
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or 
part of any of the repository collections is not permitted, except that material may be duplicated by you for 
your research use or educational purposes in electronic or print form. You must obtain permission for any 
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not 
an authorised user.

Hämäläinen, Perttu; Babadi, Amin; Ma, Xiaoxiao; Lehtinen, Jaakko
PPO-CMA: Proximal Policy Optimization with Covariance Matrix Adaptation

Published in:
Proceedings of the 2020 IEEE 30th International Workshop on Machine Learning for Signal Processing, MLSP
2020

DOI:
10.1109/MLSP49062.2020.9231618

Published: 01/09/2020

Document Version
Peer-reviewed accepted author manuscript, also known as Final accepted manuscript or Post-print

Please cite the original version:
Hämäläinen, P., Babadi, A., Ma, X., & Lehtinen, J. (2020). PPO-CMA: Proximal Policy Optimization with
Covariance Matrix Adaptation. In Proceedings of the 2020 IEEE 30th International Workshop on Machine
Learning for Signal Processing, MLSP 2020 Article 9231618 IEEE.
https://doi.org/10.1109/MLSP49062.2020.9231618

https://doi.org/10.1109/MLSP49062.2020.9231618
https://doi.org/10.1109/MLSP49062.2020.9231618


2020 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING, SEPT. 21–24, 2020, ESPOO, FINLAND

PPO-CMA: PROXIMAL POLICY OPTIMIZATION WITH COVARIANCE MATRIX
ADAPTATION
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ABSTRACT

Proximal Policy Optimization (PPO) is a highly popular model-free
reinforcement learning (RL) approach. However, we observe that in a
continuous action space, PPO can prematurely shrink the exploration
variance, which leads to slow progress and may make the algorithm
prone to getting stuck in local optima. Drawing inspiration from
CMA-ES, a black-box evolutionary optimization method designed for
robustness in similar situations, we propose PPO-CMA, a proximal
policy optimization approach that adaptively expands the exploration
variance to speed up progress. With only minor changes to PPO,
our algorithm considerably improves performance in Roboschool
continuous control benchmarks. Our results also show that PPO-
CMA, as opposed to PPO, is significantly less sensitive to the choice
of hyperparameters, allowing one to use it in complex movement
optimization tasks without requiring tedious tuning.

Index Terms— Continuous Control, Reinforcement Learning,
Policy Optimization, Policy Gradient, Evolution Strategies, CMA-ES,
PPO

1. INTRODUCTION

Policy optimization with continuous state and action spaces is a cen-
tral, long-standing problem in robotics and computer animation. In
the general case, one does not have a differentiable model of the dy-
namics and must proceed by trial and error, i.e., try something (sample
actions from an exploration distribution, e.g., a neural network pol-
icy conditioned on the current state), see what happens, and learn
from the results (update the exploration distribution such that good
actions become more probable). In recent years, such approaches
have achieved remarkable success in previously intractable tasks such
as real-time locomotion control of (simplified) biomechanical models
of the human body [1]. One of the most popular policy optimization
algorithms to achieve this is Proximal Policy Optimization (PPO)
[1, 2, 3].

In this paper, we make the following contributions:

• We provide novel evidence of how PPO’s exploration variance
can shrink prematurely, which leads to slow progress. Figure
1 illustrates this in a simple didactic problem.

• We propose PPO-CMA, a method that dynamically expands
and contracts the exploration variance, inspired by the Co-
variance Matrix Adaptation Evolution Strategy (CMA-ES)
optimization method. This only requires minor changes to
vanilla PPO but improves performance considerably.

Fig. 1. Comparing PPO and PPO-CMA with a simple ”stateless”
quadratic objective. Sampled actions a ∈ R2 are shown in blue. PPO
shrinks the sampling/exploration variance prematurely, which leads
to slow final progress. The proposed PPO-CMA method dynamically
expands the variance to speed up progress, and only shrinks the
variance when close to the optimum. Source code and animated
visualization can be found at: https://github.com/ppocma/
ppocma.

