
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or 
part of any of the repository collections is not permitted, except that material may be duplicated by you for 
your research use or educational purposes in electronic or print form. You must obtain permission for any 
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not 
an authorised user.

Bruzual, Daniel; Montoya Freire, Maria L.; Di Francesco, Mario
Automated Assessment of Android Exercises with Cloud-native Technologies

Published in:
ITiCSE 2020 - Proceedings of the 2020 ACM Conference on Innovation and Technology in Computer Science
Education

DOI:
10.1145/3341525.3387430

Published: 15/06/2020

Document Version
Publisher's PDF, also known as Version of record

Please cite the original version:
Bruzual, D., Montoya Freire, M. L., & Di Francesco, M. (2020). Automated Assessment of Android Exercises
with Cloud-native Technologies. In ITiCSE 2020 - Proceedings of the 2020 ACM Conference on Innovation and
Technology in Computer Science Education (pp. 40-46). (Annual Conference on Innovation and Technology in
Computer Science Education, ITiCSE). ACM. https://doi.org/10.1145/3341525.3387430

https://doi.org/10.1145/3341525.3387430
https://doi.org/10.1145/3341525.3387430


Automated Assessment of Android Exercises
with Cloud-native Technologies

Daniel Bruzual
Eficode

daniel.bruzual@eficode.com

Maria L. Montoya Freire
Aalto University

maria.montoyafreire@aalto.fi

Mario Di Francesco
Aalto University

mario.di.francesco@aalto.fi

ABSTRACT
Mobile applications are very challenging to test as they usually have
a complex graphical user interface and advanced functionality that
involves interacting with remote services. Due to these features, stu-
dent assessment in courses about mobile application development
usually relies on assignments or projects that are manually checked
by teaching assistants for grading. This approach clearly does not
scale to large classrooms, especially for online courses. This article
presents a novel system for automated assessment of Android ex-
ercises with cloud-native technologies. Different from the state of
the art, the proposed solution leverages a mobile app testing frame-
work that is largely used in the industry instead of custom libraries.
Furthermore, the devised system employs software containers and
scales with the availability of resources in a data center, which is
essential for massive open online courses. The system design and
implementation is detailed, together with the results from a deploy-
ment within a master-level course with 120 students. The received
feedback demonstrates that the proposed solution was effective, as
it provided insightful feedback and supported independent learning
of mobile application development.

CCS CONCEPTS
• Social and professional topics→ Student assessment; • Ap-
plied computing → Interactive learning environments.

KEYWORDS
Android; mobile app development; software containers; UI testing;
full-stack; automated grading; online learning; computer science
education
ACM Reference Format:
Daniel Bruzual, Maria L. Montoya Freire, and Mario Di Francesco. 2020. Au-
tomated Assessment of Android Exercises with Cloud-native Technologies.
In 2020 ACM Conference on Innovation and Technology in Computer Science
Education (ITiCSE’20), June 15–19, 2020, Trondheim, Norway. ACM, New
York, NY, USA, 7 pages. https://doi.org/10.1145/3341525.3387430

1 INTRODUCTION
Online learning has seen a large growth in recent years. Its scope
ranges from professional training to remote education, primarily
at the university level. The advantages of online learning include

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ITiCSE ’20, June 15–19, 2020, Trondheim, Norway
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6874-2/20/06.
https://doi.org/10.1145/3341525.3387430

lower delivery costs, more flexibility in student participation, and
easy scaling to a large number of enrollments [17]. Online learning
is also increasingly used for courses given at traditional (i.e., non-
virtual) universities, as a complement to contact sessions and means
to increase student engagement outside the classroom.

Mobile application development is an important subject in com-
puter science education, due to the pervasive availability of devices
such as smartphones and their prevalence in accessing a variety of
Internet-based services [10]. Furthermore, companies demand more
and more of related skills, especially for fast-growing businesses
in diverse operating sectors. Therefore, online activities related to
mobile application development offer several opportunities to both
students and institutions [15].

Unfortunately, developing mobile applications is also challeng-
ing, as they usually have a complex graphical user interface and
advanced functionality that involves interacting with remote ser-
vices. In the context of higher education, assignments and exer-
cises on mobile application programming are also non-trivial to
evaluate [12]. As a consequence, student assessment in this con-
text usually relies on assignments or projects that are manually
checked by teaching assistants for grading [35]. This approach
has several limitations, including scaling to large classrooms. In
contrast, automated assessment of student submissions has been
largely used in computer science education, primarily for grading
exercises in introductory programming courses [11]. Significantly
less research, instead, has focused on automated grading for more
advanced courses, including mobile application programming [6].

This article presents a novel system for automated assessment of
Android exercises with cloud-native technologies. Different from
the state of the art (Section 2), the proposed solution leverages a
mobile app testing framework that is largely used in the industry
instead of custom libraries. Moreover, the devised system employs
software containers and scales with the availability of resources in
a data center, which is essential for massive open online courses.
Such a cloud-friendly system is considered in the context of a course
on full-stack development (Section 3).

