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Abstract

Motivation: DNA methylation is an important epigenetic modification, which has multiple functions. DNA methyla-
tion and its connections to diseases have been extensively studied in recent years. It is known that DNA methylation
levels of neighboring cytosines are correlated and that differential DNA methylation typically occurs rather as
regions instead of individual cytosine level.

Results: We have developed a generalized linear mixed model, LuxUS, that makes use of the correlation between
neighboring cytosines to facilitate analysis of differential methylation. LuxUS implements a likelihood model for
bisulfite sequencing data that accounts for experimental variation in underlying biochemistry. LuxUS can model
both binary and continuous covariates, and mixed model formulation enables including replicate and cytosine ran-
dom effects. Spatial correlation is included to the model through a cytosine random effect correlation structure. We
show with simulation experiments that using the spatial correlation, we gain more power to the statistical testing of
differential DNA methylation. Results with real bisulfite sequencing dataset show that LuxUS is able to detect bio-
logically significant differentially methylated cytosines.

Availability and implementation: The tool is available at https://github.com/hallav/LuxUS.

Contact: viivi.halla-aho@aalto.fi or harri.lahdesmaki@aalto.fi

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

DNA methylation is a widely studied epigenetic modification, which
is involved in gene regulation. Aberrant methylation states have
been shown to be connected with diseases and cancer. One popular
method for quantifying DNA methylation levels is bisulfite sequenc-
ing (BS-seq) and its variants. Along with the development of
sequencing techniques, several computational tools have been pro-
posed for analysis of differential methylation from BS-seq data.
These methods aim to model the underlying methylation propor-
tions and perform statistical tests to assess the statistical significance
of the effect of a covariate of interest on the methylation level.

Spatial correlation of cytosines’ methylation states is a widely
known phenomenon (Eckhardt et al., 2006), and methylation state
is generally thought to vary rather as regions instead of individual
cytosine level. Consequently, many DNA methylation analysis tools
have attempted to capture the phenomenon with different model
structures and computational techniques. For example the popular
beta-binomial regression-based tool RADMeth by Dolzhenko and
Smith (2014) outputs log-likelihood ratio test P-values for each
cytosine separately and then uses weighted Z-test to combine the P-
value of a single site with the P-values of its neighbors. RADMeth

also includes a feature for merging neighboring differentially methy-
lated cytosines into differentially methylated regions (DMRs).
Similarly, Wen et al. (2016) first use beta-binomial regression model
to calculate P-values for individual CpG sites and then combine
them using Getis-Ord statistic. BSmooth tool by Hansen et al.
(2012), included in bsseq package, is based on local-likelihood
smoothing, which can compensate for low-coverage data and then
uses signal-to-noise statistic similar to t-test for identifying differen-
tially methylated regions. bsseq package also includes implementa-
tion of Fisher’s exact test. DSS tool includes two versions of a beta-
binomial model with hypothesis testing with Wald test, one with
two-group comparison (Feng et al., 2014) and another with a gen-
eral experimental design (Park and Wu, 2016). metilene tool by
Jühling et al. (2016) utilizes binary segmentation algorithm with
two-dimensional Kolmogorov–Smirnov test for finding differentially
methylated regions. Recently published dmrseq tool (Korthauer
et al., 2019) combines smoothing and covariance structure with
weighted least squares regression. Mayo et al. (2015) proposed a
kernel based method, M3D, where statistical testing of putative
DMRs is done through maximum mean discrepancy values.
Rackham et al. (2017) took a different approach with their tool
ABBA, which uses a latent Gaussian model.
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Another approach without spatial correlation, LuxGLM, was pro-
posed by Äijo et al. (2016), and it enables testing for differential
methylation for individual cytosines while considering different meth-
ylcytosine species and experimental design through generalized linear
model part. LuxGLM can also utilize spike-ins, such as the commonly
used (unmethylated) lambda phage genome, to model and estimate
the experimental parameters at the same time with the actual model
parameters. In the study by Äijo et al. (2016), the LuxGLM tool was
shown to be accurate and perform on par or even better than other re-
cent methods in detecting differential methylation.

Here, we propose LuxUS, a method where the methylation pro-
portions are modeled with a generalized linear mixed model
(GLMM) that can consider both binary and continuous variables
and random effects. Instead of analyzing each cytosine separately,
we propose to analyze all cytosines in a moderately sized genomic
window at a time. The spatial correlation of the neighboring cyto-
sines’ methylation states is included in the model through a covari-
ance structure of the cytosine random effect. To allow individual
variation, we also introduce a replicate random effect. After estimat-
ing the model parameters, the user can view summary statistics of
the posterior distributions of all linear and mixed effect coefficients,
allowing for comprehensive evaluation of their significance and
proportions.

2 Materials and methods

Here, we present the LuxUS model, which consists of two parts: an
observation model and GLMM. Observation model attempts to
model the bisulfite sequencing count data generation. The linear
model part is used for estimating the methylation proportion param-
eter for the data generation process. The plate diagram for the whole
LuxUS model is presented inFigure 1. We use Bayesian approach
and probabilistic programming language Stan (Carpenter et al.,
2017) for implementing the model and estimating the unknown
model parameters. Hypothesis testing of the significance of explana-
tory variables is done using Bayes factors. To choose the genomic
windows for the LuxUS analysis, we also implemented a simple pre-
processing step. The workflow of a bisulfite sequencing data ana-
lysis with LuxUS is presented in diagram Supplementary Figure S3.

