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a b s t r a c t

A non-intrusive extension to the standard p-version of the finite element method is
proposed. Meshes with hanging nodes are handled by adapting the reference elements
so that the resulting discretisation is always conforming. The shape functions on these
adaptive reference elements are not polynomials, but either harmonic extensions of the
boundary restrictions of the standard shape functions or solutions to a local Poisson
problem. The numerical experiments are taken from computational function theory and
the efficiency of the proposed extension resulting in exponential convergence in the
quantities of interest is demonstrated.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

Error estimation and adaptivity are hallmarks of modern numerical partial differential equation (PDE) solvers. Recently
there has been a lot of interest in variations of the standard methods such as the finite element method (FEM) that
address these features in some new and innovative ways. In many problems there are natural discretisations of the
computational domain and it is reasonable to ask whether for instance polygonal elements could be used instead of
triangles or quadrilaterals in two-dimensional problems. This immediately leads to problem of selecting the correct basis
functions. Until now the shape functions have been given, what has changed is that in the new formulations the shape
functions are defined computationally as solutions to some other problems, or indeed, are virtual in a well-defined way.
One of the immediate benefits of such approaches is that mesh refinement can be done in a non-confirming way and
thus very strong mesh gradings become simpler to implement. Arguably the virtual element method (VEM) has received
the most attention with already a significant body of literature [1]. For our discussion here, the most relevant related
methods are those with Trefftz-like basis functions [2,3].

With new methods comes the requirement to invest in new software infrastructure, however. In this work the
fundamental objective is to preserve the existing solvers and extend the standard p- and hp-FEM solvers [4,5], in a way
that lowers the threshold for implementation as much as possible, that is, non-intrusively. Hence, the goal is to implement
computable shape functions which are compatible with the standard high order shape functions yet enable modern mesh
grading within the reference element framework. The basic idea is simple: The elements can be defined with arbitrary
number of points as long as the reference element mapping can be defined. In the standard formulation the nodes that
do not define the mapping are called hanging nodes. Within the framework presented here there are no hanging nodes,
but the space of basis functions is enriched so that every configuration results in a conforming formulation. An example
is given in Fig. 1. There are three quadrilaterals with curved edges in the mesh (Fig. 1(a)) and one of them is defined with
five nodes. The corresponding adaptive reference element or ARE for short (Fig. 1(b)) is not curved, however, since we let
the standard blending function mapping take care of the curved edges. This approach differs from the ones previously
proposed by Solin and Demkowicz [6,7].
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Fig. 1. Adaptive reference element with five nodes. Minimal implementation mesh with three triangles. Curved boundaries are included in the
mapping of the reference element.

The main contribution of this paper is to show that bootstrapping a FEM solver with itself is in fact, a feasible option.
From a theoretical point it is interesting that the basic assumptions of the method hold automatically. In particular error
estimators based on the concept of auxiliary subspaces [8] can be defined exactly as in the standard formulation. One
of the difficulties inherent in practically all new approaches mentioned above is the design of quadrature rules. Our
approach is not immune to these concerns. Every extension shape function is defined as a local numerical solution to
some PDE. Therefore integration of any weighted inner products can always be done at the implementation level, but is
more expensive. The numerical experiments do not indicate deterioration of the performance, however.

The numerical examples are motivated by computational function theory, in particular applications in electrostatics
and numerical conformal mappings, classes of problems where strong singularities are often present, and hence, strong
grading with efficient error estimation is necessary. In the PDE setting the construction of numerical conformal mappings
requires solution of two connected Laplace problems. One of the intended applications is to be able to fit meshes, for
instance in multi-capacitor problems, in a conforming way and avoid dealing with unfitted finite element methods on cut
meshes as in CutFEM [9].

The rest of the paper is structured as follows: In Section 2 basic concepts on computational function theory are
introduced as foundation for the numerical experiments. Also, error estimation based on the auxiliary subspaces in
briefly covered; Section 3 builds on the earlier work by Weißer on boundary element based FEM [2]. The construction
of the adaptive reference elements, bookkeeping, and mesh refinements are all detailed; The numerical experiments
demonstrate the performance of the method, see Section 4. In all examples the p-convergence is studied with the
corresponding error estimates; Finally, conclusions are discussed in Section 5.

2. Preliminaries

In this section we define concepts and algorithms used in the numerical experiments. This material is of course
available in the literature but is included here to make our discussion self-contained.

2.1. Special functions

Given complex numbers a, b, and c with c ̸= 0, −1, −2, . . ., the Gaussian hypergeometric function is the analytic
continuation to the slit plane C \ [1, ∞) of the series

F (a, b; c; z) = 2F1(a, b; c; z) =

∞∑
n=0

(a, n)(b, n)
(c, n)

zn

n!
, |z| < 1 . (1)

Here (a, 0) = 1 for a ̸= 0, and (a, n) is the shifted factorial function or the Appell symbol

(a, n) = a(a + 1)(a + 2) · · · (a + n − 1)

for n ∈ N \ {0}, where N = {0, 1, 2, . . .} and the elliptic integrals K(r),K′(r) are defined by

K(r) =
π

2
F (1/2, 1/2; 1; r2), K

′(r) = K(r ′), and r ′
=

√
1 − r2,
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which is equivalent to

K(r) =

∫ 1

0

dx√
(1 − x2)(1 − r2x2)

.