In particular, this work establishes the following major contribu-
tions. First, it introduces the design and implementation of a
system for automated assessment of Android exercises (Section 4).
The proposed solution leverages modern cloud-native technolo-
gies and mobile app testing practices widely used in the industry
for grading purposes. Second, it analyzes the impact of the de-
veloped system on learning in a master-level course with 120
students, supported by both behavioral data and student feedback
(Section 5). Such analysis demonstrates that the proposed solu-
tion was effective, as it provided insightful feedback and supported
independent learning of mobile application development. Finally,
it discusses the experience of employing the proposed system

Session: Tools and Assessments ITiCSE ’20, June 15–19, 2020, Trondheim, Norway

40

https://doi.org/10.1145/3341525.3387430
https://doi.org/10.1145/3341525.3387430


at a university (Section 6). Specifically, it offers important practi-
cal considerations on automation for teaching mobile application
development in higher education and beyond.

2 RELATEDWORK
Several works in the literature targeted teaching mobile computing
and (or) application development in computer science, particularly,
for novice programmers. Among them, Reardon and Tangney [31]
showed the feasibility of employing project-based learning of the
Java programming language in the context of mobile application
development for freshmen. Ilinkin [18] developed a Java-based
framework to facilitate learning of mobile application development
in a CS1 course. Black [8] summarized experiences in teaching
mobile application programming for Android in a CS2 course, with
focus on game development. However, these works are based on
courses that leverage tutorials and staff or peer feedback instead of
automated tools. In contrast, this article explicitly considers online
learning activities through automated assessment.

Automated assessment of student submissions has received wide
consideration in the literature [5, 13, 33]; the following focuses on
the works that are most relevant. Allevato et al. [6] designed and
implemented a system for automated assessment of Android ap-
plications. Specifically, they leveraged the Roboelectric framework
to run applications without the need for the Android emulator,
with some loss in fidelity. Instead, this article demonstrates the
feasibility of accurate assessment by applying best practices in
software development and cloud-native technologies. Wünsche et
al. [36] developed a system for automated grading of computer
graphics assignments based on OpenGL. The authors addressed
the design of both the system and the exercises used in a course.
Their proposed solution was realized as a Moodle plug-in that runs
student code within a virtual machine. Even though the context is
different, this article shares similarities with [36] in terms of how
to evaluate graphical output of student submissions and the use of
cloud technologies. However, the solution proposed here employs
software containers instead of virtual machines and targets the
more complex scenario represented by Android applications.

There are also a few works that specifically considered the use
of modern cloud-based technologies in the context of computer
science education. JupyterHub [26] leverages software containers
to provide computing sessions in the form of Python notebooks.
nbgrader [9] extends JupyterHub with support for automated grad-
ing of exercises. However, these solutions are specific to interactive
labs, thus, more suitable for code snippets rather than for more com-
plex code, such as that for mobile applications. Peveler et al. [29]
compared the performance of systems for automatic grading when
running into jailed sandboxes and containers. They found that con-
tainers are more flexible but incur in some overhead, generally
limited to a dozen seconds or less per submission. Unfortunately,
their study is restricted to a performance analysis and does not
provide any considerations on student learning, as instead done in
this article. Maicus et al. [23] described a container-based system
for automated assessment of student submissions in a distributed
algorithms course. However, their evaluation considered the inter-
actions between the different components as message streams, as
opposed to the UI-driven testing addressed here.

3 BACKGROUND
This section introduces first the relevant cloud technologies, then
provides the context by describing the university course in which
the devised system was deployed.

3.1 Cloud-native technologies
Cloud-native is a term that broadly encompasses both the techni-
cal and process-related aspects to build and run applications in a
modern cloud computing environment [1, 27]. The key enabling
technology in this context is represented by software containers,
namely, self-contained software images that can easily be packaged
and deployed through light-weight (i.e., operating system-level)
virtualization [7]. Containers have low startup time and execution
overhead [14]; they also allow the realization of distributed ap-
plications as microservices [3]. Container orchestration involves
provisioning, scheduling, and managing containers at scale [2].

Cloud-native application development involves the adoption of
agile and continuous integration / deployment practices in software
engineering [16]. Accordingly, software development leverages an
automatic multi-stage process, triggered by the creation or modifi-
cation of source code: it not only builds and tests an application or
service, but also releases it to the end users as soon as it is ready [22].

3.2 The Mobile Cloud Computing course
The system considered here was devised for course CS-E4100 Mo-
bile Cloud Computing at Aalto University. The course addresses
the development of a distributed application for mobile devices by
using a cloud infrastructure, including elements of mobile com-
puting. The main goal of the course is to provide students with
full-stack development skills, in other words, to enable them to
develop both client (i.e., frontend) and server (i.e., backend) soft-
ware in the context of modern mobile application development.
Accordingly, the course consisted of two main components: mobile
application programming with Android for the frontend; and a
cloud-based mobile backend. The course is offered in several pro-
grams and is primarily intended for first-year master students, even
though it accepts undergraduate students. As a consequence, the
course assumes some knowledge about programming languages
(e.g., Java), client-server programming, as well as data structures
and algorithms as a pre-requisite. The course takes place over one
semester and has about 120 students per year.

To pass the course, students have to complete individual online
exercises submitted through an online platform. They also have to
carry out a group project consisting of an Android application and
the supporting server components. While the online exercises are
automatically graded, a demo of the software project is presented
to the teaching assistants.

4 ASSESSING ANDROID EXERCISES
The following introduces first the rationale behind the design of
the Android exercises. It then details the implementation of the
components that perform automated assessment of these exercises.