2.1 An observation model for bisulfite sequencing data
We present the LuxUS method for a single genomic window and
drop the index denoting a particular window position to simplify
notation. The observation model is the same as the one presented in
Äijo et al. (2016), which we first review here. From bisulfite
sequencing data, we can retrieve, for each cytosine, the total number
of reads overlapping the corresponding cytosine in each sample,
NBS, out of which NBS;C observations were cytosines. This is

demonstrated in Supplementary Figure S2. Both NBS and NBS;C are
vectors of length NR �NC, where NR is the number of samples and
NC is the number of cytosines in the genomic window of interest. In
bisulfite sequencing, the DNA goes first through a bisulfite conver-
sion treatment, which converts unmethylated cytosines to uracils
with probability BSEff. The methylated cytosines stay unconverted
with probability 1� BS�Eff. After the bisulfite treatment, DNA is
sequenced and the uraciles are observed as thymines (T) and cyto-
sines are observed as cytosines (C). The probability of sequencing
error, i.e. observing uracil as C or cytosine as T, is seqErr. The ex-
perimental parameters seqErr;i; BSEff;i and BS�Eff;i are used in the
model to describe the probabilities of sequencing error, bisulfite con-
version and incorrect bisulfite conversion, respectively, for the sam-
ple corresponding to the ith observation. The complete probability
tree for observing a C or T in a BS-seq experiment is presented in
Supplementary Figure S1. The probability of observing NBS;C;i many
cytosine reads out of total read count NBS;i is modeled with binomial
distribution with success probability parameter pBS;C;i

NBS;C;i � BinomialðNBS;i; pBS;C;iÞ; (1)

where i ¼ 1; . . . ;NC �NR and where the elements of pBS;C ¼
ðpBS;C;1; . . . ; pBS;C;NC �NR

ÞT are calculated using the experimental
parameters described above

pBS;C;i ¼ hiðð1� BSEff;iÞð1� seqErr;iÞ
þBSEff;i � seqErr;iÞ
þð1� hiÞðð1� BS�Eff;iÞð1� seqErr;iÞ
þBS�Eff;i � seqErr;iÞ;

(2)

following the probability tree diagram in Supplementary Figure S1.
The hi denotes the ith element of methylation proportion vector h,
which is modeled with a generalized linear mixed effect model, as
described in Section 2.2.

It is often thought that samples with low bisulfite conversion effi-
ciency should be excluded from analyses, as they are considered un-
reliable. But as the experimental parameters can be considered with
LuxUS, one does not have to leave out such samples from the ana-
lysis as long as the conversion efficiencies can be reliably estimated.

2.2 A generalized mixed model with spatial correlation
As stated above, the methylation proportions h are estimated using a
GLMM, which includes fixed effect covariates and cytosine and rep-
licate random effects. The number of fixed effect covariates, count-
ing in the possible intercept term, is NP. Here, we assume that the
effects of the covariates in design matrix X are fixed, but each of the
replicates and cytosines have their own random intercept terms. A
column vector Y 2 R

NR �NC can be expressed as a sum of fixed and
random effects

Y ¼ Xbþ ZRuR þ ZCuC þ e; (3)

where design matrix X of shape ðNC �NRÞ �NP and fixed effect co-
efficient vector b of length NP form the fixed effect term, whereas
replicate random effect design matrix ZR of shape ðNC �NRÞ �NR

and replicate random effects vector uR of length NR form the repli-
cate random effect term and cytosine random effect design matrix
ZC of shape ðNC �NRÞ �NC and cytosine random effects vector uC

of length NC form the cytosine random effect term. The last term,
vector e of length NR �NC, is the noise term of the model. The rows
of Y and design matrices X, ZR and ZR should all be ordered with
the same principle, e.g. by first listing the NR replicates of the first
cytosine, then the replicates of the second cytosine, etc.

Finally, the covariate and random effects are connected to the
methylation proportion vector h ¼ ðh1; . . . ; hNR �NC

ÞT through the sig-
moid link function

hi ¼
1

1þ expð�YiÞ
: (4)

The methylation proportions h are used in the calculation of
pBS;C;i as described in Equation 2.

Fig. 1. Plate diagram of the LuxUS model. The gray and white circles represent

observed and latent variables, respectively. Rectangles represent fixed hyperpara-

meters, design matrices or other type of input data
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For the fixed effect, the design matrix X contains the experimen-
tal design. The NR �NP design matrix D for one cytosine is used as
a block matrix in X which is the design matrix of the experiment
and applies to the whole genomic window. The rows of the matrix
D correspond to the replicates in the experiment and the columns
correspond to the covariates. The matrix D is repeated NC times in
the following way to form X

X ¼ ð
D
..
.

D

Þ: (5)

The fixed effect coefficients vector b has a normal prior

b � Nð0;r2
bIÞ; (6)

where the prior variance r2
b should be set to high enough value to en-

able sufficiently high variation for the fixed effect coefficients.
The random effect terms for replicates and cytosines are

expressed as vectors uR and uC with normal priors

uR � Nð0; r2
RIÞ (7)

uC � Nð0;RCÞ; (8)

which are multiplied with random effect design matrices ZR and ZC,
respectively, in Equation 3. ZC and ZR indicate from which cytosine
and replicate each observation is coming from. Random term uR has
a diagonal covariance matrix with variance r2

R as the diagonal term,
whereas uC has a covariance matrix RC which includes the spatial
correlation of the model. The covariance matrix RC is defined as

RC ¼
�

r2
C covðuC1

; uC2
Þ � � � covðuC1

;uCNC
Þ

covðuC1
; uC2
Þ r2

C � � � covðuC2
;uCNC

Þ
..
. ..

. . .
. ..