2. RELATED WORK

Our work is closely related to Continuous Actor Critic Learning
Automaton (CACLA) [4]. CACLA uses the sign of the advantage
estimate – in their case the TD-residual – in the updates, shifting pol-
icy mean towards actions with positive sign. The paper also observes
that using actions with negative advantages can have an adverse ef-
fect. However, using only positive advantage actions guarantees that
the policy stays in the proximity of the collected experience. Thus,
CACLA can be viewed as an early PPO approach, which we extend
with CMA-ES -style variance adaptation.

PPO represents on-policy RL methods, i.e., experience is as-
sumed to be collected on-policy and thus must be discarded after
the policy is updated. Theoretically, off-policy RL should allow
better sample efficiency through the reuse of old experience, often
implemented using an experience replay buffer. PPO-CMA can be
considered as a hybrid method, since the policy mean is updated
using on-policy experience, but the history or replay buffer for the
variance update also includes older off-policy experience.

CMA-ES has been also applied to continuous control in the
form of trajectory optimization. In this case, one can use CMA-ES
to search for a sequence of optimal controls given an initial state
[5]. Although trajectory optimization approaches have demonstrated
impressive results with complex humanoid characters, they require
more computing resources in run-time. Trajectory optimization has
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also been leveraged to inform policy search using the principle of
maximum entropy control [6], which leads to a Gaussian policy.
Furthermore, Differential Dynamic Programming (DDP) has been
formulated in the terms of Gaussian distributions, which permits
using CMA-ES for sampling the actions of each timestep in trajectory
optimization [7].

PPO-CMA is perhaps most closely related to [8, 9]. Maximum a
posteriori Policy Optimization (MPO) [8] also fits the policy to the
collected experience using a weighted maximum likelihood approach,
but negative weights are avoided through exponentiated Q-values,
based on the control-inference dualism, instead of our negative ad-
vantage mirroring. Concurrently with our work, MPO has also been
extended with decoupled optimization of policy mean and variance,
yielding similar variance adaptation behaviour as CMA-ES and PPO-
CMA; on a quadratic objective, variance is first increased and shrinks
only when close to the optimum [9].

Finally, it should be noted that PPO-CMA falls in the domain
of model-free reinforcement learning approaches. In contrast, there
are several model-based methods that learn approximate models of
the simulation dynamics and use the models for policy optimization,
potentially requiring less simulated or real experience. Both ES and
RL approaches can be used for the optimization. Model-based algo-
rithms are an active area of research, with recent work demonstrating
excellent results in limited MuJoCo benchmarks [10], but model-free
approaches still dominate the most complex continuous problems
such as humanoid movement.

3. PRELIMINARIES

3.1. Reinforcement Learning

We consider the discounted formulation of the policy optimization
problem, following the notation of [11]. At time t, the agent observes
a state vector st and takes an action at ∼ πθ(at|st), where πθ
denotes the policy parameterized by θ, e.g., neural network weights.
We focus on on-policy methods where the optimized policy also
defines the exploration distribution. Executing the sampled action
results in observing a new state s′t and receiving a scalar reward rt.
The goal is to find θ that maximizes the expected future-discounted
sum of rewards E[

∑∞
t=0 γ

trt], where γ is a discount factor in the
range [0, 1]. A lower γ makes the learning prefer instant gratification
instead of long-term gains.

Both PPO and the PPO-CMA collect experience tuples [si,ai, ri, s′i]
by simulating a number of episodes in each optimization iteration.
For each episode, an initial state s0 is sampled from some application-
dependent stationary distribution, and the simulation is continued
until a terminal (absorbing) state or a predefined maximum episode
length T is reached. After the iteration simulation budget N is
exhausted, θ is updated.