4.1 Exercise design
The course included four Android exercises with different level
of complexity, corresponding to a varying number of points. All

Session: Tools and Assessments ITiCSE ’20, June 15–19, 2020, Trondheim, Norway

41



(a) (b)

Figure 1: Instructions for the Hello User exercise: (a) sample
output and (b) reference IDs of UI elements.

exercises are meant to implement some functionalities needed in
the realization of the group project. This approach makes it easier
for students to get started with the project work, as some of the
software components developed for the online exercises could be
reused for the project. In detail, the exercises are as follows.

Hello User Given a string as input, the mobile app has to
display “Hello” followed by a space and the input string.

QR Code Given a string as input, the mobile app has to display
the corresponding quick response (QR) code on the screen.

Image List Given a Javascript Object Notation (JSON) file as
input, the mobile app has to display a sequence of items. In
particular, each item should consist of an image and of the
corresponding author’s name, as specified in the input file.

Image Detection Given a source picture, the mobile app has
to tell if it contains faces and (or) a barcode. The user interface
should include an option to select the image from the gallery
of the phone by clicking a button. The functions for face
detection and barcode recognition should be implemented
by using the Google Mobile Vision API.

Exercises are graded by means of mobile app UI testing based
on how the requested functionality is fulfilled. Let us consider the
Hello User exercise as an illustrative example: given a string as
input (e.g., “Alice”), the mobile app should display “Hello” followed
by the given string (e.g., “Hello Alice”). The input is taken from
a text box and the result is shown on a text label once the “Try”
button is clicked. Figure 1a shows a sample output that is also
provided to the students as part of the online material. To ease
application testing at the grader, students are asked to use specific
ID names for the elements of the user interface, similar to [6], as
shown in Figure 1b. This approach follows best practices in mobile
app development, used in production for automated UI testing [12].

4.2 Android grader
The Android grader is the component that performs the actual
assessment of the online exercises. The grader is a Docker container
that includes all software needed to execute and evaluate student
submissions. Assessment is carried out by running exercise-specific

unit tests on the Android app submitted in binary format, namely,
as an Android application package (APK). The rationale behind
this choice is that students should build the Android application on
their local development host. They should also carefully evaluate
the build output and run the application before submitting it online,
to check whether it meets the specifications of the exercise or not.

Android exercises are assessed through Appium, an open-source
test automation framework1 primarily targeted for testing mo-
bile /web applications. In particular, Appium is widely used for
testing native mobile apps [34], including those for Android. One of
the key strengths of Appium is its flexibility: it does not require any
modifications to the source app and supports multiple languages
as well as platforms. Appium has a client-server architecture: the
server offers an Application Programming Interface (API) to exe-
cute commands on a mobile device and obtain the corresponding
results; the client implements the actual tests by performing actions
through the UI elements in the mobile app.

The grader includes Appium, the Java and Android software
development kits (SDKs) as well as the related SDK / build tools,
andMaven for unit testing. The container also provides the Android
emulator through a custom image that has the GoogleMobile Vision
API libraries pre-installed.

4.3 Exercise feedback
Giving constructive feedback is necessary for students to under-
stand the outcome of their exercise submission, especially when
failures occur [20, 28]. Providing insightful feedback on mobile
application development is indeed very challenging, as opposed to
console-based programs that only have textual output [6].

For this purpose, the exercise feedback offers information about
the submission outcome at different levels (Figure 2). The “Test
Results” section summarizes individual unit tests (i.e., through their
name and description) and the related outcome. Such an outcome re-
ports if the test was completed successfully, providing more specific
information in case of errors. In particular, the feedback describes
the nature of the failure in an expressive form and gives hints on
possible reasons [21]. The grader also provides detailed debugging
information. The “Android Logcat Output” section shows custom
debugging messages written through the logging API built into
Android (i.e., Logcat) and marked with a custom tag. This offers
the same level of debugging output generally available for console-
based applications. In case of errors, the feedback also shows the
stack trace corresponding to the specific instruction that triggered
a failure. Finally, a screenshot of the application is also provided to
give additional feedback at a glance. Screenshots are taken periodi-
cally and the last one stored just before the failure is provided as
the submission result.

Hints were compiled based on common mistakes made by stu-
dent on the basis of prior teaching experience. One of them is
displaying user elements in a way that are not fully contained in
the view of the device, for instance, due to overflowing. One ex-
ample is represented by a QR code not completely visible in the
related exercise, as shown in Figure 2. The related exercise submis-
sion failed because the QR code was not detected. The feedback
provided by the system suggests that the problem could be related

1http://appium.io

Session: Tools and Assessments ITiCSE ’20, June 15–19, 2020, Trondheim, Norway

42

http://appium.io


Figure 2: Sample grader feedback for a submission of the QR Code exercise including: a summary of the test results, with a
high-level description of the error and hints on possible reasons; debugging information, including log output and stack trace;
a screenshot captured right before the test failure.

to the visibility of the QR code on-screen. A quick inspection of the
accompanying screenshot reveals that this is indeed the case.