In the following we also need the decreasing homeomorphism µa: (0, 1) → (0, ∞) defined by

µa(r) ≡
π

2 sin(πa)
F (a, 1 − a; 1; 1 − r2)
F (a, 1 − a; 1; r2)

. (2)

Some basic properties of these functions can be found in [10] and [11]. The associated Dirichlet–Neumann problems are
defined in (15) in Section 4.

2.2. Conformal mappings

In this section we introduce the required concepts from function theory, and present a lemma leading to a numerical
algorithm. Details and proofs can be found in [12,13].

Definition 1 (Modulus of a Quadrilateral). A Jordan domain Ω in C with marked (positively ordered) points z1, z2, z3, z4 ∈

∂Ω is called a quadrilateral, and denoted by Q = (Ω; z1, z2, z3, z4). Then there is a canonical conformal map of the
quadrilateral Q onto a rectangle Rh = (Ω ′

; 1 + ih, ih, 0, 1), with the vertices corresponding, where the quantity h defines
the modulus of a quadrilateral Q . We write

M(Q ) = h.

Note that the modulus h is unique.

Definition 2 ([14, pp. 53–54], Reciprocal Identity). It is clear by the geometry that the following reciprocal identity holds:

M(Q )M(Q̃ ) = 1, (3)

where Q̃ = (Ω; z2, z3, z4, z1) is called the conjugate quadrilateral of Q .

Let γj, j = 1, 2, 3, 4 be the arcs of ∂Ω between (z1, z2) , (z2, z3) , (z3, z4) , (z4, z1), respectively. Suppose that u1 is the
(unique) harmonic solution of the Dirichlet–Neumann problem with mixed boundary values of u1 equal to 0 on γ2, equal
to 1 on γ4, and ∂u1/∂n = 0 on γ1, γ3. Then by [14, Theorem 2.3.3]:

M(Q ) =

∫∫
Ω

|∇u1|
2 dx dy. (4)

2.2.1. Modulus of a ring domain and Dirichlet integrals
Let E and F be two disjoint compact sets in the extended complex plane C∞. Then one of the sets E, F is bounded

and without loss of generality we may assume that it is E . If both E and F are connected and the set R = C∞ \ (E ∪ F ) is
connected, then R is called a ring domain. In this case R is a doubly connected plane domain. The capacity of R is defined
by

capR = inf
u

∫
R
|∇u|2 dm,

where the infimum is taken over all nonnegative, piecewise differentiable functions u with compact support in R∪E such
that u = 1 on E. It is well-known that the harmonic function on R with boundary values 1 on E and 0 on F is the unique
function that minimises the above integral. In other words, the minimiser may be found by solving the Dirichlet problem
for the Laplace equation in R with boundary values 1 on the bounded boundary component E and 0 on the other boundary
component F . A ring domain R can be mapped conformally onto the annulus {z : e−M < |z| < 1}, where M = M(R) is the
conformal modulus of the ring domain R . The modulus and capacity of a ring domain are connected by the simple identity
M(R) = 2π/capR.

2.2.2. Conjugate function method
Suppose that Q is a quadrilateral, and u1 is the harmonic solution of the Dirichlet–Neumann problem and let u2 be

a conjugate harmonic function of u1 such that u2(Re z3, Im z3) = 0. Then f = u1 + iu2 is an analytic function, and it
maps Ω onto a rectangle Rh such that the image of the points z1, z2, z3, z4 are 1 + ih, ih, 0, 1, respectively. Furthermore
by Carathéodory’s theorem, f has a continuous boundary extension which maps the boundary curves γ1, γ2, γ3, γ4 onto
the line segments γ ′

1, γ
′

2, γ
′

3, γ
′

4, see Fig. 2.

Lemma 1. Let Q be a quadrilateral with modulus h, and let u1 be the harmonic solution of the Dirichlet–Neumann problem.
Suppose that u2 is the harmonic conjugate function of u1, with u2(Re z3, Im z3) = 0. If ũ1 is the harmonic solution of the
Dirichlet–Neumann problem associated with the conjugate quadrilateral Q̃ , then u2 = hũ1.
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Fig. 2. Dirichlet–Neumann boundary value problem. Dirichlet and Neumann boundary conditions are marked with thin and thick lines, respectively.

Our aim is to construct a conformal mapping from a quadrilateral Q = (Ω; z1, z2, z3, z4) onto a rectangle Rh, where
h is the modulus of the quadrilateral Q . Here the points zj will be mapped onto the corners of the rectangle Rh. In the
standard algorithm the required steps are the following:

Algorithm 1 (Conformal Mapping).