3.2. Policy Gradient with Advantage Estimation

Policy gradient methods update policy parameters by estimating the
gradient g = ∇θE[

∑∞
t γtrt]. PPO utilizes the following policy

gradient loss:

Lθ = −
1

M

M∑
i=1

Aπ(si,ai) log πθ(ai|si), (1)

where i denotes minibatch sample index and M is minibatch
size. Aπ(si,ai) denotes the advantage function, which measures the
benefit of taking action ai in state si. Positive Aπ means that the
action was better than average and minimizing the loss function will

increase the probability of sampling the same action again. Note that
Aπ does not directly depend on θ and thus acts as a constant when
computing the gradient of Equation 1. A maximum likelihood view
of Equation 1 is that the policy distribution is fitted to the data, each
data point weighted by its advantage [12]. Same as PPO, we use
Generalized Advantage Estimation (GAE) [11], a simple but effective
way to estimate Aπ .

3.3. Continuous Action Spaces

With a continuous action space, it is common to use a Gaussian
policy. In other words, the policy network outputs state-dependent
mean µθ(s) and covariance Cθ(s) for sampling the actions. The
covariance defines the exploration-exploitation balance. In the most
simple case of isotropic unit Gaussian exploration, C = I, the loss
function in Equation 1 becomes:

Lθ =
1

M

M∑
i=1

Aπ(si,ai)||ai − µθ(si)||2, (2)

Intuitively, minimizing the loss drives the policy mean towards
positive-advantage actions and away from negative-advantage actions.

Following the original PPO paper, we use a diagonal covariance
matrix parameterized by a vector cθ(s) = diag(Cθ(s)). In this case,
the loss becomes:

Lθ =
1

M

M∑
i=1

Aπ(si,ai)
∑
j

[ (ai,j − µj;θ(si))2
cj;θ(si)

+0.5 log cj;θ(si)
]
, (3)

where i indexes over a minibatch and j indexes over action variables.

3.4. Proximal Policy Optimization

The basic idea of PPO is that one performs not just one but multiple
minibatch gradient steps with the experience of each iteration. Essen-
tially, one reuses the same data to make more progress per iteration,
while stability is ensured by limiting the divergence between the old
and updated policies [3]. PPO is a simplification of Trust Region Pol-
icy Optimization (TRPO) [13], which uses a more computationally
expensive approach to achieve the same.

The original PPO paper [3] proposes two variants: 1) using an
additional loss term that penalizes KL-divergence between the old
and updated policies, and 2) using the so-called clipped surrogate
loss function. The paper concludes that the clipped surrogate loss is
the recommended choice. This is also the version that we use in this
paper in all PPO vs. PPO-CMA comparisons.

4. PROBLEM ANALYSIS AND VISUALIZATION

To allow simple visualization of actions sampled from the policy, the
didactic problem in Figure 1 simplifies policy optimization into a
generic black-box optimization problem in a 2D action space.

To achieve this, we set γ = 0, which simplifies the policy op-
timization objective E[

∑∞
t=0 γ

trt] = E[r0] = E[r(s,a)], where s
and a denote the first state and action of an episode. Thus, we can
use T = 1 and focus on visualizing only the first timesteps of each
episode. Further, we use a state-agnostic r(s,a) = r(a) = −aTa.
Thus, we have a simple quadratic optimization problem and it is
enough to only visualize the action space. The optimal policy Gaus-
sian has zero mean and variance.



Fig. 2. Policy evolution over the minibatch gradient steps of a single
iteration in our didactic problem. Figure 1 shows how the same
methods perform over multiple iterations. The black ellipses denote
the policy mean and standard deviation according to which actions
are sampled/explored. Positive-advantage actions are shown in green,
negative advantages in red. The green non-filled circles show the
negative-advantage actions converted to positive ones (Section 5.2).
Policy gradient diverges. PPO limits the update before convergence or
divergence. PPO-CMA expands the variance in the progress direction,
improving exploration in subsequent iterations.

4.1. The Instability Caused by Negative Advantages

Considering the Gaussian policy gradient loss functions in Equations
2 and 3, we note a fundamental problem: Actions with a negative ad-
vantages may cause instability when performing multiple minibatch
gradient steps in PPO style, as each step drives the policy Gaussian
further away from the negative-advantage actions. This visualized in
Figure 2 (top row). The policy diverges, gravitating away from the
negative-advantage actions.