4.4 Using the grader as a teacher
The developed system offers a simple RESTful API, similar to to-
day’s cloud-based services. As a consequence, it could easily be
interfaced with different learning management systems (LMSs),
particularly, those offering built-in support for running container-
based graders [19, 30]. The following considers the A+ LMS2 which
was used in the reference course. In such a case, the teacher only
needs to: write the unit tests for the exercises; and configure A+ to
use the Android grading container. These steps are detailed next.

Unit tests are written by leveraging the Appium client library,
which is available in a variety of language bindings. Listing 1 shows
an excerpt of the unit test for the Hello User exercise as an illus-
trative example. The code is written in Java for Maven and uses
the Appium API to test the compliance of the submission against
the exercise specifications (refer to Section 4.1 for more details).
Accordingly, the test first generates a random number (say 42), then
inserts its value into the txtInput text box and clicks the btnSubmit
button. Finally, the test extracts the value of the txtResult text
view and compares it with the expected one (“Hello 42”). The unit
test yields the exercise points based on whether the test passes or
not. It also returns the hint shown in the “Test Results” section of
the submission feedback (see Figure 2).

A certain unit test then needs to be associated with a specific
exercise. This can be accomplished, for instance, by adding the unit
test to the git repository linked to the course and editing exercise-
specific configuration files. These files also specify the name of
the software container corresponding to the grader. Finally, the
exercise needs to be configured to award a certain number of points
and to accept submissions as binary files.

The software described in this article as well as instructions on
how to use it are available online at http://cloudscape.aalto.fi.
2https://apluslms.github.io

public class AppTest {

AndroidDriver driver;

public void HelloUserTest (){
String currId = null;
try {

// Input random value into EditText
Random rand = new Random ();
int n = rand.nextInt (25000) + 1;
currId = "txtInput";
driver.findElement(By.id(currId)).sendKeys(""+n);
// Press button
TouchAction t = new TouchAction(driver);
currId = "btnSubmit";
t.tap(driver.findElement(By.id(currId))).perform ();
// Check if input text is appended to Hello
currId = "txtResult";
Assert.assertEquals(driver.findElement(By.id(currId)).
↪→ getText (), "Hello "+n, "The TextView contains the
↪→ wrong text.");

} catch (NoSuchElementException e) {
Assert.fail("Could not find element with ID '"+currId+
↪→ " '. Please check the assignment instruction and
↪→ use the provided IDs.");

} catch (Exception e) {
Assert.fail(e.getMessage ());

}
}

}

Listing 1: Code of the unit test for the Hello User exercise.

5 EVALUATION
The proposed system is evaluated next in terms of student learning.

5.1 Methodology and setup
The evaluation includes an analysis based on both submission data
and a survey. The results refer to a single offering of the course
in Fall 2017, with 120 students enrolled at the beginning of the
semester – 96 of which completed the course by the end of the year.

Session: Tools and Assessments ITiCSE ’20, June 15–19, 2020, Trondheim, Norway

43

http://cloudscape.aalto.fi
https://apluslms.github.io


Hello
User

QR Code Image
List

Image
Detection

2

4

6

8

10

12

14

Su
bm

is
si

on
s 

pe
r s

tu
de

nt

(a)

Hello
User

QR Code Image
List

Image
Detection

0

50

100

150

200

250

300

To
ta

l s
ub

m
is

si
on

s

0 points
2 points
3 points

4 points
6 points

(b)

Parameter Q1 Q2
Median 4 4
Stdev 0.93 0.91

1 rating 2.17 2.22
2 rating 2.17 6.67
3 rating 17.39 15.56
4 rating 34.78 53.33
5 rating 43.48 22.22

(c)

Figure 3: Submissions of individual Android exercises: (a) average number per student and (b) total number broken down by
obtained points. (c) Summary statistics and distribution of ratings in the course feedback questionnaire.

The system was configured to allow at most 20 submissions of
a given Android exercise per student. The first two exercises (i.e.,
Hello User and QR Code) were worth 4 points each, while the other
two (i.e., Image List and Image Detection) 6 points each. The Image
Detection exercise gave fractional points based on multiple unit
tests, while the rest of the exercises awarded either the full amount
of points or zero. All Android exercises had the same submission
deadline, six weeks after the beginning of the course. Students were
allowed to submit exercises up to one week late with a 50% penalty.

The Android grader ran in a private cloud computing infrastruc-
ture at Aalto University. In particular, graders were managed and
deployed through Kubernetes running on bare metal (i.e., software
containers did not run inside virtual machines).

5.2 Exercise submissions
Submission data were analyzed with the pandas data analysis li-
brary [25]. The following focuses on the number of submissions by
exercise to derive insights on how students used the system and
the related impact on learning. There were 895 submissions in total
for the four exercises in the considered course offering.

Figure 3a shows the statistical summaries on the number of
submissions per student for the different Android exercises. The
figure shows that students only turned in a few submissions for
the first three exercises, with a median no higher than three and a
maximum of at most seven. In particular, the statistical summaries
are very close for the two exercises, as they are very simple and
quite similar. The number of submissions per student increases as
the difficulty of the exercises increases too. The sharper increase
for the last exercise is also due to the presence of multiple unit
tests which awarded fractional points: students submitted multiple
times to obtain full points. The figure clearly shows how the limit
of 20 submissions per exercise was effective in discouraging a trial-
and-error approach purely based on grader feedback. Finally, there
are outliers, which is not unexpected given the class size and the
presence of students from different master programs – there were
also a few bachelor students enrolled in the course.