1. Find a harmonic solution for a Dirichlet–Neumann problem associated with a quadrilateral.
2. Solve the Cauchy–Riemann differential equations in order to obtain an analytic function that maps our domain of

interest onto a rectangle.

The Dirichlet–Neumann problem can be solved by using any suitable numerical method. One could also solve the
Cauchy–Riemann equations numerically, but it is not necessary. Instead we solve u2 directly from the conjugate problem,
which is usually computationally much more efficient, because the mesh and the discretised system used in solving the
potential function u1 can be used for solving u2 as well. This algorithm is as follows:

Algorithm 2 (Conjugate Function Method).

1. Solve the Dirichlet–Neumann problem to obtain u1 and compute the modulus h.
2. Solve the Dirichlet–Neumann problem associated with Q̃ to obtain u2.
3. Then f = u1 + ihu2 is the conformal mapping from Q onto Rh such that the vertices (z1, z2, z3, z4) are mapped onto

the corners (1 + ih, ih, 0, 1).

2.3. Auxiliary subspaces

One class of methods for estimating error that has proven to be very robust in practice is the so-called hierarchical
basis approach, whose origins can be traced back at least to [15]. In this approach, given a finite element approximation
û ∈ V of the solution u, an approximate error function ε = u − û is computed in a finite dimensional auxiliary space W
satisfying V ∩ W = {0}. A global error estimate is obtained by measuring ε in an appropriate norm, and local norms of ε
are used as local error indicators to drive an adaptive algorithm. Hierarchical basis methods belong to the broader class of
implicit methods, which require the solution of additional, simpler (local or global) systems to obtain an error estimate.

Consider the abstract problem setting with ûas the standard piecewise polynomial finite element space on some
discretisation T of the computational domain D. Assuming that the exact solution u ∈ H1

0 (D) has finite energy, we arrive
at the approximation problem: Find û ∈ V such that

a(û, v) = l(v) (= a(u, v)), ∀v ∈ V , (5)

where a(·, ·) and l(·), are the bilinear form and the load potential, respectively. Additional degrees of freedom can be
introduced by enriching the space V . This is accomplished via introduction of an auxiliary subspace or ‘‘error space’’
W ⊂ H1

0 (D) such that V ∩ W = {0}. We can then define the error problem: Find ε ∈ W such that

a(ε, v) = l(v) − a(û, v)(= a(u − û, v)), ∀v ∈ W . (6)

In 2D the space W , that is, the additional unknowns, can be associated with element edges and interiors. Thus, for hp-
methods this kind of error estimation is natural. The main result on this kind of estimators in H1-seminorm (or energy)
is Theorem 1.

Theorem 1 ([8]). There is a constant K depending only on the dimension d, polynomial degree p, continuity and coercivity
constants C and c, and the shape-regularity of the triangulation T such that

c
C

∥ε∥E ≤ ∥u − û∥E ≤ K (∥ε∥E + osc(R, r, T )) ,

where the residual oscillation depends on the volumetric and face residuals R and r, and the triangulation T .
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The solution ε of (6) is called the error function. It has many useful properties for both theoretical and practical
considerations. In particular, the error function can be numerically evaluated and analysed for any finite element solution.
By construction, the error function is identically zero at the mesh points.

We shall use the error function is three ways below. The quantity of interest is the Dirichlet energy, i.e., the square
of the H1-seminorm. Thus, it is natural to consider ∥ε∥2

E for moduli and capacities. To approximate the reciprocal error
e∗
r = |1 − M(Q )M(Q̃ )|, we use the sum ∥ε1∥E + ∥ε2∥E . Finally, the effectivity index is taken to be the ratio ∥ε∥E/E(M),
where E(M) is the square root of the exact error in the quantity of interest.

3. Construction of adaptive reference elements

In this section we discuss the formulation and implementation of the adaptive reference elements. We assume
familiarity with the basic concepts of the p- and hp-versions of the finite element method [4,5]. Only 2D construction
is considered. Although the 3D analogues are straightforward in principle, implementations are not. Adaptive reference
elements are useful when an existing mesh is refined as in the hp-FEM or when the edge nodes in 2D are induced by
an interface of two non-aligned meshes, for instance, in contact problems (see Fig. 1). In 3D the extension modes can
be also face modes. Furthermore, the intersection of two element faces may require refinements which in turn must
be conforming on both elements sharing the interface. Naturally the number of additional modes and hence added
computational complexity depends on the chosen refinements. In 2D such geometric issues do not arise due to lower
spatial dimension. The 2D hp-solver is implemented with Mathematica [16] – for the design principles, see [17].

As already alluded to in the introduction, the theoretical foundations for the method can be directly adopted from
Weißer’s work on boundary element based FEM [2]. Rather than repeating the arguments here, we highlight the features
specific to our approach.

