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Abstract: Optimal power sharing between parallel inverters and the demand load in microgrids is
challenging and particularly critical for power grids in islanding operation. This paper introduces a
novel control approach for managing parallel distributed power sources in the presence of variable
load in islanding regime. The proposed scheme is based on the modified sliding mode control
(MSMC) which is combined with the optimal Riccati control method to achieve convergence at the
slip level with higher accuracy. The mathematical principles of the network equations are derived
and its stability is obtained using the Lyapunov function. The MSMC simulation results are discussed
in relation to the conventional droop method, while the laboratory evaluation was carried out to
characterize its dynamic and static response. The results show that the proposed scheme control is
able to manage the distributed power generation for static and dynamic load scenarios, and as such,
guarantying microgrid frequency stability.

Keywords: distributed generation; modified sliding mode control; power sharing; microgrids;
Lyapunov function

1. Introduction

Distributed generation (DG) plants are now common in the electricity network, and are mainly
related to the increasing exploitation of renewable energy sources (RES). DGs play an important role in
pollution reduction, power loss reduction and power quality improvements, which are more important
in large scale networks. On the other hand, using DG units can be challenging in some issues such
as: reverse power flow, voltage deviation and voltage fluctuation. When many DG units supply a
certain load separately adjacent to each other, in fact they form a microgrid (MG) that can solve many
challenges in the power network [1]. Figure 1 shows a typical MG architecture adjacent to an AC
system, local controllers (LCs) and MG central controller (MGCC). Photovoltaic and energy storage
systems (ESS) connect to the AC system by a DC–DC–AC converter. Additionally, wind turbines
connect to AC bus bars by an AC–DC–AC converter. In islanding operation mode, in addition to
controlling voltage and frequency, RESs are responsible for supplying local loads. The AC bus bar,

Electronics 2020, 9, 1927; doi:10.3390/electronics9111927 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
https://orcid.org/0000-0001-8132-1401
https://orcid.org/0000-0003-2217-5293
https://orcid.org/0000-0002-4589-5341
http://dx.doi.org/10.3390/electronics9111927
http://www.mdpi.com/journal/electronics
https://www.mdpi.com/2079-9292/9/11/1927?type=check_update&version=2


Electronics 2020, 9, 1927 2 of 16

which is connected to the upstream network in the connected to network mode, is very important
and is known as the point of common coupling (PCC) bus. This bus controls power flow and load
distribution between MG and the upstream network [2].
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MG stability is a critical issue, requiring an appropriate control scheme to face real time power
requirements in the presence of constant load changes of varying natures. In this sense, the DG’s
capability to provide active and reactive powers is mandatory to limit MG voltage and frequency
deviation. Droop controller is one of the well-known controllers in this field which has been used in
recent years [3]. Additionally, a novel control method, named virtual synchronous generator (VSG)
which functions in accordance with fluctuation equations, is proposed to control network steady
state and transient state [4]. Due to the fact that the inertia of DG units has a great impact on the
droop controller, VSG output active and reactive powers dynamically distributes among DG units
in a way that its virtual inertia and other DGs are retained. Thus, the implementing of an improved
droop method for power distribution is still one of the popular algorithms in MG islanding operation
among researchers. However, this method faces serious challenges in reactive power distribution.
An improved droop method is proposed in [5] to improve dynamic stability in active and reactive
power distribution. Additionally, an adaptive distributed droop method is presented in [6] to match
the dynamic performance of power system characteristics with the network state, considering its static
state. Furthermore, to distribute power under complex loading conditions, a strategy based on a
regulation algorithm is proposed in [7]. Additionally, to control inverters, the power management is
proposed hierarchically in [8]. Although power distribution is performed and MG dynamic response
is studied, its economic evaluation has not been executed yet. In [9], the voltage stability in case of a
big disturbance has been studied, and a droop-based Q-f and P-V control method that can operate
under uncertain feeder impedance condition has been proposed. An important economic problem
observed in hierarchical controllers is that active power measurement criterion should be based on
generator costs, and not a linear or proportional relationship based on generator size.