Figure 3b shows the total number of submissions for the differ-
ent Android exercises, broken down by the corresponding number
of obtained points. Specifically, the figure illustrates the overall

student results in solving the exercises by distinguishing between
successful and unsuccessful submissions. The results clearly show
how the first two exercises were successfully completed by a large
share of the students. The actual numbers for the first two exercises
are similar, even though the total submissions is higher for the
Hello User exercise. This happened because students had to explore
and get familiar with the automated grading system at first. This is
supported by the fact that the number of successful submissions is
almost the same in the first two exercises, while the number of un-
successful attempts is lower for the QR code exercise. Nevertheless,
the results demonstrate that the overhead in learning how to use the
system was quite limited. The figure also shows a different trend for
the last two exercises. In fact, the number of submission with full
points is lower and the spread in the obtained points higher, which
are both consistent with the increasing difficulty of the exercises.

It is possible to relate the learning from the automatically-graded
Android assignments to the course project, carried out by groups of
five students. The obtained data suggest that the Android exercises
helped all groups obtain at least 35% of the project points. Moreover,
the overall course completion rate increased by 13% when auto-
mated grading was used with respect to the previous year, which
included no Android assignments but only two smaller projects.

5.3 Student feedback
Feedback about the system was collected within a course sum-
mary questionnaire that was sent to all students enrolled in the
course after its completion. A total of 47 students submitted their
feedback. The survey included three questions specific to the au-
tomated system for assessment of Android exercises: one rating
how it supported learning based on a 5-point Likert scale, wherein
1 corresponds to “Strongly disagree” and 5 to “Strongly agree”;
and two about the most valuable and least convincing aspects of
the system, each allowing unconstrained textual comments. The
feedback also included one question about other online material
and exercises (unrelated to automated assessment of Android ex-
ercises), also rated on a 5-point Likert scale, which is reported as
a baseline for comparison purposes. The specific wording for the
questions with Likert-scale ratings was the following: “The auto-
mated system used for the evaluation of Android assignments has

Session: Tools and Assessments ITiCSE ’20, June 15–19, 2020, Trondheim, Norway

44



supported my learning” and “The online material and questionnaires
have supported my learning”. These questions are referred to as Q1
and Q2 – respectively – for conciseness in the rest of the article.

Table 3c shows summary statistics on questions Q1 and Q2 as
well as the distribution of the corresponding ratings as percentages.
The results show how all online activities were very favorably
received by the students, with a median rating of 4 and a relatively
low standard deviation of about 0.9. However, the actual distribution
of ratings reveals that students acknowledged a high impact of the
Android assessment on learning in question Q1: about 43.5% gave
a rating of 5, almost two times the value obtained for question Q2.

The free-text comments supported such claims, as students even
praised the system – “it was great”, “I was amazed how well and fast
the grading worked”, “it’s actually pretty cool”. Students particularly
valued prompt feedback, which was described as “quick”, “fast”,
and even “instant”. Students also appreciated its informative value,
especially the “explanation of the errors”. Specifically, the feedback
was found “very informative”; students explicitly mentioned “the
response[s] are really helpful”, “error reporting which helped with
debugging”, “screenshots with proper reasoning for the errors if any”.
A few students appreciated automation, not only because of the
related technical aspects, but also for fairness (“no one can complain
or try to ask better grades because you get what you deserve”). Some
feedback explicitly pointed out the impact on learning: “it forced
me to learn [...] which is a good thing and I am happy that I did it”, “I
[was] always motivated with [the] automated grading system”. Some
issues were also pointed out, mostly related to technical problems:
“few bugs in [the] testing tool”, “some technical hickups and delays
in the beginning”. A few students, instead, felt that the system was
not fast enough: “it was a bit slow”, “the processing speed is low”;
others expressed concerns on cheating [24]: “I guess one could have
kinda cheated by just hardcoding the desirable outputs”, “one could’ve
pretty easily gotten full points without a proper submission”.

6 DISCUSSION
The following discusses important aspects of the proposed system
based on both student feedback and course experience.
Grader performance. Building and running Android applications
is a time-consuming process, even when performed in a powerful
data center [6]. In this respect, some measures were taken to reduce
the time needed to assess student submission. First, students were
required to submit the Android application binary (as APK), so that
the grader does not have to build the application from source. This
also reduces the load on the computing infrastructure as a side effect.
Second, the grader employed the x86 version of the emulator, which
is much faster than that for ARM [4]. The x86 emulator requires
hardware virtualization, which was made available to the container
by sharing the corresponding element in the device filesystem. This
solution allowed to reduce the time needed for assessing exercises
by half: from five minutes per submission to a few.
Software frameworks. The decision on having binary application
submissions allowed students more flexibility in choosing software
frameworks [32]. The course explicitly referred to programming
Android applications in Java, which was the only option supported
by the course staff. However, students were allowed to pick other
programming languages or software frameworks, with no promise