.

covðuC1
;uCNC

Þ covðuC2
; uCNC

Þ � � � r2
C

�
;

(9)

where the covariance terms between the elements of uC are defined as

covðuCi
;uCj
Þ ¼ r2

C � exp
�jci � cjj

‘2

� �
; (10)

where i ¼ 1; . . . ;NC; j ¼ 1; . . . ;NC, and the genomic coordinates of
the cytosines are stored in vector c ¼ ðc1; . . . ; cNC

ÞT . The cytosines
in the genomic window are restricted to be located in the same
chromosome, as otherwise it would not be possible to calculate gen-
omic distance between the cytosines. The length-scale parameter, ‘,
is set a gamma prior

‘ � Gammaða‘; b‘Þ: (11)

Hyperparameters are set to a‘ ¼ 38 and b‘ ¼ 1 as they result in
covariance that is similar to the methylation correlation plots shown
in the studies by Eckhardt et al. (2006) and Song et al. (2017). To

demonstrate the shape of the covariance term, the term exp
�jci�cj j

‘2

� �
has been plotted as a function of the distance ci � cj in
Supplementary Figure S4.

The random effect variance parameters r2
C and r2

R have gamma
priors

r2
C � GammaðaC;bCÞ (12)

r2
R � GammaðaR;bRÞ; (13)

where aR, bR, aC and bC are set to make the prior distribution match
our prior information about the cytosine and replicate random
effects. The residual noise term e is defined similarly

e � Nð0;r2
EIÞ with r2

E � GammaðaE; bEÞ; (14)

where aE and bE are the shape and rate parameters of gamma

distribution, respectively. We have also implemented an alternative
version of the model where inverse-gamma distributions are used in-
stead of the gamma priors for the parameters r2

C; r2
R and r2

E.
With the above definitions for the fixed and random effect, the

distribution of Y can be expressed as

Y � NðXb;RYÞ; (15)

where the elements of the covariance matrix RY are defined as

RYi;j
¼

r2
C exp

�jci � cjj
‘2

� �
; if ZRi

6¼ ZRj

r2
R þ r2

C exp
�jci � cjj

‘2

� �
; if ZRi

¼ ZRj
and ZCi

6¼ ZCj

r2
R þ r2

C þ r2
E ; if i ¼ j;

8>>>><
>>>>:

where i ¼ 1; . . . ;NR �NC and j ¼ 1; . . . ;NR �NC and ZRi
and ZCi

denote the ith rows of random effect design matrices ZR and ZC,
respectively.

2.3 Model estimation
For further inference based on the model, we have to estimate the
unknown parameters. The variables to be estimated are fixed effect
coefficients b, length-scale parameter ‘, replicate random effect vari-
ance r2

R, cytosine random effect variance r2
C, noise term variance r2

E,
replicate random effect uR, cytosine random effect uC and linear pre-
dictor Y, from which methylation proportion h can be calculated as
described in Equation 4.

The model was implemented with probabilistic programming
language Stan (Carpenter et al., 2017), and the model parameters
are estimated using the no-U-turn sampling algorithm, which is a lo-
cally adaptive version of Hamiltonian Monte Carlo (HMC) sam-
pling as implemented in Stan. The PyStan version (Stan
Development Team, 2017) of the software was used for the HMC
sampling. Stan also has a built-in automatic differentiation vari-
ational inference (ADVI) feature (Kucukelbir et al., 2015), which
was also tested for estimating the model parameters. The mean-field
algorithm, which is the default option in ADVI, was used. A more
detailed description of model estimation algorithms can be found
from Supplementary Section S1.1. As variational inference
approaches are often faster than Markov chain Monte Carlo
(MCMC) methods, it could be a more favorable model estimation
method especially when analyzing large reduced representation
bisulfite sequencing (RRBS-seq) or whole genome bisulfite sequenc-
ing (WGBS-seq) datasets. For running ADVI we utilize CmdStan
(Stan Development Team, 2018), which is the command line inter-
face to Stan.

2.4 Testing for differential methylation
After estimating the model parameters as described above, differen-
tial methylation can be tested. With the models described above, it is
possible to perform two types of tests. The type 1 test has null hy-
pothesis H0 : bi ¼ 0 and alternative hypothesis H1 : bi 6¼ 0, i.e. the
statistical significance of the covariate i is tested. The type 2 test has
null hypothesis H0 : bi � bj ¼ 0 and alternative hypothesis
H1 : bi � bj 6¼ 0, i.e. the difference between the effects of covariates
i and j is tested for statistical significance. The testing is done using
Bayes factors. As calculating the exact values of Bayes factors is
often infeasible, instead the Savage–Dickey density ratio estimate of
the Bayes factor is used. For the type 1 test, the Savage–Dickey esti-
mate is

BF � pðbi ¼ 0jH1Þ
pðbi ¼ 0jH1;DÞ

; (16)

where we denote data with D. The Savage–Dickey estimator for the
type 2 test is defined similarly. The numerator of the Savage–Dickey
density ratio is analytically solvable as we use normal prior for b. As
for the denominator, it can be approximated from the posterior
samples for bi by evaluating a kernel density estimate of the poster-
ior at origin. The Gaussian kernel density estimation function from
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statistical functions module from the SciPy package (Virtanen et al.,
2020) is used to calculate the kernel density estimates. Scott’s rule is
used as the bandwidth parameter for the kernel density estimation.
The Bayes factor is calculated for the whole window being analyzed,
as the linear model coefficients b are shared among all cytosines.

2.5 Preanalysis step for determining and filtering the

genomic windows
To prepare a BS-seq experiment dataset for LuxUS analysis, we have
provided a script which also includes a simple preanalysis filtering
method. The genomic windows, for which the analysis is performed,
can be determined using a fixed window size (in terms of number of
nucleotides) or number of cytosines in a window. The prefiltering
step is computationally efficient and can be used to filter away
regions which e.g. do not contain sufficient number of reads or are
unlikely to exhibit differential DNA methylation. A coverage limit
can be used to filter out cytosines with low coverages. As estimating
the model for Bayes factor calculation can be computationally bur-
densome in genome-wide studies, we have implemented an F-test for
testing the significance of a variable of interest using the logit trans-
formed sample means (calculated over all the cytosines in the win-
dow) of the methylation states. The P-value limit for accepting a
window for further analysis with the LuxUS model can be set as
desired by the user. Each genomic window can then be analyzed fur-
ther separately, enabling parallelization.