A cost-based non-linear algorithm is offered in [10] and a control plan based on droop and
prioritized cost is evaluated in [11]. However, the ability of instantaneous reactive power distribution
optimization is visible in neither of the mentioned references. When all DGs operate in the same
frequency and steady state, active power can be regulated according to the droop control method.
However, under non-linear load and unequal feeder impedance, reactive power is still deprived of
proper distribution and power harmonics emerge in it [12]. Under this condition and even a more
critical condition, poorly active power distribution could result in reactive power flow among DGs.
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This will lead into instability of the network [13]. So far, to distribute reactive power, many droop-based
methods have been presented that are based on three main categories: the improved primary droop
control method [14], improved virtual impedance method [15] and improved hierarchical control
methods [16].

There are many studies that have concentrated on the power sharing issue, however, some of
the limitations and restrictions are still remained. For example, in the active power sharing method
using droop control and its derivatives some drawbacks are observed such as: (1) it is not appropriate
for total costs minimizations, (2) it is not suitable for multiple DGs utilization, (3) it is not suitable for
complex feeder impedance, and (4) the proportional active power sharing could not be achieved [17].
When networked-based approaches or the decoupling method between the P-V and Q-f curves are
chosen to obtain the active power sharing, several disadvantages are come into watch such as: (1) it
is not suitable for complex MG, (2) the total cost of generation could not be considered, and (3) the
proportional active power sharing is not achieved [18,19]. Considering the nonlinear cost-based droop
method, it also has two shortcomings as: (1) it is not suitable for complex feeder impedance, and (2) it
is not applicable for complicated MG structures [20].

The difficulties of reactive power sharing using optimized secondary control could be expressed
as: (1) the proportional reactive power sharing is difficult to achieve, (2) the communication delays still
exist in the low-bandwidth communication (LBC), and (3) the control equations need to be further
optimized in the MG with complex loads [21]. The programing algorithms for reactive power sharing
are useful, but some complications are still observed, such as the complexity of implementation,
data drop problems and time delay considerations [22]. The multi-agent method has recently been
introduced in MG control and operation. Using this approach for reactive power sharing has many
advantages, however, there might be some weaknesses such as: (1) designing an applicable protocol
in agents is difficult, (2) the active and reactive power sharing are poor when data drop exists in the
preset algorithm, and (3) the communication delay is in LBC lines may cause some interferences [23].

The abovementioned highlights the main research gaps of the accurate power sharing issue.
Tables 1 and 2 represent a comparison between advantages and disadvantages of power distribution
control methods for active and reactive sharing, respectively.

Table 1. Active power sharing techniques and attributes.

Active Control Methods Advantages Disadvantages

Droop [17]

u Achieve equivalent active power sharing

u Eliminate voltage and frequency deviation

u High disturbance rejection performance

u Not suitable for multiple DG units

u Not considering total cost of generation

u Proportional active power sharing is not achieved

u Not suitable for complex feeder impedance

Decoupling P-V and
Q-f [18]

u Improve transient response

u Improve inherent contradiction between
voltage and power sharing

u Improve the stability of microgrid

u Not suitable for complex MG

u Not considering total cost of generation

u Proportional active power sharing is not achieved

Networked-based active
power sharing [19]

Nonlinear cost-based

droop [20]

u Improved active power sharing under
unknown line impedance

u High robustness on communication delays

u Eliminate voltage and frequency deviation

u Minimize total cost of generation

u Not considering total cost of generation

u Proportional active power sharing is not achieved

u Not suitable for complex feeder
impedance condition

u Not suitable for complex MG
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Table 2. Reactive power sharing techniques and attributes.

Reactive Control Methods Advantages Disadvantages

Optimized secondary
control [21]

u Active power sharing is achieved

u Frequency deviation is eliminated

u Reactive power sharing is realized
without high bandwidth communication

u The control law can be simplified by
graph theory

u Proportional reactive power sharing is difficult
to be achieved

u Communication delays exist in the LBC

u Control equations need to be further optimized
in the MG with complex loads

Programming algorithm [22]

u Proportional reactive power sharing can
be achieved

u The equipment safety is ensured

u Good performance for expansibility

u The programming algorithm is difficult to be
designed in a complex MG

u Delay/data drop in algorithm need to
be considered

u Delays in algorithm need to be considered

Multi agent systems [23]

u The control law can be simplified by
graph theory

u Organize information autonomously
computational entities

u Be beneficial to exchange information

u Communication delay is in LBC lines

u Good protocol in agents is difficult to
be designed

u The active and reactive power sharing are poor
when data drop exists in the pre-set algorithm

In [24] the impact of distributed generation in the distribution networks is considering voltage
profile improvement and energy losses minimization is investigated, but the optimal power sharing is
not achieved. In [25] the islanding effect on distribution networks and end user loads in presented.
Since the load sharing in islanding is analyzed, but there are no effects of feeder impedance.
The authors in [26] proposed a method for grid monitoring considering energy storage system
control, however, the reactive power sharing accuracy is not sufficient in details. For a fuzzy logic
hysteresis control of a single phase inverter, the authors in [27] represent an approach to show the
effectiveness of control scheme, and finally, in [28], there is a comprehensive review for grid control
methods, which are performed in parallel.