Note that policy gradient does not diverge if one collects new
experience and re-estimates the advantages between each gradient
step; this, however, is what PPO aims to avoid for better sample
efficiency.

4.2. PPO: Stable But May Converge Prematurely

As visualized in Figure 1, the clipped surrogate loss of PPO prevents
divergence, but the exploration variance can shrink prematurely when
performing the updates over multiple iterations. Possibly to mitigate
this, PPO also adds an entropy loss term that penalizes low variance.
However, the weight of the entropy loss can be difficult to finetune.

Although the original PPO paper [3] demonstrated good results
in MuJoCo problems with a Gaussian policy, the most impressive
Roboschool results did not adapt the variance through gradient up-
dates. Instead, the policy network only output the Gaussian mean and
a linearly decaying variance with manually tuned decay rate was used.
Thus, our observation of variance adaptation issues complements
their work instead of contradicting it.

4.3. How CMA-ES Solves the Problems

The Evolution Strategies (ES) literature has a long history of solv-
ing similar Gaussian exploration and variance adaptaion problems,
culminating in the widely used CMA-ES optimization method and
its recent variants [14, 15]. CMA-ES is a black-box optimization
method for finding a parameter vector x that maximizes some ob-
jective or fitness function f(x). The key difference to PPO is that
the exploration distribution’s mean and covariance are plain variables
instead of neural networks, and not conditioned on an agent’s current
state. However, as we propose in Section 5, one can adapt the key
ideas of CMA-ES to policy optimization.

The CMA-ES core iteration is summarized in Algorithm 1. Al-
though there is no convergence guarantee, CMA-ES performs re-
markably well on multimodal and/or noisy functions if using enough
samples per iteration. For full details of the update rules, the reader
is referred to Hansen’s excellent tutorial [16].

Algorithm 1 High-level summary of CMA-ES
1: for iteration=1,2,... do
2: Draw samples xi ∼ N (µ,C).
3: Evaluate f(xi).
4: Sort the samples based on f(xi) and compute weights wi

based on the ranks, such that best samples have highest
weights.

5: Update µ and C using the samples and weights.
6: end for

CMA-ES avoids premature convergence and instability through
the following:

1. When fitting the sampling distribution to weighted samples,
only positive weights are used.

2. The so-called rank-µ update and evolution path heuristic elon-
gate the exploration variance in the progress direction, making
premature convergence less likely.

Below, we overview these key ideas, providing a foundation for
Section 5, which adapts the ideas for episodic RL. Note that CMA-
ES is not directly applicable to RL, as instead of a single action
optimization task, RL is in effect solving multiple action optimization
tasks in parallel, one for each possible state. With a continuous state
space, one cannot enumerate the samples for each state, which means
that the sorting operation of Algorithm 1 is not feasible.

4.3.1. Computing Sample Weights

Using the default CMA-ES parameters, the weights of the worst 50%
of samples are set to 0, i.e., samples below median fitness are pruned
and have no effect. The exploration mean µ is updated in maximum
likelihood manner to weighted average of the samples (similar to
minimizing the loss in Equation 2 with the advantages as the weights).
Because CMA-ES uses only non-negative weights, the maximum
likelihood update does not diverge from the sampled actions. This
suggests that one could similarly only use positive advantage actions
(the better half of the explored actions) in PPO.

4.3.2. The rank-µ update

Superficially, the core iteration loop of CMA-ES is similar to other
optimization approaches with recursive sampling and distribution
fitting such as the Cross-Entropy Method [17] and Estimation of
Multivariate Normal Algorithm (EMNA) [18]. However, there is



a crucial difference: in the so-called Rank-µ update, CMA-ES first
updates the covariance and only then updates the mean [16]. This
has the effect of elongating the exploration distribution along the best
search directions instead of shrinking the variance prematurely, as
shown in Figure 3.