3 Results

To demonstrate the performance of the LuxUS model and to com-
pare it to other tools, we applied LuxUS to real and simulated BS-
seq datasets. First, the results from analysis of colon cancer WGBS-
seq dataset for LuxUS and RADMeth were compared. The perform-
ance of LuxUS, RADMeth, M3D, bsseq, DSS and metilene were
compared on simulated datasets. For LuxUS, both HMC and ADVI
approaches for model fitting were tested. To show the advantage of
using spatial correlation structure, each cytosine in the simulated
datasets was also analyzed separately.

3.1 Analysis of colon cancer WGBS-seq data
The model was tested using a WGBS-seq dataset by Hansen (2018),
consisting of matched human colon and colon cancer samples. The
processed sequencing data were provided for two chromosomes, 21
and 22. First, the genomic windows for LuxUS analysis were deter-
mined using the preanalysis method. The details of the preanalysis
and setting the priors can be found in Supplementary Section S2.1.
Then Stan was run with HMC sampling to fit the LuxUS model
parameters and finally Bayes factors were calculated. The sampling
was done with four chains with 1500 samples in each, out of which
half were discarded as burn-in. As a result, 1422 genomic windows
were discovered with Bayes factor � 3. These genomic windows
covered 21 127 cytosines in total. Kass and Raftery (1995) proposed
that Bayes factor values from 3 to 20 would indicate positive evi-
dence against the null hypothesis, whereas values from 20 to 150 in-
dicate strong evidence and values higher than 150 indicate very
strong evidence. These limits can be used as approximate guidelines,
as LuxUS computes the Savage–Dickey estimates of the Bayes fac-
tors instead of the exact Bayes factors.

In comparison, we performed RADMeth analysis on the same
dataset and discovered 137 142 cytosines with adjusted, FDR-
corrected P-value 	 0:05. The overlap of the significant cytosines
from LuxUS and RADMeth approaches is 15 008 cytosines, i.e.
about three-fourths of the differentially methylated cytosines found
by LuxUS are also found by RADMeth. The results for a genomic
region in chromosome 21 are shown in Figure 2, which demon-
strates that both LuxUS and RADMeth produce similar results, but
LuxUS is more conservative. For example near the end of the gen-
omic region in Figure 2, the difference in average methylation state
between the cancer and normal colon cells decreases, which
RADMeth fails to detect and produces P-values smaller than 0.05.

Whereas the said region was filtered from the analysis by LuxUS al-
ready in the preanalysis phase. The boxplots of the computation
times (on one standard computing node in a cluster) for each num-
ber of cytosines in a genomic window for LuxUS are shown in
Supplementary Figure S5. The total computation time on a single
core for LuxUS for the 9945 genomic windows was 1623.80 h. Note
that LuxUS supports full parallelization across all genomic win-
dows, although the computation time here is reported for a single
computing core. Running RADMeth for the whole dataset took
31 min and 33 s.

To investigate the biological significance of the found differen-
tially methylated cytosines, we used the GREAT tool (McLean
et al., 2010) for gene set enrichment analysis (online version 3.0.0
with the default parameter settings). The lists of significantly differ-
entially methylated cytosines found by LuxUS and RADMeth were
given to the tool as inputs and the unfiltered list of CpG sites for the
chromosomes 21 and 22 was used as background regions file. The
results from both methods showed enrichment in cancer-related
terms in Disease Ontology and Molecular Signatures Database
(MSigDB) Perturbation ontology, which indicates that the methods
were able to discover truly differentially methylated cytosines. The
lists of the enriched terms for LuxUS and RADMeth can be found
on Supplementary Figures S6–S10. Supplementary Section S2.3
describes how LuxUS preanalysis step was validated using the colon
cancer dataset.

In Supplementary Section S2.4, the estimated variance parame-
ters were utilized for setting simulation parameters. To further in-
vestigate the effect of the variance term priors, we applied LuxUS to
another BS-seq dataset by Hascher et al. (2014). We also

Fig. 2. The top panel shows the methylation states for a chosen genomic region in

chromosome 21 (from 28 214 962 to 28 217 867 bp) for the six samples in the colon

cancer dataset. The colon cancer sample methylation states have been plotted in or-

ange and the normal colon samples in purple. The experiment was paired, and the

cancer and colon samples from the same person have been plotted with the same

marker symbols. The middle panel shows the LuxUS Bayes factor values with log

scaling. The Bayes factor values have been truncated to 1000. The cytosines which

were filtered from further analysis in the preanalysis phase have been plotted with

value 0 with empty markers. The horizontal red line corresponds to the Bayes factor

value 3. The bottom panel shows the RADMeth P-values for the same genomic re-

gion. The horizontal red line corresponds to the adjusted P-value of 0.05. The cyto-

sines for which RADMeth produced no P-value are plotted with P-value of 1 with

empty markers
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experimented using different r2
b values to see how they affect the cal-

culated Bayes factors and consequently the performance of the
method with this dataset. These experiments are described in detail
in Supplementary Section S3.