of their compatibility with the system for automated assessment of
Android exercises. Interestingly, some students started exploring
such alternative options and managed to use them for successful
submissions. Kotlin3 and React Native4 were the most popular so-
lutions. This also demonstrates the flexibility of proposed solution.
Reliability. The reliability of the system during the course was
generally remarkable. A few bugs actually affected the code for
assessing the exercises; they were promptly fixed as students re-
ported issues. Interestingly, the main sources of unreliability were
due to factors that were not under the control of the course staff.
One of them was a service break on the IT services at the university
which took place during a weekend right after the beginning of the
semester; another was the grading backend that stopped following
a crash of the grader, thereby preventing student submissions to be
assessed. It was enough to clear the submission queue to make the
system operational again.
Effort of teaching staff. The system was realized in less than a
semester by a group of five people, including a teacher, two teach-
ing assistants, and two interns. The initial version of the exercises
required some effort in handling all corner cases that could happen
with a large student audience. Nevertheless, the total effort by the
course staff was definitely lower than designing and evaluating indi-
vidual student projects. As a term of comparison, the Mobile Cloud
Computing course included two student projects before automated
grading was introduced to achieve the same learning outcomes.
Since the initial deployment, the system has effectively been used in
other settings – including an online course on Android development
open to a broader audience – with very limited effort.

7 CONCLUSION
This article presented a system for automated assessment of An-
droid exercises through the experience gained from its application
to a university-level course. The proposed solution leverages mod-
ern cloud-friendly technologies and mobile app testing practices
widely used in the industry for grading purposes. The system was
shown to be effective in terms of student learning based on an
analysis of exercise submissions and a student feedback question-
naire. Future research could address how to detect plagiarism in this
specific context. Evaluating the proposed solution across courses
at different levels – i.e., bachelor as opposed to master, but also
in contexts other than higher education – is also an interesting
research direction.

ACKNOWLEDGMENTS
This work was partially supported by Aalto University under the
CloudScape pilot of the Aalto Online Learning5 project. The authors
would like to thank: Jan-Mikael Rybicki and Lauri Malmi for their
feedback on a preliminary version of this article; Manoj Kumar,
Prasant Sukumar, Gopika Premsankar, Teemu Lehtinen, Mikko
Hakala, Markus Murhu, and Markku Riekkinen for their help in the
practicalities needed to arrange the course; the Aalto Science-IT
project for provisioning the computational resources used.

3https://kotlinlang.org
4https://reactnative.dev
5https://onlinelearning.aalto.fi

Session: Tools and Assessments ITiCSE ’20, June 15–19, 2020, Trondheim, Norway

45

https://kotlinlang.org
https://reactnative.dev
https://onlinelearning.aalto.fi


REFERENCES
[1] Cloud Native Computing Foundation. CNCF Cloud Native Definition v1.0. Avail-

able online: https://github.com/cncf/toc/blob/master/DEFINITION.md. Ac-
cessed January 19, 2020.

[2] Isaac Eldridge. What Is Container Orchestration? Available online: https:
//blog.newrelic.com/?p=43457. Accessed January 19, 2020.

[3] Martin Fowler. Microservices – a definition of this new architectural term. Avail-
able online: https://martinfowler.com/articles/microservices.html. Ac-
cessed January 19, 2020.

[4] The Chromium Project. Using an Android Emulator. Available online:
https://chromium.googlesource.com/chromium/src/+/HEAD/docs/android_
emulator.md/. Accessed January 19, 2020.

[5] Kirsti M. Ala-Mutka. 2005. A Survey of Automated Assessment Approaches for
Programming Assignments. Computer Science Education 15, 2 (2005), 83–102.
https://doi.org/10.1080/08993400500150747

[6] Anthony Allevato and Stephen H. Edwards. 2012. RoboLIFT: Engaging CS2
Students with Testable, Automatically Evaluated Android Applications. In The
43rd ACM Technical Symposium on Computer Science Education (SIGCSE ’12).
547–552. https://doi.org/10.1145/2157136.2157293

[7] David Bernstein. 2014. Containers and Cloud: From LXC to Docker to Kubernetes.
IEEE Cloud Computing 1, 3 (Sep. 2014), 81–84. https://doi.org/10.1109/MCC.
2014.51

[8] Michael David Black. 2016. Seven Semesters of Android Game Programming in
CS2. In The 2016 ACM Conference on Innovation and Technology in Computer Sci-
ence Education (ITiCSE ’16). 5–10. https://doi.org/10.1145/2899415.2899470

[9] Douglas S Blank, David Bourgin, Alexander Brown, Matthias Bussonnier,
Jonathan Frederic, Brian Granger, Thomas L Griffiths, Jessica Hamrick, Kyle
Kelley, M Pacer, et al. 2019. nbgrader: A tool for creating and grading assign-
ments in the Jupyter Notebook. The Journal of Open Source Education 2, 11
(2019).

[10] Barry Burd, João Paulo Barros, Chris Johnson, Stan Kurkovsky, Arnold Rosen-
bloom, and Nikolai Tillman. 2012. Educating for Mobile Computing: Address-
ing the New Challenges. In The Final Reports on Innovation and Technology
in Computer Science Education 2012 Working Groups (ITiCSE-WGR ’12). 51–63.
https://doi.org/10.1145/2426636.2426641

[11] Julio C. Caiza and José María del Álamo Ramiro. 2013. Programming assignments
automatic grading: review of tools and implementations. In The 7th International
Technology, Education and Development Conference (INTED2013).