3.1. Definition

As usual in finite elements every element is an instance of some reference element. To fix terminology we say that
every adaptive element (AE) is an instance of an adaptive reference element (ARE). The adaptive reference elements is
defined with a set of points or nodes as usual. What is different is that a subset of nodes are used to define the mapping
of the element. Let us consider the example in the introduction (Fig. 1). The mesh has three elements labelled A, B, and C.
In Fig. 1(b) an adaptive reference element is shown. The quadrilateral has five nodes, four mapping nodes and one edge
node. This choice is not unique, however. For instance, the adaptive reference element (ARE) corresponding to element
A could be a triangle with mapping nodes {1,2,4} and two edge (hanging) nodes 3 and 5. Similarly, the elements B and
C, could either be standard curved quadrilaterals or triangle AEs with corresponding AREs.

Definition 3 (Planar Adaptive Reference Element (ARE)). Given a set of points K , |K | ≥ 3, any partition of K into mapping
and edge nodes is admissible, if the edge nodes lie on the boundary of some valid mapping of the standard reference
element defined by the mapping points. This partition defines the adaptive reference element. If the set of edge nodes is
empty, the adaptive reference element is equivalent to a standard element.

3.2. Shape functions

The shape functions are computed as harmonic extensions of the restrictions of the standard FEM nodal and edge
functions on the element boundary. In other words, for any standard nodal or edge shape function φ(x, y) we compute
its harmonic extension ϕ(x, y):{

∆ϕ(x, y) = 0, in Ω,

ϕ(x, y) = φ(x, y)|∂Ω , on ∂Ω,
(7)

where Ω is either a reference quadrilateral or triangle. Some examples of such shape functions are given in Figs. 3 and
4. This construction guarantees a continuous formulation combining AEs and standard finite elements. Also notice, that
the nodal modes automatically form a partition of unity.

The associated inner modes ϕ̂(x, y) are the functions satisfying{
∆ϕ̂(x, y) = q(x, y), in Ω,

ϕ̂(x, y) = 0, on ∂Ω,
(8)

where q(x, y) is some polynomial. For instance q(x, y) = 1 (const) induces a standard bubble function. The set of elemental
inner modes ϕ̂(x, y)K is constructed with products of Legendre polynomials, that is, all q(x, y) ∈ q(x, y)K , where

q(x, y)K = {Pi(x)Pj(y), i = 0, . . . , p − 2, j = 0, . . . , p − 2, }.

With this choice the number of inner modes is the same as with the standard p-version, although the approximation
properties are not.
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Fig. 3. Quadrilateral.

Fig. 4. Triangle.

The computation of the shapes is done with finite elements (naturally!). Hence, we arrive at the concept of the
implementation mesh, or more precisely, implementation discretisation. In order to simplify the evaluation of the inner
products between the shape functions, we compute every shape function associated with a given element using the same
implementation discretisation. One consequence of this is that the same extension may be computed using many different
implementation discretisations.

For quadrilaterals our baseline implementation discretisation is a regular grid with two elements per segment and
uniform p = 20, and for triangles a minimal triangulation of the nodes with uniform p = 16.

3.3. Type of reference element

In order to minimise computational work, it is necessary to introduce a way to maintain bookkeeping for the evaluated
shapes and AREs. Since we want to maintain compatibility with the standard p-version, on split edges we must ensure
that the shape functions have correct parities.

Legendre polynomials of degree n can be defined using a recursion formula

(n + 1)Pn+1(x) − (2n + 1)xPn(x) + nPn−1(x) = 0, P0(x) = 1. (9)

For our purposes the central polynomials are the integrated Legendre polynomials for x ∈ [−1, 1]

φn(ξ ) =

√
2n − 1

2

∫ ξ

−1
Pn−1(t) dt, n = 2, 3, . . . (10)

which can be rewritten as linear combinations of Legendre polynomials

φn(ξ ) =
1

√
2(2n − 1)

(Pn(ξ ) − Pn−2(ξ )) , n = 2, 3, . . . (11)
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Table 1
Summary of experiments.
Experiment DOF (p = 10) Reference

Symmetric circular quadrilateral 27681 1
Unsymmetric circular quadrilateral 27681 1.08223348626566
Grötzsch ring 34191 3.12680384539223
Planar capacitor 95301 4.133592978113

The normalising coefficients are chosen so that∫ 1

−1

dφi(ξ )
dξ

dφj(ξ )
dξ

dξ = δij, i, j ≥ 2. (12)

Therefore, the φn(ξ ) inherit the property of the Legendre polynomials,

φn(ξ ) = (−1)nφn(−ξ ). (13)

This means that every edge has to be oriented in such a way that the shape function has a consistent sign or parity on
both elements sharing it.

We assign a type or signature for every element in the following way: First we choose a mapping node with the smallest
identifier and rotate the simplex so that the selected node is in a fixed position (normalisation); next for each edge, the
parameter range of its support on the reference element is derived; finally each edge segment is assigned a parity by
comparing the identifiers of the end points. Thus every edge, split or not, has its contribution to the type of the ARE in
form of a tuple (s, [a, b]), where s = ±1, and −1 ≤ a < b ≤ 1. For instance, the ARE of Fig. 1(b) has the type SQ –
assuming that the nodes are identified as in the picture –

SQ = ((1, [−1, 1]), ((1, [−1, 0]), (1, [0, 1])), (1, [−1, 1]), (−1, [−1, 1])).