3.2 Performance comparisons on simulated BS-seq

data
Simulated BS-seq data were generated for performance comparison
purposes. The simulations were made using the LuxUS model,
which considers various mechanisms that affect the real bisulfite
sequencing process, such as experimental parameters. First, 100 sets
of experimental parameters and cytosine locations were generated.
The number of cytosines was 10 and their locations were randomly
chosen from range ½1; 1000
. The choice of cytosine frequency is
explained in detail in Supplementary Section S2.4. Two BS-seq data-
sets were then simulated for each of these 100 sets: one with differ-
ential methylation and one with no differential methylation between
the case and control samples. These 200 simulated genomic regions
form a simulated dataset with 50% proportion of differentially
methylated regions. The values for the fixed effect coefficient means,
lb ¼ ðlB;0;lB;1Þ, for the cases with differential methylation were
ð�1:4;1Þ; ð�1:4; 2:3Þ; ð1:4;�1Þ and ð1:4;�2:3Þ. These values cor-
respond to approximate values of 0.2, 0.5, –0.2 and –0.5 of Dh, the
difference in methylation proportions between the case and control
groups, respectively. The variance for the fixed effect coefficients,
r2

b, was set to 0.25 for the simulations. The variances for the cyto-
sine and replicate random effects and the noise term, r2

C; r2
R and r2

E,
were set to the means of the gamma distributions which were fitted
to the posterior samples from the colon cancer WGBS-seq data ana-
lysis. Detailed description of this can be found from Supplementary
Section S2.4. The coverage (i.e. the number of reads) as well as the
number of replicates were varied as 6, 12 and 24. The priors for the
variance terms r2

C; r2
R and r2

E were set using the results from the real
data analysis and r2

b is set to 15 for the model estimation. The
detailed description of the generation of the simulated data can be
found from Supplementary Section S4.1.

The model parameters were then estimated using the ADVI and
HMC methods in Stan. The HMC sampler was run with four chains
and the number of posterior samples for each chain was 1000, out
of which half were discarded as burn-in. When running ADVI, 2000
samples were generated from the approximate posterior distribution
to match the number of samples retrieved from HMC sampler. The
number of gradient samples was 10, and number of samples used
for evidence lower bound estimation was 200. These parameter val-
ues were chosen based on the results presented in Malonzo et al.
(2018), where the precision and computation times of ADVI were
compared to HMC for the LuxGLM model. After estimating the
model parameters, the Bayes factors for the type 1 test were calcu-
lated. For comparison, the analysis was run for each cytosine separ-
ately to see the difference with the model with added spatial
correlation. For this purpose, the cytosine random effect was
removed from the model, as there was only one cytosine being ana-
lyzed at a time. The resulting model corresponds to the LuxGLM
method by Äijo et al. (2016) except that GLM is changed to GLMM
by adding the replicate random effect into the model.

To compare our method to other published tools, we ran the
analysis also with RADMeth, M3D, dmrseq, DSS, metilene and
bsseq. RADMeth was run with default parameters and the P-value
adjusting was done for each simulated dataset separately.
Presumably because of the beta-binomial nature of the RADMeth
model, there were some cases where the methylation states of both
the case and control groups were exactly 0 or 1 for which
RADMeth failed to calculate P-values. The result for these cytosines
were removed before ROC and AUROC calculations. dmrseq was
run first with default parameters and then with a higher maximum
number of permutations and lower cutoff value for the single CpG
coefficient, but the AUROC values for the method remained very
low (possibly for some technical incompatibility reasons) and were
thus left out from the result table. M3D was run with default param-
eters. For M3D all the simulated datasets (with one simulation

setting) were given to M3D at the same time as separate testing
regions, each with different dummy chromosome name. For the
ROC and AUROC calculations the unadjusted P-values were used,
as they gave slightly better result than the FDR-adjusted P-values
even though the FDR-correction should not change the ranking of
the P-values. metilene, bsseq and DSS were all run to compare the
difference between case and control groups for each simulated gen-
omic window separately. metilene was run with de novo DMR find-
ing mode, with maximum distance between CpGs in a DMR set to
1000 and minimum number of CpGs in a DMR set to one.
Minimum mean methylation difference for calling DMRs was set to
zero. Additionally, we ran metilene with predefined regions mode
with the same settings as for the default de novo DMR finding
mode, using the start and end coordinates of each simulated genom-
ic window for defining the regions for which the statistical testing is
performed. From now on, we will refer to the de novo DMR finding
mode as metilene, whereas the predefined regions mode is referred
to as metilene mode 2. With bsseq, we first ran the smoothing step
with minimum number of cytosines in a smoothing window set to
one. Then Fisher’s exact test was run with bsseq. The t-test feature
in bsseq was not utilized for comparison, as the tool does not in-
clude P-value calculation for the t-test statistics. We ran DSS tool
with no smoothing and with smoothing, using two different smooth-
ing window spans, 500 and 1000 bp. The approach with 1000 bp
smoothing window span showed the best performance. The most
interesting tools to compare LuxUS with are perhaps RADMeth and
DSS, which alike LuxUS allow including additional covariates into
the analysis.