[12] Riccardo Coppola, MaurizioMorisio, andMarco Torchiano. 2019. Mobile GUI Test-
ing Fragility: A Study on Open-Source Android Applications. IEEE Transactions
on Reliability 68, 1 (2019), 67–90. https://doi.org/10.1109/TR.2018.2869227

[13] Christopher Douce, David Livingstone, and James Orwell. 2005. Automatic Test-
Based Assessment of Programming: A Review. J. Educ. Resour. Comput. 5, 3,
Article 4 (Sep 2005), 13 pages. https://doi.org/10.1145/1163405.1163409

[14] Wes Felter, Alexandre Ferreira, Ram Rajamony, and Juan Rubio. 2015. An updated
performance comparison of virtual machines and Linux containers. In 2015 IEEE
International Symposium on Performance Analysis of Systems and Software (ISPASS).
171–172. https://doi.org/10.1109/ISPASS.2015.7095802

[15] James B. Fenwick, Jr., Barry L. Kurtz, and Joel Hollingsworth. 2011. Teaching
Mobile Computing and Developing Software to Support Computer Science Edu-
cation. In The 42nd ACM Technical Symposium on Computer Science Education
(SIGCSE ’11). 589–594. https://doi.org/10.1145/1953163.1953327

[16] Brian Fitzgerald and Klaas-Jan Stol. 2017. Continuous software engineering: A
roadmap and agenda. Journal of Systems and Software 123 (2017), 176 – 189.
https://doi.org/10.1016/j.jss.2015.06.063

[17] Daniel Galan, Ruben Heradio, Hector Vargas, Ismael Abad, and Jose A. Cerrada.
2019. Automated Assessment of Computer Programming Practices: The 8-Years
UNED Experience. IEEE Access 7 (August 2019), 130113–130119. https://doi.
org/10.1109/ACCESS.2019.2938391

[18] Ivaylo Ilinkin. 2014. Opportunities for Android Projects in a CS1 Course. In
The 45th ACM Technical Symposium on Computer Science Education (SIGCSE ’14).
615–620. https://doi.org/10.1145/2538862.2538983

[19] Ville Karavirta, Petri Ihantola, and Teemu Koskinen. 2013. Service-Oriented
Approach to Improve Interoperability of E-Learning Systems. In 2013 IEEE 13th
International Conference on Advanced Learning Technologies. 341–345. https:
//doi.org/10.1109/ICALT.2013.105

[20] Hieke Keuning, Johan Jeuring, and Bastiaan Heeren. 2016. Towards a Systematic
Review of Automated Feedback Generation for Programming Exercises. In The
2016 ACM Conference on Innovation and Technology in Computer Science Education
(ITiCSE ’16). 41–46. https://doi.org/10.1145/2899415.2899422

[21] Tobias Kohn. 2019. The Error Behind The Message: Finding the Cause of Er-
ror Messages in Python. In Proceedings of the 50th ACM Technical Symposium
on Computer Science Education (Minneapolis, MN, USA) (SIGCSE ’19). 524–530.
https://doi.org/10.1145/3287324.3287381

[22] Leonardo Leite, Carla Rocha, Fabio Kon, Dejan Milojicic, and Paulo Meirelles.
2019. A Survey of DevOps Concepts and Challenges. ACM Comput. Surv. 52, 6,
Article 127 (Nov. 2019), 35 pages. https://doi.org/10.1145/3359981

[23] Evan Maicus, Matthew Peveler, Stacy Patterson, and Barbara Cutler. 2019. Au-
tograding Distributed Algorithms in Networked Containers. In Proceedings of
the 50th ACM Technical Symposium on Computer Science Education (Minneapolis,
MN, USA) (SIGCSE ’19). 133–138. https://doi.org/10.1145/3287324.3287505

[24] Tony Mason, Ada Gavrilovska, and David A. Joyner. 2019. Collaboration Ver-
sus Cheating: Reducing Code Plagiarism in an Online MS Computer Science
Program. In Proceedings of the 50th ACM Technical Symposium on Computer
Science Education (Minneapolis, MN, USA) (SIGCSE ’19). 1004–1010. https:
//doi.org/10.1145/3287324.3287443

[25] Wes McKinney. 2011. pandas: a foundational Python library for data analysis
and statistics. Python for High Performance and Scientific Computing 14 (2011).

[26] Michael Milligan. 2017. Interactive HPC Gateways with Jupyter and Jupyterhub.
In Proceedings of the Practice and Experience in Advanced Research Computing
2017 on Sustainability, Success and Impact (PEARC17). Article 63, 4 pages. https:
//doi.org/10.1145/3093338.3104159

[27] Claus Pahl, Pooyan Jamshidi, and Olaf Zimmermann. 2018. Architectural Princi-
ples for Cloud Software. ACM Trans. Internet Technol. 18, 2, Article 17 (Feb. 2018),
23 pages. https://doi.org/10.1145/3104028

[28] Lilian Passos Scatalon, Ellen Francine Barbosa, and Rogerio Eduardo Garcia. 2017.
Challenges to integrate software testing into introductory programming courses.
In 2017 IEEE Frontiers in Education Conference (FIE). 1–9. https://doi.org/10.
1109/FIE.2017.8190557