Here we have followed the convention that the positive direction is from the node with the smallest identifier. For
standard p-version quadrilaterals there are four types, and for triangles two types. The inner modes are always assumed
to be oriented in the same way, that is, they do not affect the type.

3.4. Curved elements

Since the computable shape functions are defined using finite elements, curved elements do not lead to any additional
complexity. Every curved AE is mapped using the standard blending function techniques. On the implementation level
this simply means that the mapping introduces scaling to quadrature weights on the ARE. We demonstrate the efficacy
of this approach in the numerical examples below.

3.5. Quadrature design

As already mentioned in the introduction, the weakness of the method as currently defined is the lack of efficient
quadrature rules. Obviously, for problems with constant coefficients and affine elements, the computational efficiency is
the same as with standard finite elements. However, if the coefficients are not constant or the elements are not affine,
the fall back quadrature rule is to use elementwise quadratures on the implementation mesh, which is expensive. One of
intriguing possibilities is to use probabilistic techniques for deriving efficient average quadratures [18].

3.6. Mesh generation and refinement

Since the proposed method is an extension of the p-version, mesh generation is identical to that of p-version. The
power of the method lies in its ability to adapt to (seemingly) non-conforming mesh refinements. In Fig. 5 two examples
of strategies for refining the mesh to a corner singularity are illustrated.

The nodes are given identifiers in the order of creation. Thus, in both instances there are four AEs, but only two different
types, hence, only two AREs have to be computed. Moreover, if one wanted to solve some problem using both meshes
one at the time, the representative reference elements of each type would have to be computed only once. In Figs. 5(c)
and 5(d) the AEs are given using nodes on edges.

4. Numerical experiments

The numerical experiments are selected from the corpus of reference problems of computational function theory and
electrostatics. The first two, circular quadrilateral and Grötzsch ring are classical, and the third – also a ring problem – a
planar capacitor has the salient features of real designs that make it a challenging problem. Reference data on experiments
in given in Table 1.
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Fig. 5. Two examples of mesh refinement strategies. Three levels of elements towards the upper hand corner. Normalised AEs are given as node
lists, every split edge has the same parametrisation on the reference element. Types are labelled in the order of occurrence.

In this section we adopt the convention that we use terms modulus and capacity interchangeably. We denote the
capacity of the original problem with solution u1 with R1 and that of the conjugate one with R2. Then the reciprocal error
is

e⋆
r = |1 − R1R2|.

For convenience we define the error order which is simply an integer that gives a measure of the quality of the solution.

Definition 4 (Error Order). Given a reciprocal error e⋆
r , the positive integer ei,

ei = |⌈log(e⋆
r )⌉|, (14)

is referred to as the error order.

Since the ring problems can be recast as quadrilateral ones, this gives us one unified way to measure accuracy of the
solutions.

For every problem the corresponding conformal map is found using the solutions of the original and conjugate problem
pairs. The problem pairs are computed over a sequence of discretisations, where the polynomial order p is coupled with
the level of symmetric refinements to singularities, p = 2, 3, . . . , 10. That is, the mesh changes as the polynomial order
increases in the sequence. In all cases the convergence is reported both in capacity and reciprocal error, including the
error estimates based on auxiliary subspaces, where the space W is chosen to include edge modes at p+1 and p+2, and
inner modes at p − 1, unless otherwise specified.
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Formally, every problem is defined on some computational domain Ω , with boundary admitting a partition ∂Ω =

∪
4
j=1γj, where the arcs γj are as defined in Section 2.2. Then the problem (O) and its conjugate (C) are:

(O)

⎧⎪⎪⎨⎪⎪⎩
∆u1 = 0, in Ω,

u1 = 0, on γ1,

u1 = 1, on γ3,
∂u1
∂n = 0, on γ2 and γ4,

(C)

⎧⎪⎪⎨⎪⎪⎩
∆u2 = 0, in Ω,

u2 = 0, on γ2,

u2 = 1, on γ4,
∂u2
∂n = 0, on γ1 and γ3.

(15)

Thus, in different cases it is sufficient to identify the boundary partition ∂Ω = ∪
4
j=1γj.