The area under receiver operating characteristic curve (AUROC)
values for the different approaches are presented in Tables 1 and 2.
The ADVI version of LuxUS has a tendency of outputting very high
or infinite valued Bayes factors for easier cases. To avoid problems
of comparing infinite values to each other in the ROC calculation,
the infinite values have been replaced with the greatest non-infinite
Bayes factor value with small constant added. For the cytosines for
which RADMeth failed to calculate P-values, the values were
removed. If the DMRs found by metilene with de novo DMR find-
ing mode did not cover all the cytosines in a simulated genomic win-
dow, the not covered cytosines were given P-value 1 for ROC
calculation. The AUROC values in Table 1, presenting results for
simulation setting where expected methylation level difference be-
tween case and control groups was Dh � �0:2, show that metilene
with predefined regions mode slightly outperforms LuxUS in most
of the cases. While in Table 2, presenting results for simulation set-
ting where Dh � �0:5, for the most of the cases the LuxUS model
gives the highest AUROC values. The difference between the results
from running LuxUS for a genomic window and for each cytosine
separately is considerable. For these simulation settings, using vari-
ational inference for estimating the model parameters results in
nearly as good results as using HMC sampling, while also being sig-
nificantly faster, as can be seen in Supplementary Table S1 in which
the comparison of mean computation times for the HMC and ADVI
approaches is presented. RADMeth, M3D, metilene with de novo
DMR finding mode and bsseq show better performance than LuxUS
run separately for each cytosine, but they do not achieve the same
accuracy as LuxUS and metilene mode 2, with one exception where
M3D tops all the other methods. DSS performs well, but it has the
best AUROC values in only four of the simulation cases shown in
the tables. While for LuxUS, RADMeth, metilene, DSS and bsseq
performance gets systematically better when the replicate or read
count is increases, the performance of M3D fluctuates. LuxUS and
metilene mode 2 seem to do equally well in this simulation experi-
ment. However, unlike LuxUS metilene is not able to take into ac-
count additional covariates which is often desired in real data
analysis. The AUROC values and ROC curves for the simulation
settings with different lb can be found in Supplementary Tables S2,
S3 and Supplementary Figures S20–S23, respectively.
Supplementary Section S4.7 demonstrates how LuxUS can estimate
the underlying methylation proportions. To demonstrate that
LuxUS performs well even with a smaller, more realistic DMR pro-
portion, we also performed comparisons with a dataset consisting of
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1000 simulated regions out of which 50 (5%) were DMRs. The
results are presented in the form of precision–recall curves and aver-
age precision tables in Supplementary Sections S4.5 and S4.6. The
results are fairly similar to the ones with 50% DMR proportion, as
LuxUS HMC, metilene and DSS are performing approximately
equally well when the methylation state difference between case and
control samples is small. When the difference is bigger, LuxUS
HMC shows the best performance. RADMeth and M3D perform
relatively well, whereas bsseq and LuxUS run separately for each
cytosine have the lowest AUROC values. However, this time LuxUS
ADVI was not able to reach the same AUROC value levels as LuxUS
HMC and its precision–recall curves show unexpected behavior,
which might be because of its tendency of returning very high BF ap-
proximation values.

To better demonstrate the concept of adding spatial correlation
into the model, we simulated data with different numbers of cyto-
sines in a window of 1000 basepairs and calculated the AUROC val-
ues for each case. The coefficient mean lb was set to ð1:4;�1Þ and
the number of reads and replicates was 12. Using this simulated
data, the LuxUS model was estimated with HMC algorithm and
Bayes factors were calculated. The results of this experiment can be
seen in Figure 3, which shows that analyzing multiple cytosines at a
time gives more statistical power and results in higher AUROC val-
ues. The turning point for this simulation setting seems to be be-
tween six and eight cytosines, after which adding more cytosines
does not seem to add more power at least in this specific case. As the
number of cytosines in the analysis increases, so does the number of
parameters in the model and the size of the covariance matrices.
This increases computation time during model estimation and can
also lead to estimation inaccuracies or convergence issues during

sampling. The increase in computation time for the colon cancer
dataset is shown in Supplementary Figure S5, where the computa-
tion times for different number of cytosines being analyzed at a time
are presented. The results shown in Figure 3 indicate that increasing

Table 1. AUROC values for LuxUS with HMC and ADVI, LuxUS for separate cytosines, RADMeth, M3D, metilene, DSS and bsseq for simu-

lated dataset with lb ¼ ð1:4;�1Þ, corresponding to Dh � �0:2

NBS NR LuxUS LuxUS LuxUS RAD- M3D metilene metilene DSS bsseq

HMC ADVI sep. Meth mode 2

6 6 0.734 0.738 0.522 0.607 0.719 0.631 0.767 0.738 0.615

6 12 0.814 0.783 0.606 0.712 0.703 0.658 0.818 0.801 0.643

6 24 0.923 0.909 0.687 0.819 0.682 0.759 0.917 0.904 0.711

12 6 0.687 0.696 0.545 0.632 0.640 0.590 0.698 0.690 0.590

12 12 0.822 0.803 0.625 0.756 0.701 0.678 0.827 0.812 0.654

12 24 0.927 0.899 0.721 0.867 0.755 0.781 0.928 0.924 0.754

24 6 0.667 0.668 0.541 0.612 0.703 0.635 0.686 0.680 0.597

24 12 0.840 0.835 0.637 0.765 0.777 0.735 0.850 0.852 0.712

24 24 0.933 0.886 0.762 0.890 0.732 0.830 0.934 0.916 0.773

Note: The highest AUROC value is bolded for each simulation scenario. NBS denotes the number of sequencing reads overlapping a cytosine and NR denotes

the number of samples.

Table 2. AUROC values for LuxUS with HMC and ADVI, LuxUS for separate cytosines, RADMeth, M3D, DSS, metilene and bsseq for simu-

lated dataset with lB ¼ ð1:4;�2:3Þ, corresponding to Dh � �0:5

NBS NR LuxUS LuxUS LuxUS RAD- M3D metilene metilene DSS bsseq

HMC ADVI sep. Meth mode 2

6 6 0.934 0.890 0.737 0.824 0.874 0.816 0.926 0.917 0.770

6 12 1.000 0.975 0.889 0.974 0.949 0.923 0.999 0.997 0.912

6 24 1.000 0.960 0.974 0.994 0.969 0.910 1.000 1.000 0.979

12 6 0.960 0.942 0.781 0.881 0.914 0.821 0.962 0.957 0.825

12 12 1.000 0.940 0.913 0.978 0.953 0.950 0.999 0.998 0.926

12 24 1.000 0.940 0.982 0.995 0.959 0.982 1.000 1.000 0.982

24 6 0.946 0.924 0.795 0.871 0.908 0.836 0.939 0.936 0.830

24 12 0.995 0.934 0.918 0.966 0.925 0.931 0.993 0.988 0.923

24 24 1.000 0.945 0.993 0.996 0.972 0.964 1.000 1.000 0.992

Note: The highest AUROC value is bolded for each simulation scenario. NBS denotes the number of sequencing reads overlapping a cytosine and NR denotes

the number of samples.