Fig. 3. The difference between joint and separate updating of mean
and covariance, denoted by the black dot and ellipse. A) sampling,
B) pruning and weighting of samples based on fitness, C) EMNA-
style update, i.e., estimating mean and covariance based on weighted
samples, D) CMA-ES rank-µ update, where covariance is estimated
before updating the mean. This elongates the variance in the progress
direction, improving exploration in the next iteration.

4.3.3. Evolution path heuristic

CMA-ES also features the so-called evolution path heuristic, where a
component αp(i)p(i)T is added to the covariance, where α is a scalar,
the (i) superscript denotes iteration index, and p is the evolution path
[16]:

p(i) = β0p
(i−1) + β1(µ

(i) − µ(i−1)). (4)

Although the exact computation of the default β0 and β1 multi-
pliers is rather involved, Equation 4 essentially amounts to first-order
low-pass filtering of the steps taken by the distribution mean µ be-
tween iterations. When CMA-ES progresses along a continuous slope
of the fitness landscape, ||p|| is large, and the covariance is elongated
and exploration is increased along the progress direction. Near con-
vergence, when CMA-ES zigzags around the optimum in a random
walk, ||p|| ≈ 0 and the evolution path heuristic has no effect.

5. PPO-CMA

Building on the previous section, we can now describe our PPO-
CMA method, summarized in Algorithm 2. PPO-CMA is simple to
implement, only requiring the following changes to PPO:

• Instead of the clipped surrogate loss, we use the standard pol-
icy gradient loss in Equation 3 and train only on actions with
positive advantage estimates to ensure stability, as motivated
in Section 4.3.1. However, as setting negative advantages to
zero discards information, we also propose a mirroring tech-
nique for converting negative-advantage actions to positive
ones (Section 5.2).

• We implement the rank-µ update (Section 4.3.2) using separate
neural networks for policy mean and variance. This way, the
variance can be updated before updating the mean.

• We maintain a history of training data over H iterations, used
for training the variance network. This approximates the CMA-
ES evolution path heuristic, as explained below.

Together, these features result in the emergence of PPO-CMA vari-
ance adaptation behavior shown in Figures 1 and 2. Despite the
differences to original PPO, we still consider PPO-CMA a proximal
policy optimization method, as fitting the new policy to the positive-
advantage actions prevents it diverging far from the current policy.

5.1. Approximating the Evolution Path Heuristic

We approximate the CMA-ES evolution path heuristic (Section 4.3.3)
by keeping a history ofH iterations of data and sampling the variance
training minibatches from the history instead of only the latest data.
Similar to the original evolution path heuristic, this elongates the vari-
ance for a given state if the mean is moving in a consistent direction.
We do not implement the CMA-ES evolution path heuristic directly,
because this would need yet another neural network to maintain and
approximate a state-dependent p(s). Similar to exploration mean and
variance, p is a CMA-ES algorithm state variable; in policy optimiza-
tion, such variables become functions of agent state and need to be
encoded as neural network weights.

5.2. Mirroring Negative-Advantage Actions

Disregarding negative-advantage actions may potentially discard
valuable information. We observe that assuming linearity of ad-
vantage around the current policy mean µ(si), it is possible to mir-
ror negative-advantage actions about the mean to convert them to
positive-advantage actions. More precisely, we set a′i = 2µ(si) −
ai, A

π(a′i) = −Aπ(ai)ψ(ai, si), where ψ(ai, si) is a Gaussian ker-
nel (we use the same shape as the policy) that assigns less weight
to actions far from the mean. This is visualized at the bottom of
Figure 2. The mirroring drives the policy Gaussian away from worse
than average actions, but in a way consistent with the weighted maxi-
mum likelihood estimation perspective which requires non-negative
weights for stability. If the linearity assumption holds, the mirroring
effectively doubles the amount of data informing the updates.