This paper is organized as follows: Section 2 presents the fundamentals of DG control in micro grid
type networks. Section 3 describes microgrid basic mathematical modeling. A modified sliding mode
control (MSMC) based on nonlinearity uncertainties is proposed in Section 4. Section 5 investigate the
simulations results and Section 6 discuss the experimental output. Finally, the conclusion is presented
in Section 7.

The main contributions in this paper are:

• A modified enhanced SMC method to get better convergence in sliding surface. This method
is easy to implement for laboratory tests rather than the multi-agent systems, programming
algorithms and network-based approaches.

• The Lyapunov function combined with the optimal Riccati ensure the proposed MSMC scheme is
stable. This results in being sure for guaranteeing the stability of control approach in applicable
prototype implementation, because some of abovementioned methods do not have capability to
check the system stability. In addition, the constant coefficients used to design the Lyapunov
function are few.

• Equal reactive and active power sharing are achievable with multiple DGs units with minimum
deviation, since several methods named in Tables 1 and 2 are not compatible with complex MG
and multiple DGs.

2. DG Control Fundamentals

The control scheme for two islanded MGs is represented in Figure 2 to show the blocks placements
and control loops. In general, there are three control layers that exist to guarantee the MG stability and
safe operation:
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• The upper layer (loop 1) controls the voltage and frequency with satisfying precise power balance
between loads and the DGs;

• The second layer (loop 2) mitigates the voltage and frequency attenuations, results in reference
current vector to make the pulse width modulation (PWM) pulses;

• The third layer usually controls the power exchange with the upstream network in safe operation
mode considering the economic power market law.

Figure 3 shows the classic control scheme for the two parallel-DGs in an islanded MG. The MG
frequency fMG and measured voltage VMG are compared to the reference signals, respectively
to be regulated and attenuation limitation through a proportional-integral-derivative (PID) or
proportional-resonance (PR) controller. The regulated signals are transferred to the primary and inner
control loop considering a communication lines. The reactive power sharing will be ineffective if the
conventional secondary control is applied. These parallel DGs are connected to a common distribution
bus with different feeder reactances X1 , X2, as shown in Figure 3, results in unsuccessful voltage
maintain [29].

The characteristics of conventional secondary control scheme is shown in Figure 3b. The red
and green dashed line is the secondary control curve for DG1 and DG2, respectively, while the blue
solid line is the conventional droop control curve. In Figure 3b.1, the points A(Q1,E1) and C(Q2,E2)
represent the output voltage of DG1. The injected reactive power Q1 and Q2 result in E1 for DG1 and
E2 for DG2, respectively. The points B(Q1′,E*) and D(Q2′,E*) signify the output reactive power of DG1
and DG2 when the voltage is kept constant at the nominal value E* in the conventional secondary
control. Conversely, the reactive power deviation between DG1 and DG2 increases as this non-equality
Q1′ < Q1 < Q2 < Q2′. Nevertheless, as revealed in Figure 3b.2, once the reactive power is controlled as
Q1 = Q2 = Q” in the conventional secondary control, the points B’(Q”,E1”) and D’ (Q”,E2”) will show
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the output voltages of DG1 and DG2, respectively. However, the voltages of DGs cannot be renovated
at the nominal values, so that and the voltage difference is larger than the amount compared to the
primary control (E2 < E2“ < E1 < E1“). Therefore, the conventional method may not adjust the output
voltages of DGs precisely at equality condition of reactive power [29,30].
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3. State Space Power Grid Equations

A control structure for power sharing relying on two parallel DG units is illustrated in Figure 4.
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For the purpose of studies, the renewable source-based DG plant representation is simplified,
as shown below.
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The basic equations for the MG system physical description are:

Vout,abc = L f
diout,abc

dt
+ R f iout,abc + vPCC,abc (1)

vPCC,abc = L
dil
dt

+ Rlil (2)

iout,abc = il,abc +
1
R

vPCC,abc + C
dvPCC,abc

dt
(3)

where iout,abc DG unit output three-phase current, vPCC,abc is the voltage at the point of common
coupling, il,abc is the inductive load current and Vout,abc is the three-phase voltage at inverter output.
By applying Clark and Park transformations all variables of each phase mentioned above are translated
to a dq rotating frame as follows:

d
dt

Vd = −
1

RC
Vd +ω Vq +

1
C

Iout,d −
1
C

Ild (4)

d
dt

Vq = −
1

RC
Vq −ω Vq +

1
C

Iout,q −
1
C

Ilq (5)

d
dt

Iout,d = −
1

L f
Vd −

R f

L f
Iout,d +ω Iout,q +

1
L f

Vd +
1

L f
δVout.d (6)

d
dt

Iout,q = −
1

L f
Vq −

R f

L f
Iout,q −ω Iout,d +

1
L f

Vq +
1

L f
δVout.q (7)

d
dt

Il,d =
1
L

Vd −
Rl
L

Il,d +ω Il,q (8)

d
dt

Il,q =
1
L

Vq −
Rl
L

Il,q −ω Il,q (9)

where δVout.d and δVout.q are uncertainties related to the inverter. If the state space X and input variable
U are included in state space equations, therefore, we have:

X =
[
Vd, Vq, Iout,d, Iout,q, Il,d, Il,q

]
(10)

U =
[
Vout.d, Vout.q

]
(11) .

X(t) = f (X(t)) + g(X(t))u(t) + δ(X, t)
X(0) = X0

(12)

where f (X(t)) and g(X(t)) are nonlinear functions of state vector and δ(X, t) is an indefinite function
representing the uncertainties and dynamic attenuations. Assuming that δ(X, t) = Hδ(X, t), then it
can be found that:

.
X(t) = f (X(t)) + g(X(t))u(t) + Hδ(X, t) (13)

Assume that
∣∣∣∣∣∣δ(X, t)

∣∣∣∣∣∣ < γ0 + γ1
∣∣∣∣∣∣X(t)

∣∣∣∣∣∣ where γ0 and γ1 are positive constants. If δ(X, t) = 0 then
the system formulated in (3) will change to:

.
X(t) = f (X(t)) + g(X(t))u(t) (14)

That the objective function (J) can minimize the system costs.

J =
1
2

∞∫
0

(
X(t)T Q(X) X(t) + u(t)T R(X) u(t)

)
dt (15)
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where Q(X) and R(X) are nonlinear functions of state vector X, which are semi-definite positive and
definite positive, respectively. To compensate the uncertainties, the control law is chosen as:

u(t) = u(t)nom + u(t)unc (16)

where u(t)nom and u(t)unc are the models of optimized nominal system and uncertainties considering
parameter variations and distributions. For the linear systems such as power grid equations around
set point, the state-space equations are written as:

.
X(t) = A(X)X(t) + B(X)u(t) (17)

The feedback controller using the state-dependent Riccati equation is chosen as follows [31]:

u(X) = −R−1(X)B(X)TP(X)X(t) (18)

where P(X) represents a symmetrical definite positive matrix, which is unique at each set point
obtained by solving as:

A(X)TP(X) + P(X)A(X) + Q(X) = P(X)R−1(X)B(X)TP(X) (19)

4. Modified Sliding Mode Control

Considering S(t, X(t)) is a sliding surface which is a function of G(X) and T(t), then the formulation
principles are expressed as:

S(t, X(t)) = G(X)((X(t) −X0) − T(t)) (20)

T(t) =

t∫
0

(
A(X) + B(X)R−1(X)B(X)TP(X)

)
X(t′)dt′ (21)

where G(X) ∈ Rm×n represents an un-unique matrix, which has to satisfy the non-singularity of
G(X)B(X). According to (10), it is obvious that the initial state S(0, X0) is equal to zero. Consequently,
the system is initiated from zero initial condition. Applying first derivative led to:

d
dt

S(t, X(t)) = G(X)

 .
X(t) −A(X)X(t)

+B(X)R−1(X)B(X)TP(X)X(t)


= G(X)

(
A(X)X(t) + B(X)u(t) −A(X)X(t)
+B(X)R−1(X)B(X)TP(X)X(t)