Fig. 3. The AUROC value for LuxUS as function of number of cytosines in a

1000 bp window for simulated data and its interpolation with third-degree polyno-

mial. Each AUROC value is estimated using 400 datasets, including 200 datasets

with differential methylation and 200 datasets with no differential methylation
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the number of cytosines in the analysis after some point does not
give more power to the analysis, and it is not advisable in the sense
of computational efficiency either.

LuxUS allows a general experimental design to be used in the
analysis, and to present the advantages of this feature, we generated
a simulated dataset with two confounding covariates. The design
matrix consists of an intercept term, a binary covariate distinguish-
ing cases from controls, a confounding binary covariate and a con-
founding continuous covariate, with corresponding coefficients
lb ¼ ð1:4;�1;2;�3Þ used in generating the data. Details of the data
generation can be found from Supplementary Section S4.1. The
comparisons were conducted for both 50 and 5% DMR propor-
tions. The AUROC values for each method for the comparison with
50% DMR proportion (200 simulated genomic regions in total) are
presented in Table 3. Corresponding ROC figures can be found in
Supplementary Section S4.8. Based on the AUROC values, LuxUS
HMC performs the best, whereas LuxUS ADVI and DSS tools also
do well in the comparison. The continuous covariate was trans-
formed into a binary covariate so that it could be utilized by
RADMeth, but its AUROC values are lower than for LuxUS and
DSS, which both allow continuous covariates. metilene mode 2 is
performing approximately equally well as RADMeth. Unlike with
the simple experimental design, the AUROC values for metilene
mode 2 are considerably lower than for LuxUS and DSS for this
simulation setting where the confounding coefficients have signifi-
cant effects, muddling the difference between cases and controls.
The default mode of metilene, bsseq, M3D and LuxUS run separate-
ly for each cytosine have the lowest AUROC values, which is
expected as metilene, bsseq and M3D tools cannot take confounding
covariates into account and bsseq and LuxUS (sep.) cannot utilize
spatial correlation. The precision–recall curves and average preci-
sion tables for the 5% DMR proportion setting (1000 simulated
genomic regions in total) are presented in Supplementary Sections
S4.9 and S4.10. Comparing the average precision values, LuxUS
HMC shows again the best performance. In this setting, metilene
mode 2 seems to be doing slightly better than RADMeth. The aver-
age precisions for LuxUS ADVI are again notably lower than for
LuxUS HMC in this setting where the DMR proportion is small.

3.3 Performance comparisons on simulated

differentially methylated regions based on real BS-seq

data
To make further comparisons of the performance of the tools with a
model-independent dataset, we applied them on simulated data by
Hebestreit et al. (2013). The simulation was based on RRBS-seq
data of 12 control samples. Six of the controls were turned to cases
by adding 10 000 simulated differentially methylated regions to ran-
domly chosen CpG islands. The size of the DMRs and the methyla-
tion difference between the cases and controls was varied. For this
comparison, the CpG islands containing a DMR were divided into
DMR and non-DMR sets. For both sets, the LuxUS preanalysis step
was run to divide them into genomic windows with LuxUS preanal-
ysis method. The details of the preanalysis and data filtering can be
found in Supplementary Section S5.1. About 3000 windows with

minimum number of two cytosines were chosen randomly from
both DMR and non-DMR groups. LuxUS, RADMeth, M3D, bsseq,
metilene and DSS analyses were conducted on these 6000 windows.
The experimental design consisted of an intercept term and a case–
control indicator variable for LuxUS and RADMeth. With M3D,
bsseq, DSS and metilene the difference between the case and control
groups was tested. For RADMeth, the P-value adjustment step was
performed for all the 6000 genomic windows together. LuxUS was
run with HMC sampler, using four chains with 1500 samples in
each out of which half were discarded as burn-in. With DSS tool,
three different smoothing window spans (500, 1000 and 2000 bp)
were tested along with approach with no smoothing. The DSS ap-
proach that yielded best AUROC value was smoothing with 500 bp
window span and was chosen to be presented here. metilene tool
was run with de novo DMR finding and predefined regions modes
with the same settings, as described in Section 3.2, that the
maximum allowed distance between two CpGs in a DMR was
increased to 2000 bp. bsseq tool was used to run smoothing and
Fisher’s exact test, similarly, as described in Section 3.2. For meti-
lene, DSS and bsseq tools, the picked DMR and non-DMR windows
were all analyzed together after sorting them based on their genomic
locations.

As the differentially methylated regions were known for this
simulated dataset, ROC computation could be performed. Figure 4
shows that all methods perform approximately equally well. LuxUS

Table 3. AUROC values for LuxUS with HMC and ADVI, LuxUS for separate cytosines, RADMeth, M3D, DSS, metilene and bsseq for simu-

lated dataset with confounding covariates

NBS NR LuxUS LuxUS LuxUS RAD- M3D metilene metilene DSS bsseq

HMC ADVI sep. Meth mode 2

6 12 0.859 0.851 0.605 0.728 0.674 0.625 0.717 0.845 0.614

6 24 0.907 0.883 0.682 0.800 0.618 0.735 0.840 0.870 0.688

12 12 0.809 0.802 0.634 0.702 0.644 0.676 0.712 0.757 0.628

12 24 0.938 0.899 0.748 0.821 0.722 0.772 0.861 0.915 0.737

24 12 0.796 0.738 0.641 0.717 0.658 0.592 0.684 0.750 0.626

24 24 0.915 0.880 0.731 0.827 0.690 0.709 0.836 0.874 0.714

Note: The highest AUROC value is bolded for each simulation scenario. NBS denotes the number of sequencing reads overlapping a cytosine and NR denotes

the number of samples.

