM SIGGRAPH / Eurographics Symposium on
Computer Animation, ser. SCA ’17. New York, NY,
USA: ACM, 2017, pp. 11:1–11:9. [Online]. Available: http:
//doi.acm.org/10.1145/3099564.3099579

http://doi.acm.org/10.1145/54852.378507
http://doi.acm.org/10.1145/54852.378507
http://doi.acm.org/10.1145/133994.134083
http://doi.acm.org/10.1145/133994.134083
http://doi.acm.org/10.1145/1201775.882286
http://doi.acm.org/10.1145/1201775.882286
http://doi.acm.org/10.1145/1186562.1015754
http://doi.acm.org/10.1145/1186562.1015754
http://doi.acm.org/10.1145/2185520.2185539
http://doi.acm.org/10.1145/1778765.1778865
http://doi.acm.org/10.1145/166117.166160
http://doi.acm.org/10.1145/166117.166160
https://doi.org/10.1145/1275808.1276511
http://doi.acm.org/10.1145/3099564.3099579
http://doi.acm.org/10.1145/3099564.3099579

ACCEPTED TO IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 14

[42] Y. Tassa, Y. Doron, A. Muldal, T. Erez, Y. Li, D. d. L. Casas,
D. Budden, A. Abdolmaleki, J. Merel, A. Lefrancq et al., “Deep-
mind control suite,” arXiv preprint arXiv:1801.00690, 2018.

[43] A. Rajeswaran, S. Ghotra, B. Ravindran, and S. Levine, “Epopt:
Learning robust neural network policies using model ensembles,”
arXiv preprint arXiv:1610.01283, 2016.

[44] N. Hansen and A. Ostermeier, “Completely derandomized self-
adaptation in evolution strategies,” Evolutionary computation,
vol. 9, no. 2, pp. 159–195, 2001.

[45] N. Hansen, “The cma evolution strategy: A tutorial,” arXiv
preprint arXiv:1604.00772, 2016.

[46] A. Juliani, V.-P. Berges, E. Vckay, Y. Gao, H. Henry, M. Mattar,
and D. Lange, “Unity: A general platform for intelligent agents,”
arXiv preprint arXiv:1809.02627, 2018.

[47] I. Loshchilov, T. Glasmachers, and H.-G. Beyer, “Large scale
black-box optimization by limited-memory matrix adaptation,”
IEEE Transactions on Evolutionary Computation, 2018.

[48] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-
critic: Off-policy maximum entropy deep reinforcement learning
with a stochastic actor,” in International Conference on Ma-
chine Learning, 2018, pp. 1861–1870.

[49] A. Hill, A. Raffin, M. Ernestus, A. Gleave, A. Kanervisto,
R. Traore, P. Dhariwal, C. Hesse, O. Klimov, A. Nichol, M. Plap-
pert, A. Radford, J. Schulman, S. Sidor, and Y. Wu, “Stable
baselines,” https://github.com/hill-a/stable-baselines, 2018.

[50] K.-C. Li, “On principal hessian directions for data visualization
and dimension reduction: Another application of stein’s lemma,”
Journal of the American Statistical Association, vol. 87, no. 420,
pp. 1025–1039, 1992.

[51] R. N. Carney and J. R. Levin, “Pictorial illustrations still
improve students’ learning from text,” Educational psychology
review, vol. 14, no. 1, pp. 5–26, 2002.

Perttu Hämäläinen received an M.Sc.(Tech) de-
gree from Helsinki University of Technology in
2001, an M.A. degree from the University of Art
and Design Helsinki in 2002, and a doctoral de-
gree in computer science from Helsinki University
of Technology in 2007. Presently, Hämäläinen
is an associate professor at Aalto University,
publishing on human-computer interaction, com-
puter animation, machine learning, and game
research. Hämäläinen is passionate about human
movement in its many forms, ranging from anal-

ysis and simulation to first-hand practice of movement arts such as
parkour or contemporary dance.

Juuso Toikka received his M.Sc.(Tech) degree in
Computer Science from Aalto University in 2019.
While this manuscript was in preparation, Toikka
worked as a research assistant at the Depart-
ment of Computer Science at Aalto University,
Finland, but he has since moved on to Ubisoft
RedLynx, pursuing a game industry career. His
professional interests include animation tools,
procedural animation, movement control opti-
mization, reinforcement learning, and emergence
in games.

Amin Babadi is a doctoral candidate at the
Department of Computer Science, Aalto Univer-
sity, Finland. His research focuses on developing
efficient, creative movement artificial intelligence
for physically simulated characters in multi-agent
settings. Babadi has previously worked on three
commercial games, developing AI, animation,
gameplay, and physics simulation systems.