Algorithm 2 PPO-CMA
1: for iteration=1,2,... do
2: while iteration simulation budget N not exceeded do
3: Reset the simulation to a (random) initial state
4: Run agent on policy πθ for T timesteps or until a terminal

state
5: end while
6: Train critic network for K minibatches using the experience

from the current iteration
7: Estimate advantages Aπ using GAE [11]
8: Clip negative advantages to zero, Aπ ← max(Aπ, 0) or con-

vert them to positive ones (Section 5.2)
9: Train policy variance for K minibatches using experience

from past H iterations and Eq. 3
10: Train policy mean for K minibatches using the experience

from this iteration and Eq. 3
11: end for



Fig. 4. PPO and PPO-CMA performance as a function of key hy-
perparameters, using average normalized scores from 9 Roboschool
environments (1 is the best observed score). The batch sizes and
entropy loss weight w values are the ones that produced the best
results in our hyperparameter searches. PPO-CMA performs overall
better, is not as sensitive to the hyperparameter choices, and the hy-
perparameters can be adjusted more independently. In contrast, PPO
requires careful finetuning of both the ε and N parameters.

In the CMA-ES literature, a related technique is to use a negative
covariance matrix update procedure [19], but the technique does not
improve the estimation of the mean.

6. EVALUATION

A key issue in the usability of an RL method is sensitivity to hy-
perparameters. As learning complex tasks can take hours or days,
finetuning hyperparameters is tedious. Thus, we conducted hyperpa-
rameter searches to investigate following questions:

• Can PPO-CMA produce better results than PPO without pre-
cise tuning of hyperparameters?

• Can hyperparameters optimized for simple tasks generalize to
complex tasks?

• Is PPO-CMA less prone to getting stuck in local optima?

As elaborated below, our data indicates a positive answer to all
the questions. Furthermore, we conducted an ablation study that
verifies that all the proposed PPO-CMA algorithm features improve
the results.

We used the 9 2D OpenAI Gym Roboschool continuous control
environments [20] for the hyperparameter searches and the ablation
study and tested generalization on the OpenAI Gym MuJoCo Hu-
manoid [21]. We performed 5 training runs with different random
seeds for environment and setting (total 31500 runs). The same code-
base was used for both PPO and PPO-CMA, only toggling PPO-CMA
features on/off, to ensure no differences due to code-level optimiza-
tions [22].

6.1. Sensitivity to Hyperparameters

Figure 4 visualizes sensitivity to key hyperparameters, i.e., iteration
simulation budget N , PPO-CMA’s history buffer size H , and PPO’s
clipping parameter ε that determines how much the updated policy
can diverge from the old one. The scores in Figure 4 are normalized
averages over all runs for a hyperparameter and algorithm choice,
such that the best best parameter combination and algorithm has score
1. We tested minibatch sizes 128, 256, 512, 1024, 2048 and use the
best performing ones for Figure 4. The figure reveals the following:

• PPO-CMA performs better with a wide range of hyperparame-
ters, in particular with H ≥ 5. Similar to CMA-ES, the main
parameter to adjust is N . A large N makes progress more
robust and less noisy. On the other hand, a large N means
less iterations and possibly less progress within some total
simulation budget, which shows as the lower scores for the
largest N in Figure 4.

• There is a strong interaction of PPO’s ε and N ; if one is
changed, the other must be also changed. This makes finetun-
ing the parameters difficult, especially considering that PPO
has the additional entropy loss weight parameter to tune. In-
terestingly, the optimal parameter combination appears to be a
very low ε together with a very low N . On the other hand, N
should not be decreased below the episode time limit T . Most
of the Roboschool environments use T = 1000.

6.2. Generalization and Scaling to Complex Problems

The 9 environments used for the hyperparameter search are all rela-
tively simple 2D tasks. To test generalization and scaling, we ran both
algorithms on the more challenging MuJoCo Humanoid-v2 environ-
ment [21]. We used the best-performing hyperparameters of Figure
4 and also tested a larger simulation budget N . The agent is a 3D
humanoid that gets rewards for forward locomotion. The results are
shown in Figure 5. PPO-CMA yields clearly better results, especially
with the increased N .