[29] Matthew Peveler, Evan Maicus, and Barbara Cutler. 2019. Comparing Jailed
Sandboxes vs Containers Within an Autograding System. In Proceedings of the
50th ACM Technical Symposium on Computer Science Education (Minneapolis,
MN, USA) (SIGCSE ’19). 139–145. https://doi.org/10.1145/3287324.3287507

[30] Matthew Peveler, Jeramey Tyler, Samuel Breese, Barbara Cutler, and Ana Mi-
lanova. 2017. Submitty: An Open Source, Highly-Configurable Platform for
Grading of Programming Assignments. In Proceedings of the 2017 ACM SIGCSE
Technical Symposium on Computer Science Education. 641. https://doi.org/10.
1145/3017680.3022384

[31] Susan Reardon and Brendan Tangney. 2014. Smartphones, Studio-Based Learning,
and Scaffolding: Helping Novices Learn to Program. ACM Trans. Comput. Educ.
14, 4, Article 23 (Dec. 2014), 15 pages. https://doi.org/10.1145/2677089

[32] Amit Shesh. 2019. Allowing and Fully Supporting Multiple Programming Lan-
guages in a Computer Graphics Course: An Experience. In Proceedings of the 50th
ACM Technical Symposium on Computer Science Education (Minneapolis, MN,
USA) (SIGCSE ’19). 239–245. https://doi.org/10.1145/3287324.3287464

[33] Draylson M. Souza, Katia R. Felizardo, and Ellen. F. Barbosa. 2016. A Systematic
Literature Review of Assessment Tools for Programming Assignments. In 2016
IEEE 29th International Conference on Software Engineering Education and Training
(CSEET). 147–156. https://doi.org/10.1109/CSEET.2016.48

[34] Oleksii Starov, Sergiy Vilkomir, Anatoliy Gorbenko, and Vyacheslav Kharchenko.
2015. Testing-as-a-Service for Mobile Applications: State-of-the-Art Survey. In
Dependability Problems of Complex Information Systems. 55–71. https://doi.
org/10.1007/978-3-319-08964-5_4

[35] Kelvin Sung and Arjmand Samuel. 2014. Mobile Application Development Classes
for the Mobile Era. In The 2014 Conference on Innovation and Technology in
Computer Science Education (ITiCSE ’14). 141–146. https://doi.org/10.1145/
2591708.2591710

[36] Burkhard C. Wünsche, Zhen Chen, Lindsay Shaw, Thomas Suselo, Kai-Cheung
Leung, Davis Dimalen,Wannes van der Mark, Andrew Luxton-Reilly, and Richard
Lobb. 2018. Automatic Assessment of OpenGL Computer Graphics Assignments.
In The 23rd Annual ACM Conference on Innovation and Technology in Computer
Science Education (ITiCSE 2018). 81–86. https://doi.org/10.1145/3197091.
3197112

Session: Tools and Assessments ITiCSE ’20, June 15–19, 2020, Trondheim, Norway

46

https://github.com/cncf/toc/blob/master/DEFINITION.md
https://blog.newrelic.com/?p=43457
https://blog.newrelic.com/?p=43457
https://martinfowler.com/articles/microservices.html
https://chromium.googlesource.com/chromium/src/+/HEAD/docs/android_emulator.md/
https://chromium.googlesource.com/chromium/src/+/HEAD/docs/android_emulator.md/
https://doi.org/10.1080/08993400500150747
https://doi.org/10.1145/2157136.2157293
https://doi.org/10.1109/MCC.2014.51
https://doi.org/10.1109/MCC.2014.51
https://doi.org/10.1145/2899415.2899470
https://doi.org/10.1145/2426636.2426641
https://doi.org/10.1109/TR.2018.2869227
https://doi.org/10.1145/1163405.1163409
https://doi.org/10.1109/ISPASS.2015.7095802
https://doi.org/10.1145/1953163.1953327
https://doi.org/10.1016/j.jss.2015.06.063
https://doi.org/10.1109/ACCESS.2019.2938391
https://doi.org/10.1109/ACCESS.2019.2938391
https://doi.org/10.1145/2538862.2538983
https://doi.org/10.1109/ICALT.2013.105
https://doi.org/10.1109/ICALT.2013.105
https://doi.org/10.1145/2899415.2899422
https://doi.org/10.1145/3287324.3287381
https://doi.org/10.1145/3359981
https://doi.org/10.1145/3287324.3287505
https://doi.org/10.1145/3287324.3287443
https://doi.org/10.1145/3287324.3287443
https://doi.org/10.1145/3093338.3104159
https://doi.org/10.1145/3093338.3104159
https://doi.org/10.1145/3104028
https://doi.org/10.1109/FIE.2017.8190557
https://doi.org/10.1109/FIE.2017.8190557
https://doi.org/10.1145/3287324.3287507
https://doi.org/10.1145/3017680.3022384
https://doi.org/10.1145/3017680.3022384
https://doi.org/10.1145/2677089
https://doi.org/10.1145/3287324.3287464
https://doi.org/10.1109/CSEET.2016.48
https://doi.org/10.1007/978-3-319-08964-5_4
https://doi.org/10.1007/978-3-319-08964-5_4
https://doi.org/10.1145/2591708.2591710
https://doi.org/10.1145/2591708.2591710
https://doi.org/10.1145/3197091.3197112
https://doi.org/10.1145/3197091.3197112