Fig. 4. Receiver operating characteristics curves for LuxUS with HMC and ADVI

model estimation, RADMeth, M3D, bsseq, metilene and DSS for the simulated data

by Hebestreit et al. (2013). The dashed black line shows the expected ROC curve

for random guessing
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(HMC) has the highest AUROC value of 0.992, LuxUS with ADVI
model fitting comes in second with AUROC value of 0.980 and
RADMeth is third with AUROC value 0.968. metilene, M3D and
DSS with 500 bp smoothing window span all performed well with
AUROC values 0.957, 0.938 and 0.937, respectively, whereas bsseq
has the lowest AUROC value of 0.909. For this dataset, LuxUS with
ADVI produced a great number of very high and infinite-valued
Bayes factors. The infinite-valued BFs were again replaced with the
highest non-infinite BF value with a small constant added for the
ROC calculation.

4 Discussion

The LuxUS method was tested on both simulated and real datasets.
The results for the simulated data show that including spatial correl-
ation to the model gives clear advantage when compared to the ana-
lysis with only one cytosine being analyzed at a time. Comparison
with other methods showed that our method performed as well or
better than the other methods in almost all simulation settings. In
real bisulfite sequencing data analysis, LuxUS was more conserva-
tive than RADMeth, as the number of differentially methylated
cytosines found by LuxUS was considerably lower than for
RADMeth. This of course depends on the chosen significance levels
and Bayes factor cutoff-values. There was a clear overlap between
the differentially methylated cytosines retrieved from these two
methods, as three-fourths of the differentially methylated cytosines
found by LuxUS were also found by RADMeth. The follow-up ana-
lysis with GREAT tool implied that the both methods were able to
find biologically significant DMRs.

Based on the results on the simulated datasets, the optimal num-
ber of cytosines in a window might be 5–10, as this enhances the
statistical power of the statistical testing, whereas the model estima-
tion can be done computationally efficiently. Based on the AUROC
values calculated for the simulated data with 50% DMR propor-
tion, both the HMC and ADVI methods for estimating the model
seem to perform equally well. However, with 5% DMR proportion
the average precision values LuxUS HMC were higher than for
LuxUS ADVI. The HMC approach provides better model inference
tools for cases where closer investigation on the fitted model is desir-
able, whereas ADVI is considerably faster. Simple two-group com-
parison simulation experiments were conducted both with a 50%
and a more realistic 5% DMR proportions, which both yielded simi-
lar results. Depending on the simulation setting, usually either
LuxUS HMC or metilene mode 2 showed best performance. For the
simulated dataset by Hebestreit et al. (2013), all of the methods per-
formed nearly equally well, albeit the preprocessing of the data was
done with respect to the restrictions of the RADMeth tool.

Our method enables including both continuous and binary cova-
riates into the fixed effect design matrix and inference on the esti-
mated model, which is not possible with some other tools such as
RADMeth, which cannot handle continuous covariates and does
not provide a summary of the fitted models. Some tools, such as
metilene, cannot consider any covariates and allow only a compari-
son between two groups. Accounting for confounding factors is im-
portant as several factors, such as age of an individual and smoking
history, are known to affect DNA methylation. We demonstrated
the advantage of this feature with simulation experiments where
two confounding covariates were included. In these experiments,
LuxUS had the best AUROC and average precision values. The meti-
lene (mode 2) tool, which performed well with the simple two-group
comparison simulation setting, could not reach the same AUROC
and AP levels as the tools which could take the confounding effects
into account. With LuxUS, the posterior samples for the linear
model coefficients and variance parameters can be explored using
the summary and plotting utilities provided in Stan.

Two questions concerning our model are that does the correl-
ation structure match reality well enough and how the priors for the
variance parameters should be set. We have provided a set of default
parameters for the tool, but the parameter values can be adjusted by
the user to match the problem at hand and to the available computa-
tional resources. Similarly, the choice of the parameters used in the

preanalysis step and the cutoff-value for the Bayes factors affect the
final results. As we use the Savage–Dickey Bayes factor estimate, it
may be advisable to empirically calibrate Bayes factor cutoffs for
significance e.g. using some known differentially methylated loci. As
the ADVI estimates of the posteriors seem to underestimate vari-
ance, the Savage–Dickey estimates of the Bayes factors tend to have
very high values. To scale down the Bayes factor magnitude, one
could opt for using wider bandwidth for the kernel density estima-
tion used in the Savage–Dickey estimation calculation. For example
the Scott’s ‘rule of thumb’ bandwidth which is currently used in the
kernel density estimation step could be doubled to produce more
conservative kernel density estimates.

Finally, it is possible to extend our model to incorporate the oxi-
dized methylcytosine species into the analysis as done previously in
LuxGLM.

5 Conclusion

We have proposed a new tool for detecting differential methylation,
which uses the spatial correlation of neighboring cytosines to en-
hance the accuracy of detecting differential methylation. The pre-
sented results show that our tool is able to quantify differential
methylation from both simulated and real BS-seq data.
Comparisons on simulated data show that our model performs as
well as, or even better, than previous methods.

The provided preanalysis step can be used to reduce the number
of genomic windows for which the Bayesian analysis is done, and
the computations can be parallelized for computational efficiency.
Opting for variational inference in the model estimation step reduces
the needed computation time even further, without having to com-
promise the accuracy of the fitted model. The tool is available at
https://github.com/hallav/LuxUS.
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