C. Karen Liu is an associate professor in the
Department of Computer Science at Stanford
University. She received her Ph.D. degree in
Computer Science from the University of Wash-
ington. Liu’s research interests are in computer
graphics and robotics, including physics-based
animation, character animation, optimal con-
trol, reinforcement learning, and computational
biomechanics. She developed computational ap-
proaches to modeling realistic and natural hu-
man movements, learning complex control poli-

cies for humanoids and assistive robots, and advancing fundamental nu-
merical simulation and optimal control algorithms. The algorithms and
software developed in her lab have fostered interdisciplinary collaboration
with researchers in robotics, computer graphics, mechanical engineering,
biomechanics, neuroscience, and biology. Liu received a National Science
Foundation CAREER Award, an Alfred P. Sloan Fellowship, and was
named Young Innovators Under 35 by Technology Review. In 2012, Liu
received the ACM SIGGRAPH Significant New Researcher Award for her
contribution in the field of computer graphics.

https://github.com/hill-a/stable-baselines

ACCEPTED TO IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 15

Paper Supplement: Visualizing Movement Control Optimization Landscapes
This supplementary document presents additional results

to augment the paper’s Section 9.4. Recall that the central
result of Section 9.4 is that policy optimization scales better
to long trajectories/episodes, although a policy neural net-
work typically has orders of magnitude more parameters to
optimize than a single trajectory (even a long one). This was
tested with multiple locomotion tasks and optimizers: A Unity
Machine Learning Agents 3D humanoid (optimized using
LM-MA-ES and PPO) and four different MuJoCo agents:
A 2D monopedal hopper (Hopper-v2), 2D bipedal walker
(Walker2d-v2), 2D half quadruped (HalfCheetah-v2), and
a 3D humanoid (Humanoid-v2), optimized using CMA-ES,
PPO, and SAC. The optimization landscape visualizations
of section 9.4—from the Unity humanoid locomotion case—
agree on the result, displaying much less multimodality and
ill-conditioning in the policy optimization case.

Similar landscape plots of the MuJoCo agents are included
below. All landscape visualizations are centered around the
found optima (a vector of control torques for each time step
in trajectory optimization, or a vector of neural network
parameters in policy optimization). The visualizations were
computed using grids of 100 × 100 points, computing the
mean return of 10 trajectories/episodes for each grid point. To
improve visual clarity, all landscapes were also filtered using
Gaussian blur with σ = 1.0.

These MuJoCo landscapes support the results of Section
9.4. This is clearest in the hopper landscapes shown in Fig. 22.

CMA-ES trajectory optimization landscapes become increas-
ingly ill-conditioned with long trajectories, with narrow ridges
where an optimizer typically zigzags back and forth over the
ridge, making very slow progress along the ridge. In contrast,
the policy optimization landscapes show almost spherical
optima. Note that the policy networks for PPO and SAC have
different parameter counts (as per the default parameters of
the Stable Baselines implementations that we used). Thus, the
landscapes cannot display exactly same optima.

The plots for the other MuJoCo environments (Fig. 23-25)
exhibit similar qualities, although less clearly. The trajectory
optimization landscapes also become increasingly multimodal
and/or noisy with longer trajectories. It should be noted that
each landscape’s vertical axis is normalized to show maximal
detail, i.e., the heights of the optima in different landscapes
cannot be directly compared.

Fig. 22: Trajectory optimization (CMA-ES) and policy optimization (PPO, SAC) landscapes for the Hopper-v2 MuJoCo
environment, with trajectory/episode lengths ranging from 1 to 20 seconds. Trajectory optimization becomes highly ill-
conditioned for long trajectories.

ACCEPTED TO IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 16

Fig. 23: Trajectory optimization (CMA-ES) and policy optimization (PPO, SAC) landscapes for the HalfCheetah-v2 MuJoCo
environment, with trajectory/episode lengths ranging from 1 to 20 seconds.

Fig. 24: Trajectory optimization (CMA-ES) and policy optimization (PPO, SAC) landscapes for the Walker2d-v2 MuJoCo
environment, with trajectory/episode lengths ranging from 1 to 20 seconds.

ACCEPTED TO IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 17

Fig. 25: Trajectory optimization (CMA-ES) and policy optimization (PPO, SAC) landscapes for the Humanoid-v2 MuJoCo
environment, with trajectory/episode lengths ranging from 1 to 20 seconds.