4.1. Circular quadrilaterals

Our first experiment concerns a family of circular quadrilaterals [12]. The absolute ratio of four points a, b, c, d ∈ C is
defined as

|a, b, c, d| =
|a − c||b − d|
|a − b||c − d|

. (16)

The main property of the absolute ratio is the Möbius invariance:

|a, b, c, d| =
⏐⏐w(a), w(b), w(c), w(d)

⏐⏐, (17)

if w is a Möbius transformation

w(z) =
kz + l
mz + n

, (kn − ml ̸= 0). (18)

Given z1, z2, z3 on a circle (or on a line) and w1, w2, w3 on a circle (or on a line), there exists a Möbius transformation w

with w(zj) = wj, j = 1, 2, 3.
Let 0 < a < b < c < 2π and choose the points {1, eia, eib, eic} on the unit circle with the absolute ratio⏐⏐1, eia, eib, eic⏐⏐ =

sin(b/2) sin((c − a)/2)
sin(a/2) sin((c − b)/2)

= u. (19)

Now the unit disk, together with the boundary points eia, eib, eic, 1 determines a circular quadrilateral denoted by QB .
Using an auxiliary Möbius transformation of the unit disk onto the upper half plane we can readily express the modulus
using the capacity of the Teichmüller ring domain [10, Section 7] and express it as follows

M(QB; eia, eib, eic, 1) =
1
2
τ (u − 1), (20)

where u is as in (19), and

τ (t) = π/µ1/2(1/
√
1 + t) , t > 0,

and µ1/2(r) is as in (2), gives the conformal capacity of the plane Teichmüller ring.
We consider two examples of such quadrilaterals: The symmetric one

(QB; eiπ/2, eiπ , ei(3π/2), 1)

and the unsymmetric one

(QB; eiπ/4, eiπ/2, ei(3π/2), 1).

These are illustrated in Figs. 6 and 7, respectively. For the symmetric case it follows immediately from the reciprocal
identity that the capacity must be equal to one. Of course, one can calculate the absolute ratio u = 2 and thus get
1
2τ (1) = 1.

4.1.1. hp-convergence
In Fig. 8 the hp-convergence graphs are shown for both circular quadrilaterals and types of error considered here:

capacity and reciprocal error. Due to symmetry one would expect faster convergence in the symmetric case. This is indeed
the case in terms of accuracy. It can also be seen that the auxiliary subspace construction is not p-robust at least with the
standard choice of the space. In the unsymmetric case the auxiliary subspace was taken to include shapes up to p+ 4 on
the edges and p+1 in the interior. In Figs. 8(c) and 8(d) the effect of the larger auxiliary subspace is evident. Similarly, the
effectivity is higher for the larger auxiliary subspace (Fig. 9). The effectivities are comparable to those obtained in Poisson
(source) problems [8]. It has to be admitted, however, that at the moment there are no theoretical results to guide us in
reliable design of the auxiliary subspaces.
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Fig. 6. Symmetric (QB; eiπ/2, eiπ , ei(3π/2), 1). The Dirichlet sections of the original problem are indicted with a black segment. Due to symmetry, both
capacities are equal to one, exactly.

Fig. 7. Unsymmetric (QB; eiπ/4, eiπ/2, ei(3π/2), 1). The Dirichlet sections of the original problem are indicted with a black segment.
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Fig. 8. Convergence of capacity and reciprocal error on two circular quadrilaterals. Exact error (solid line); Estimated error (dashed line). Loglog-plots
with error vs the number of degrees of freedom. At p = 10 the error number = 5.

Fig. 9. Effectivities of the estimated errors.
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Fig. 10. Symmetric (QB; eiπ/2, eiπ , ei(3π/2), 1). Two-triangle configurations.

Fig. 11. Symmetric (QB; eiπ/2, eiπ , ei(3π/2), 1). Four quadrilateral configurations.

4.1.2. Minimal configuration; Stability
Let us next study numerical stability of the methods computationally with (almost) minimal configurations with

the reference solution taken from the corresponding p-version solution. In Figs. 10 and 11 two sequences of simple
configurations are shown. In both cases the number of split edges, i.e., edge nodes, is increased and the complexity of the
elements increases. The results are tabulated in Tables 2 and 3.

The shape function are solutions of the Laplace problem so one would expect them to be more efficient than the
standard p-version integrated Legendre polynomials in this class of problems. This is, in fact, exactly what we observe.
This is especially clear in the case of the two-triangle configurations. All three test cases are more accurate than the
reference solution at 50 d.o.f. Moreover, as the polynomial order increases, in all cases the method converges and no
numerical stalling is observed. This will be evident in the larger examples below as well.

For the quadrilateral case the reference mesh is symmetric and thus both capacity errors are too. However, the test
cases are not symmetric and this is visible in the errors.

Of course, these results only indicate that the underlying implementation discretisation is sufficient for the problems
considered here. One could push for higher polynomial orders or finer details in the solution mesh and eventually the
implementation errors would play a significant role.