)
= G(X)B(X)

(
u(t) + R−1(X)B(X)TP(X)X(t)

)
(22)

To satisfy d
dt S(t, X(t)) = 0, the control input is obtained as (13).

u(t)nom = −R−1(X)B(X)TP(X) (23)

In order to guarantee the system stability, choosing a Lyapunov function has to meet the negative
first derivate criterion. Then, it follows that:

u(t)unc = −F(X)−1
(
µ+ γ0

∣∣∣∣∣∣F(X)
∣∣∣∣∣∣+ γ1

∣∣∣∣∣∣F(X)
∣∣∣∣∣∣||X||)sgn(S) (24)

F(X) = G(X)B(X) (25)
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where µ is a positive constant. To apply the system limitation and to avoid chattering phenomenon,
the saturation functions (sat) is used instead of sgn function. System stability evaluation is obtained:

V =
1
2

STS (26)

Then:
d
dt

V =
.

V = STS = STG(X)
( .
X(t′) −A(X)X(t′)

)
(27)

Using some simplifications lead to:

d
dt

V =
.

V = STS = STG(X)
( .
X(t′) −A(X)X(t′)

)
+STG(X)B(X)R−1(X)B(X)TP(X)X(t′)

= STG(X)
(
A(X)X(t) + B(X)u(t) + Hδ(X, t) −A(X)X(t)

)
+STG(X)B(X)R−1(X)B(X)TP(X)X(t′)

= STG(X)
(
B(X)u(t) + Hδ(X, t)

)
+STG(X)B(X)R−1(X)B(X)TP(X)X(t′)

= STG(X)(−B(X))
(
u(t)unc + Hδ(X, t)

)
= −µ||S||1 + STG(X)Hδ(X, t)

−

(
γ0

∣∣∣∣∣∣F(X)
∣∣∣∣∣∣+ γ1

∣∣∣∣∣∣F(X)
∣∣∣∣∣∣.||X||)||S||1

≤ −µ||S||1 +
∣∣∣∣∣∣F(X)

∣∣∣∣∣∣.||S||.∣∣∣∣∣∣δ(X, t)
∣∣∣∣∣∣

−

(
γ0

∣∣∣∣∣∣F(X)
∣∣∣∣∣∣+ γ1

∣∣∣∣∣∣F(X)
∣∣∣∣∣∣.||X||)||S||1

≤ −µ||S||1 +
∣∣∣∣∣∣F(X)

∣∣∣∣∣∣.||S||(γ0 + γ1||X||)

−

(
γ0

∣∣∣∣∣∣F(X)
∣∣∣∣∣∣+ γ1

∣∣∣∣∣∣F(X)
∣∣∣∣∣∣.||X||)||S||1

(28)

Applying further simplification, results in:

d
dt

V =
.

V ≤ −µ||S||1 +
∣∣∣∣∣∣F(X)

∣∣∣∣∣∣.||S||(γ0 + γ1||X||)(||S|| − ||S||1) (29)

where ||S||1 is the first order norm of sliding surface. If ||S|| < ||S||1, it is guaranteed that the first derivate
of the Lyapunov function is negative (

.
V ≤ 0).

5. Simulation Results

The verification of the proposed technique comprises two simulation scenarios being carried out
in MATLAB. The conventional droop controller is compared to the new MSMC strategy regarding
active power and reactive power sharing response as well as the system frequency stability. For the
sake of clarity, the MG is simulated with four DG power plants having each one a rated apparent
power of 8 kVA as shown in Table 3.

Figure 5 shows the simulations results using the conventional controller. Initially, the four DG
units are delivering a combined active power of 10.8 kW in equal parts though for reactive support a
significant imbalance can be seen in Figure 5b. That is to say, the conventional approach cannot handle
well the sharing of the reactive power among the four DG units. As it reaches the time instant t = 1.2 s
the load active power needs increase by 70%. As observed the active power output is still equally
provided and noted that reactive power sharing reacts in the same proportional way. Restoration
of voltage and frequency to previous values before the increment of load impedance followed by a
decrease of 60 in relation to the original steady state is not possible as clearly seen in Figure 5c,d. In the
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following scenario the proposed controller is subject to similar working conditions. The controller
under study is configured accordingly to the parameters shown in Table 4. Figure 6a,b reveal that in
steady state operation, both electrical quantities are generated by showing the proportionality criterion
is effectively applied. As for power reactive sharing capability, the non-conventional controller is able
to distribute equally the reactive energy output, ensuring DGs output voltage are equal. At t = 1.6 s
the DG plant number 4 is shut down and remains disconnected until the end of the simulation. With
loss of one DG unit the remaining DG plants update their response providing almost balanced active
power. There is a small mismatch from the DG3 compared to the other two DGs, which are performing
equally in terms of power delivery as observed in Figure 6a.