Fig. 5. Comparing PPO and PPO-CMA in the MuJoCo Humanoid-
v2 environment, showing means and standard deviations of training
curves from 3 runs with different random seeds.

6.3. Ablation study

To ensure that PPO-CMA has no redundant features, we tested dif-
ferent ablated versions on the 9 Roboschool environments used for
Figure 4. Table 1 shows the resulting normalized scores. The re-
sults indicate that all the proposed algorithm components improve
performance.

7. LIMITATIONS

We only compare PPO-CMA to PPO, and recognize that there are
more recent RL algorithms that may offer better performance [8, 9,
10]. However, PPO is a widely used algorithm due to its combi-
nation of simplicity and good performance, which calls for better
understanding of its limitations.



Algorithm version Score
No mirroring, no evolution path, no rank-µ 0.57
No mirroring, no evolution path heuristic 0.71

No mirroring of negative-advantage actions 0.82
Full PPO-CMA 1

Table 1. Ablation study results, showing normalized scores similar
to Figure 4. Note that not using the rank-µ heuristic amounts to using
a single policy network that outputs both mean and variance.

8. CONCLUSION

Proximal Policy Optimization (PPO) is a simple, powerful, and
widely used model-free reinforcement learning approach. However,
we have observed that PPO can prematurely shrink the exploration
variance, leading to slow convergence. As a solution to the variance
adaptation problem, we have proposed the PPO-CMA algorithm that
adopts the rank-µ update and evolution path heuristics of CMA-ES
to episodic RL.

PPO-CMA improves PPO results in the tested Roboschool conti-
nous control tasks while not sacrificing mathematical and conceptual
simplicity. We add the separate neural networks for policy mean and
variance and the H hyperparameter, but on the other hand, we do not
need PPO’s clipped surrogate loss function, the ε parameter, or the
entropy loss term. Similar to CMA-ES, PPO-CMA can be said to be
quasi-parameter-free; according to our experience, once the neural
network architecture is decided on, one mainly needs to increase the
iteration sampling budget N for more difficult problems.
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A. IMPLEMENTATION DETAILS

Similar to previous work, we use a fully connected policy network
with a linear output layer and treat the variance output as log variance
v = log(c). In our initial tests with PPO, we ran into numerical
precision errors which could be prevented by soft-clipping the mean
as µclipped = amin + (amax − amin) ⊗ σ(µ), where amax and
amin are the action space limits. Similarly, we clip the log variance
as vclipped = vmin + (vmax − vmin) ⊗ σ(v), where vmin is a
lower limit parameter, and vmax = 2 log(amax − amin).

We use a lower standard deviation limit of 0.01. Thus, the clip-
ping only ensures numerical precision but has little effect on conver-
gence. The clipping is not necessary for PPO-CMA in our experience,
but we still use with both algorithms it to ensure a controlled and fair
comparison.

To ensure a good initialization, we pretrain the policy in su-
pervised manner with randomly sampled observation vectors and
a fixed target output vclipped = 2 log(0.5(amax − amin)) and
µclipped = 0.5(amax + amin). The rationale behind this choice
is that the initial exploration Gaussian should cover the whole action
space but the variance should be lower than the upper clipping limit
to prevent zero gradients. Without the pretraining, nothing quarantees
sufficient exploration for all observed states.

We train both the policy and critic networks using Adam. Table
2 lists all our hyperparameters not included in the hyperparameter
searches.

Hyperparameter Value
Training minibatch steps per iteration (K) 100

Adam learning rate 0.0003
Network width 128

Number of hidden layers 2
Activation function Leaky ReLU

Action repeat 2
Critic loss L1

Table 2. Hyperparameters used in our PPO and PPO-CMA imple-
mentations.

We use the same network architecture for all neural networks.
Action repeat of 2 means that the policy network is only queried for
every other simulation step and the same action is used for two steps.
This speeds up training.