4.1.3. Timing and effect of quadrature
Let us consider the unsymmetric (QB; eiπ/4, eiπ/2, ei(3π/2), 1). There are four singularities and with the symmetric

refinement strategy as p increases by one, the number of AEs increases by four. Since the basis functions are hierarchic
it is sufficient to compute the reference elements only at the highest value of p = 10. On a modern iMac Pro, with x
cores and 128 MB memory, it takes 20 min to build the reference elements. Once the reference elements are available
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Table 2
(QB; eiπ/2, eiπ , ei(3π/2), 1): Errors in two-triangle configurations. Reference configuration is a standard
p-version one. DOF are given at p = 2, 3, . . . , 10.
DOF |1 − R1| |1 − R2| |1 − R1R2| DOF |1 − R1| |1 − R2| |1 − R1R2|

9 0.177329 0.177309 0.38608 11 0.168561 0.168561 0.365535
14 0.154538 0.154538 0.332958 17 0.146668 0.146668 0.314847
19 0.153120 0.153112 0.329677 23 0.137797 0.137797 0.294583
24 0.148808 0.14881 0.319762 29 0.133149 0.133149 0.284027
29 0.148208 0.148205 0.318379 35 0.130867 0.130867 0.27886
34 0.146575 0.146576 0.314636 41 0.128904 0.128904 0.274424
39 0.146476 0.146475 0.314407 47 0.128003 0.128003 0.27239
44 0.145794 0.145795 0.312844 53 0.126974 0.126974 0.270069
49 0.145758 0.145758 0.312761 59 0.12659 0.12659 0.269204

(a) Reference configuration (b) T1
DOF |1 − R1| |1 − R2| |1 − R1R2| DOF |1 − R1| |1 − R2| |1 − R1R2|

13 0.164983 0.164983 0.357185 15 0.156161 0.165028 0.346959
20 0.144921 0.144921 0.310845 23 0.140756 0.145033 0.306203
27 0.136704 0.136704 0.292096 31 0.134086 0.136763 0.289187
34 0.1324 0.1324 0.282329 39 0.130872 0.132503 0.280716
41 0.13034 0.13034 0.277668 47 0.128964 0.130411 0.276194
48 0.128491 0.128491 0.273492 55 0.127701 0.128599 0.272722
55 0.127697 0.127697 0.2717 63 0.126856 0.127782 0.270848
62 0.126719 0.126718 0.269494 71 0.126239 0.126834 0.269084
69 0.126404 0.126404 0.268786 79 0.125815 0.126502 0.268233

(c) T2 (d) T3

Table 3
(QB; eiπ/2, eiπ , ei(3π/2), 1): Errors in four-quadrilateral configurations. Reference configuration is a standard
p-version one. DOF are given at p = 2, 3, . . . , 10.
DOF |1 − R1| |1 − R2| |1 − R1R2| DOF |1 − R1| |1 − R2| |1 − R1R2|

25 0.129045 0.129045 0.274742 27 0.130817 0.130272 0.27813
49 0.0850013 0.0850013 0.177228 52 0.081616 0.0814302 0.169692
81 0.057747 0.057747 0.118829 85 0.0550256 0.0549505 0.113

121 0.0430179 0.0430179 0.0878864 126 0.0413749 0.0413468 0.0844324
169 0.0341001 0.0341001 0.0693631 175 0.0331716 0.0331589 0.0674304
225 0.0281078 0.0281078 0.0570057 232 0.02755 0.0275399 0.0558487
289 0.0237785 0.0237785 0.0481224 297 0.0233899 0.023378 0.0473148
361 0.0204991 0.0204991 0.0414183 370 0.0201875 0.0201722 0.0407669
441 0.0179349 0.0179349 0.0361915 451 0.0176662 0.0176471 0.035625

(a) Reference configuration (b) Q1

DOF |1 − R1| |1 − R2| |1 − R1R2| DOF |1 − R1| |1 − R2| |1 − R1R2|

29 0.130824 0.130277 0.278144 31 0.131461 0.13146 0.280203
55 0.0816251 0.0814378 0.16971 58 0.0798961 0.0798956 0.166175
89 0.0550362 0.0549607 0.113022 93 0.053712 0.0537119 0.110309

131 0.0413868 0.0413583 0.0844567 136 0.0406352 0.0406348 0.0829212
181 0.0331842 0.0331709 0.0674559 187 0.0328001 0.0327994 0.0666753
239 0.0275629 0.0275519 0.0558742 246 0.0273627 0.0273615 0.0554729
305 0.0234028 0.0233894 0.0473396 313 0.0232804 0.0232785 0.0471009
379 0.0202002 0.0201828 0.0407907 388 0.0201074 0.0201047 0.0406164
461 0.0176787 0.0176568 0.0356477 471 0.017598 0.0175944 0.0355021

(c) Q2 (d) Q3

the time spent in integration and assembly for 104 standard quadrilaterals and 160 AEs is 2.2 and 2.6 s, respectively. The
time spent in the linear solver is 1.6 s. This ratio of time spent in integration over linear solver is typical for FEM solvers
implemented in high-level languages such as Mathematica.

Notice, that the time spent in standard quadrilaterals includes construction of the elements. Nevertheless, the
quadrature penalty is there but is not prohibitively large. Because of the way the element mappings are implemented,
these results are representative also for problems with variable coefficients.