Table 3. Simulated MG electrical specifications.

Parameter Value

DG rated apparent power (Sn) 12 (kVA)
Rated grid voltage (Vn) 380 V (line-to-line)

Rated system frequency ( f ) 50 (Hz)
DC link voltage (Vdc) 750 (V)

Switching frequency ( fsw) 12 (kHz)
Output inductance filter for all DGs

(
L f

)
2.2 (mH)

Output capacitance filter for all DGs
(
L f

)
220

Maximum load power (SL,max) 20 + j 20 (VA)
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Figure 5. Scenario with conventional droop controller: (a) active power sharing; (b) reactive power
sharing; (c) system frequency; (d) distributed generation (DGs) terminal voltages.

At loss of one DG unit the system frequency deviation is almost no noticeable since the difference
is residual in Figure 6c. On the other hand, reactive power sharing requirement in Figure 6b seems to
be satisfied in the presence of the DG loss event.
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Table 4. Modified sliding mode control (MSMC) controller parameters.

Parameter Value

γ0 24
γ1 0.003
X0 [0]n×n
µ 1000
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Figure 6. Scenario with proposed MSMC controller: (a) active power sharing; (b) reactive power
sharing; (c) system frequency; (d) DGs terminal voltages.

6. Experimental Verification

Two parallel DG emulating units are part of the three-phase MG prototype to evaluate the new
controller under analysis. Figure 7 shows a picture of the equipment used in the laboratorial evaluation.
The central controller is operated by a TMS320F28335 DSP from Texas Instruments. Each DG plant
consists of six IRF740 MOSFET power devices arranged in a three-phase H-bridge being switched
at frequency of 12 kHz. The three-phase output voltage is generated with the SPWM technique.
Two types of loads were used in the experiments being both balanced. One consists of resistance and
inductance elements with a rated apparent power of 25 VA. The other is basically a three-phase diode
bridge connected to a RC load. The complete system specifications are represented in Table 5.

The first practical test was carried out for the linear load having both DGs controlled by the
droop technique and some measured quantities are seen in Figure 8. The upper waveforms represent
one of the three-phase alternating current at DGs output. As expected, the currents are imbalanced.
Compared to the performance in previous Figure 8, MSMC scheme reduces the power sharing errors
as revealed by Figure 9.
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Figure 7. Simulated MG in laboratory.

Table 5. Design and system specifications for laboratory tests.

Parameter Description Value Type/Reference

VAC
AC grid voltage
phase to ground 25 Vrms AC power source

fline AC line/grid frequency 50 Hz Function generator
fsw Switching frequency 12 kHz Function generator
VDC DC link voltage 40 V DC power supply
CDC DC link capacitance 930 uF Electrolytic capacitor
LC PPF inductance 1.1 mH Single coil
CC PPF capacitance 220 uF Electrolytic capacitor

Converter design elements

MOSFET Power switch 400 V, 10 A IRF740
Dinv Power Diode 800 V, 20 A VS-20ETS08
DSP Controller 150Mhz, 12-bit ADC TMS320F28335

Rectifier Power rectifier diode 2200 V, 20 A VS-T20HF220

Electronics 2020, 9, x FOR PEER REVIEW 13 of 17 

 

 
Figure 8. Experimental results of droop controller: (dark blue trace) DG1 output current, (light blue 
trace) DG2 output current, (green trace) DG1 output voltage, (pink trace) DG2 output voltage. 

 
Figure 9. Experimental results of proposed controller: (dark blue trace) DG1 output current, (light 
blue trace) DG2 output current, (green trace) DG1 output voltage, (pink trace) DG2 output voltage. 

The two-phase currents in each of the DG outputs, respectively, are in good agreement with 
regard to the measured Ip-p quantities. In the following scenario the RL load is replaced by a three-
phase diode rectifier. Figure 10 documents how MSCM performance under such PCC load. It is clear 
that the high harmonic content current is not an obstacle to deteriorate the power sharing 
functionality of the proposed control scheme. Therefore, both DG currents have similar profile and 
amplitude. Naturally, it is observed some voltage waveform degradation which can be fixed with 
appropriate filtering to meet international standards. 