We use L1 critic loss as it seems to make both PPO and PPO-
CMA less sensitive to the reward scaling. For better tolerance
to varying state observation scales, we use an automatic normal-
ization scheme where observation variable j is scaled by k(i)j =

min
(
k
(i−1)
j , 1/ (ρj + κ)

)
, where κ = 0.001 and ρj is the root

mean square of the variable over all iterations so far. This way, large
observations are scaled down but the scaling does not constantly keep
adapting as training progresses.

Following Schulman’s original PPO code, we also use episode
time as an extra feature for the critic network to help minimize the
value function prediction variance arising from episode termination
at the environment time limit. Note that as the feature augmentation
is not done for the policy, this has no effect on the usability of the
training results.

Our implementation trains the policy mean and variance networks
in separate passes, keeping one network fixed while the other is
trained. An alternative would be to train both networks at the same

time, but cache the policy means and variances when sampling the
actions, and use the cached mean for the variance network’s loss
function, and the cached variance for the mean network’s loss.

B. HYPERPARAMETER SEARCH DETAILS

The PPO vs. PPO-CMA comparison of Section 6 uses the best
hyperparameter values that we found through an extensive search
process. We performed the following searches:

1. A 3D search over PPO’s N , ε, and minibatch size, using the
values in Figure 4 plus minibatch sizes 128, 256, 512, 1024,
2048.

2. A 3D search over PPO’s N , ε, and entropy loss weight w ∈
{0, 0.01, 0.05, 0.1, 0.15}, keeping the minibatch size at 128,
which yielded the best results in the search above. Instead
of a full 4D search, we chose this simplification to conserve
computing resources and because the minibatch size was found
to only have a minor effect on PPO’s performance, as shown
in Figure 6.

3. A 3D search over PPO-CMA’s N , H , and minibatch size,
using the values in Figure 4 plus minibatch sizes 128, 256,
512, 1024, 2048.

Each hyperparameter combination was tested using 5 indepen-
dent training runs of the following 9 Roboschool environments: In-
verted pendulum, Inverted pendulum swing-up, Inverted double pen-
dulum, Reacher, Hopper, Walker2d, HalfCheetah, Ant, and Pong. In
total, we performed 31500 training runs, totaling roughly two CPU
years.

Each hyperparameter combination score in Figure 4 is the av-
erage of 45 normalized scores: 5 training runs with different ran-
dom seeds up to 1M simulation steps, using the 9 OpenAI Gym
Roboschool tasks. The scores were normalized as Rnorm = (R −
Rmin)/(Rmax − Rmin), where R is a training run’s average of
the non-discounted episode return

∑
t rt from the last iteration, and

Rmin, Rmax are the minimum and maximum R of the same task
over all training runs and tested hyperparameters. After the averaging,
we perform a final normalization over all tested parameter combina-
tions and algorithms such that the best combination and algorithm
has score 1, i.e., PPO-CMA with minibatch size 512, N = 8k, and
H = 9 in Figure 4.

We did not have the computing resources to conduct the hyper-
parameter searches using all the Roboschool tasks such as the Atlas
humanoid robot simulation; thus, we focused on the more simple 2D
tasks that could be assumed to be solved within the limit of 1M simu-
lation steps. The results in Figure 5 indicate that the found parameters
generalize beyond the simple tasks.

C. ADDITIONAL RESULTS

Figure 7 shows the training curves (mean and standard deviation of 5
runs) of all the 9 Roboschool environments used in the hyperparame-
ter search.

Overall, PPO-CMA performs clearly better in all environments
except the inverted pendulum, where initial progress is slower.



Fig. 6. Slices of 3D hyperparameter search spaces, comprising minibatch size, N , and ε for PPO, and minibatch size, N , and H for PPO-CMA.
Minibatch size has only minor effect, and the slices with different minibatch sizes look approximately similar.



Fig. 7. Training curves from the 9 Roboschool environments used in the hyperparameter search. The plots use the best hyperparameter
combinations in Figure 4.