4.2. Grötzsch ring

Our third example is a classical ring domain, the Grötzsch ring shown in Fig. 12(a). For some historical remarks and
extensions see [19]. The Grötzsch ring RG(r) = D \ [0, r], r ∈ (0, 1) has the capacity cap(RG(r)) = 2π/µ(r), were µ(r) is
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Fig. 12. Grötzsch Ring; RG(1/2).

the Grötzsch modulus function (cf. [10, Chapter 5]):

µ(r) =
π

2
K(r ′)
K(r)

,

with usual notation r ′
=

√
1 − r2 as above.

Every ring problem can be transformed to a pair of quadrilaterals by cutting the domain along a path of steepest descent
connecting the interior to the exterior. In this case, due to symmetry the cut can be chosen a priori without solving the
ring problem first. The simple cut is indicated in Fig. 12(a) and its meaning clearly visible in Fig. 12(d). Let us formally
define the boundary partition: γ1 is the unit circle in the counterclockwise direction starting at and returning to (1, 0),
γ2 is the straight line from (1, 0) → (1/2, 0), γ3 is the interior (self-overlapping) segment (1/2, 0) → (0, 0) → (1/2, 0),
and finally γ4 is the straight line from (1/2, 0) → (0, 0) completing the ∂Ω .

The solution is dominated by the two singularities at the end points of the interior segment. The background mesh is
fairly dense and the refinements are only at the singularities (Fig. 12(b)). As expected, the convergence is again exponential
both in capacity and reciprocal error (see Fig. 13).

4.3. Planar capacitor

The final example is a planar capacitor design (see Fig. 14) in the spirit of a recent study of reference configurations [20].
(Notice that the term condenser is often used instead of capacitor.) In this case the exact value of the capacity is not known,
but the reference result is computed up to 12 decimals using the reference solver validated in the abovementioned study.

As in the previous example the ring problem can be transformed to a pair of quadrilaterals. Again, the cut can be
chosen using symmetry (Fig. 14(a)), this time the boundary curve intersects with itself four times at the centre of the
cross. The mesh has been refined only at the tips of the cross.

For the sake of completeness let us formally define the boundary partition: γ1 is the boundary of the unit square
traversed counterclockwise direction starting at and returning to (0, 1/2), γ2 is the straight line from (0, 1/2) →

(1/3, 1/2), γ3 is the interior cross defined by the set of points

C = {(1/3, 1/2),(1/2, 1/2), (1/2, 2/3), (1/2, 1/2), (2/3, 1/2),
(1/2, 1/2), (1/2, 1/3), (1/2, 1/2), (1/3, 1/2)},

and finally γ4 is the straight line from (1/3, 1/2) → (0, 1/2) completing the ∂Ω .
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Fig. 13. Grötzsch Ring; RG(1/2). Convergence of capacity and reciprocal error on two circular quadrilaterals. Exact error (solid line); Estimated error
(dashed line). Loglog-plots with error vs the number of degrees of freedom. At p = 10 the error number = 5.

Fig. 14. Planar Capacitor.

In Fig. 14(b) a simple four-element configuration is shown. Since the geometric configuration is aligned with the axis
one would expect very good performance and this is indeed confirmed by the convergence graphs of Figs. 15(c) and 15(d).
Interestingly the estimate of the reciprocal error overshoots the exact one indicating that the solution of the conjugate
problem u2 in this configuration is not as accurate as u1. The observed convergence in both cases is exponential, but only
just. In the analysis of the results it is important to know that the number of degrees of freedom does not include the
inner modes since by definition they are superfluous in this case — every single element is a square.
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Fig. 15. Planar Capacitor. Convergence of capacity and reciprocal error on two circular quadrilaterals. Exact error (solid line); Estimated error (dashed
line). Loglog-plots with error vs the number of degrees of freedom. In the case of full mesh at p = 10 the error number = 5.

4.4. Summary of experiments

In all experiments the expected exponential convergence is observed. Perhaps not surprisingly, the error order is always
= 5 – the PDE is the same as is the coupling between p and the refinement levels, after all. The error estimate is optimistic
and the estimated error order is off by one compared with the true error, and this is reflected in the effectivities as
well. Once the reference elements have been computed, the time spent in integration due to element mappings is not
significantly higher compared with the standard elements.

5. Conclusions

The proposed non-intrusive extension of the p-version has been inspired by more general approaches on polygonal
meshes. Here the admissible elements are those whose underlying reference elements can be mapped with standard
mappings. This automatically leads to ambiguity in the sense that for a given set of nodes there are possibly many
partitions to mapping and edge (or hanging) nodes.

The numerical experiments indicate that the performance is sufficiently close to p-version. In practice, once the
reference elements have been constructed, the higher cost of integration is tolerable. This is an area of future research.
Error estimation using FEM constructions is simple to implement. It is not clear yet, how or if at all, the standard
approaches such as the auxiliary subspace method should be modified to accommodate the computable shape functions
that are not polynomials.

This is the very first paper on this approach. The current implementation is understandably a proof-of-concept, but
the numerical experiments show a lot of promise and merit further research.
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