Figure 8. Experimental results of droop controller: (dark blue trace) DG1 output current, (light blue trace)
DG2 output current, (green trace) DG1 output voltage, (pink trace) DG2 output voltage.



Electronics 2020, 9, 1927 13 of 16

Electronics 2020, 9, x FOR PEER REVIEW 13 of 17 

 

 
Figure 8. Experimental results of droop controller: (dark blue trace) DG1 output current, (light blue 
trace) DG2 output current, (green trace) DG1 output voltage, (pink trace) DG2 output voltage. 

 
Figure 9. Experimental results of proposed controller: (dark blue trace) DG1 output current, (light 
blue trace) DG2 output current, (green trace) DG1 output voltage, (pink trace) DG2 output voltage. 

The two-phase currents in each of the DG outputs, respectively, are in good agreement with 
regard to the measured Ip-p quantities. In the following scenario the RL load is replaced by a three-
phase diode rectifier. Figure 10 documents how MSCM performance under such PCC load. It is clear 
that the high harmonic content current is not an obstacle to deteriorate the power sharing 
functionality of the proposed control scheme. Therefore, both DG currents have similar profile and 
amplitude. Naturally, it is observed some voltage waveform degradation which can be fixed with 
appropriate filtering to meet international standards. 
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The two-phase currents in each of the DG outputs, respectively, are in good agreement with regard
to the measured Ip-p quantities. In the following scenario the RL load is replaced by a three-phase
diode rectifier. Figure 10 documents how MSCM performance under such PCC load. It is clear that
the high harmonic content current is not an obstacle to deteriorate the power sharing functionality
of the proposed control scheme. Therefore, both DG currents have similar profile and amplitude.
Naturally, it is observed some voltage waveform degradation which can be fixed with appropriate
filtering to meet international standards.Electronics 2020, 9, x FOR PEER REVIEW 14 of 17 
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7. Discussion

The dynamic performance of the conventional control method is compared to MSMC based on
the two case studies discussed above, taking into account three quantities (rise time, overshoot and
settling time). The measurements are documented in Tables 5 and 6. In conventional design control,
the measured overshoot is limited to 2.12% in the first case study. As for the MSMC, the overshoot
is lower, that is 0.78%. The comparison between performance evaluation of these methods for both
active and reactive power is represented in Tables 6 and 7, respectively. Furthermore, the settling time
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and the rise time have being investigated, with results showing the superiority of the MSMC approach.
The root-locus diagram shown in Figure 11 represents the optimum design of proposed control system,
while the roots are enough far from the imaginary axis.

Table 6. Dynamic response performance comparison regarding active power support.

Method
Case Study 1 Case Study 2

Rise Time Overshoot Settling Time Rise Time Overshoot Settling Time

Conventional method 0.0041 s 2.12% 0.018 s 0.0052 s 2.17% 0.021 s
Proposed MSMC 0.0030 s 0.78% 0.011 s 0.0033 s 0.79% 0.013 s

Table 7. Dynamic response performance comparison regarding reactive power support.

Method
Case Study 1 Case Study 2

Rise Time Overshoot Settling Time Rise Time Overshoot Settling Time
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8. Conclusions

In this paper, a new control method (MSMC) based on a sliding mode technique, aiming at
effective power sharing in MG type networks is presented. The proposed scheme takes into account
the sliding surface properties by minimizing the constants and defining the zero condition in all initial
states, which results in fast convergence and thus guaranteeing network stability. The simulations and
tests in the laboratory have shown the feasibility of the technique for power sharing service allowing
equal support of active and reactive power needs, whether in steady state load conditions or under
dynamic load changes. It was verified that after load changes the network frequency deviation is
residual and thus not affecting MG frequency stability. In particular, for load changes events the
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MSMC scheme dynamic response is very satisfactory with lower overshoot and shorter settling time
compared to conventional droop control. As for the MG voltage stability, the voltage drop at the DG
terminals are eliminated, proving the reactive power sharing capability is adequate. However, the only
drawback of the proposed scheme is the time delay consideration in LBC lines, which could be solved
by using a delay block compensation, which will be the subject of study for the authors future works.
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