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We investigate the Ising model in one, two, and three dimensions using a cumulant method that allows us to
determine the Lee-Yang zeros from the magnetization fluctuations in small lattices. By doing so with increasing
system size, we are able to determine the convergence point of the Lee-Yang zeros in the thermodynamic limit
and thereby predict the occurrence of a phase transition. The cumulant method is attractive from an experimental
point of view since it uses fluctuations of measurable quantities, such as the magnetization in a spin lattice, and
it can be applied to a variety of equilibrium and nonequilibrium problems. We show that the Lee-Yang zeros
encode important information about the rare fluctuations of the magnetization. Specifically, by using a simple
ansatz for the free energy, we express the large-deviation function of the magnetization in terms of Lee-Yang
zeros. This result may hold for many systems that exhibit a first-order phase transition.

DOI: 10.1103/PhysRevB.102.174418

I. INTRODUCTION

In two seminal papers, Lee and Yang investigated phase
transitions in many-body systems by considering the zeros
of the partition function in the complex plane of the control
parameter [1,2]. In particular, they showed how the parti-
tion function zeros with increasing system size approach the
points on the real axis, where a phase transition occurs. They
could thereby explain the nonanalytic behavior of the free
energy that develops in the thermodynamic limit and signals
a phase transition. The Lee-Yang formalism has been applied
to a variety of equilibrium problems [3–18], and it has been
realized that the framework can also be used to understand
nonequilibrium phase transitions [19–24], such as dynamical
phase transitions in quantum systems after a quench [25–27]
and space-time phase transitions in glass formers [28–31] and
open quantum systems [32–34].

In addition to these theoretical developments, partition
function zeros have been determined in several recent exper-
iments [35–39] and additional proposals for their detection
have been developed [40–43]. In the approach that we fol-
low here, the partition function zeros are extracted from the
fluctuations of the thermodynamic observable that couples to
the control parameter, for instance, magnetization and mag-
netic field, or energy and inverse temperature [9,32,44,45].
The scheme is attractive from an experimental point of view
since it makes it possible to explore phase transitions by
measuring fluctuations in small systems, even for systems that
are away from criticality [9,44,45]. The method was used
in the experiment of Ref. [38], where the dynamical Lee-
Yang zeros of an open quantum system were extracted from
the statistics of quantum jumps along a stochastic trajectory
[46]. The partition function zeros are determined from the
high cumulants of a fluctuating observable, and the method
appears to have a broad scope, since it relies only on a few
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FIG. 1. The Ising model, Lee-Yang zeros, and the large-deviation
statistics of the magnetization. (a, b) The two-dimensional Ising
model on a torus with N = Ld spins for d = 2 and L = 100. Red
(blue) spins point up (down). The temperature is above the critical
temperature, β = 0.9βc, in the left panel and below it, β = 1.1βc,
in the right panel. No magnetic field is applied, h = 0. (c) Lee-Yang
zeros in the complex magnetic-field plane extracted from the high
magnetization cumulants in Ising lattices of linear size L = 5, . . . , 9,
here at the inverse temperature β = 0.9βc. The red points show the
convergence points in the thermodynamic limit. (d) Large-deviation
statistics of the magnetization per site, m = M/N , for large lattices,
N = L2 � 1. The red curve is numerically exact, while the blue
curve is obtained by inserting the convergence points from the left
panel into the ansatz (58) with m0 � −1.
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general properties of partition functions, including an impor-
tant connection between the zeros of the partition function
and its logarithmic derivatives, which deliver the cumulants
of interest [9,32,44,45].

The idea is illustrated in Fig. 1 for the two-dimensional
Ising model on a torus. From the high cumulants of the
magnetization, we extract the Lee-Yang zeros in the complex
plane of the magnetic field for small lattices. By doing so with
increasing system size, we can determine the convergence
points of the Lee-Yang zeros in the thermodynamic limit.
An example of this procedure is shown in Fig. 1(c), where
we have extracted the Lee-Yang zeros for the Ising model
above the critical temperature. In that case, there is no phase
transition, and the Lee-Yang zeros converge to the complex
points in red. (Below the critical temperature, they converge
to the real axis, as we will see.) Still, the Lee-Yang zeros
carry important information about the rare fluctuations of the
magnetization, as illustrated in Fig. 1(d). Here, we compare
exact calculations of the large-deviation statistics of the mag-
netization [47] with a simple ansatz given in terms of the
extracted Lee-Yang zeros, see Eq. (59). The good agreement
suggests that a deep connection between Lee-Yang theory and
large-deviation statistics may exist. It should be noted that
we have considered some of these ideas in recent works on a
simple model of a molecular zipper [9] and the Ising model in
a mean-field approximation [45]. However, to further explore
and strengthen these ideas we here consider the Ising model
in one, two, and three dimensions as a paradigmatic example
of a system that exhibits a phase transition. Thereby we also
test and improve our understanding of the cumulant method
itself.

The rest of the paper consists of two main parts. Sec-
tion II describes the determination of Lee-Yang zeros using
the cumulant method for the Ising model, while Sec. III con-
cerns the connection between the Lee-Yang zeros and the
large-deviation statistics of the magnetization. Specifically,
our work is organized as follows. In Sec. II A, we introduce
the Ising model and the magnetic field zeros of the parti-
tion function. In Sec. II B, we describe the cumulant method,
which we use to determine the Lee-Yang zeros from the fluc-
tuations of the magnetization in small lattices. In Sec. II C, we
illustrate the method with the Ising model in one dimension,
which is a useful example since it is analytically tractable,
allowing us to benchmark the extracted Lee-Yang zeros with
exact results. In Sec. II D, we develop a finite-size scaling
analysis of the Lee-Yang zeros, which is needed for the Ising
model in higher dimensions. In Sec. II E, we apply the cu-
mulant method to the two-dimensional Ising lattice for which
we develop a transfer-matrix method for calculating the high
cumulants and extracting the Lee-Yang zeros. In Sec. II F, we
finally determine the Lee-Yang zeros of the Ising model in
three dimensions based on Monte Carlo simulations, which
serve to mimic measurements of fluctuations and high cumu-
lants in an experiment.

In the second part, we consider the large-deviation statistics
of the magnetization. In Sec. III A, we first express the large-
deviation statistics in terms of the Lee-Yang zeros based on
a simple ansatz for the free energy. In Sec. III B, we then
calculate the large-deviation function for the Ising model in
one dimension and show that it indeed can be captured by

our ansatz at not too high temperatures. In Sec. III C, we
calculate the large-deviation statistics for the Ising model
in two dimensions using a numerically exact transfer-matrix
method, and we again find good agreement with the ansatz
based on the Lee-Yang zeros. In Sec. III D, we use Monte
Carlo simulations for the Ising model in three dimensions to
determine the large-deviation statistics of the magnetization.
Also in this case, the large-deviation function can be related
to the extracted Lee-Yang zeros, indicating that a profound
connection between large-deviation statistics and Lee-Yang
theory may exist. In Sec. IV, we finally summarize our work
and provide a perspective on possible developments for the
future.

II. LEE-YANG THEORY

A. The Ising model and Lee-Yang zeros

We consider the Ising model of spontaneous magnetiza-
tion, which describes a lattice of N = Ld spins that take on
the values σi = ±1. Here, we investigate a square lattice of
linear size L and dimension d . Figure 1 illustrates the model
in two dimensions with periodic boundary conditions corre-
sponding to a torus. An external magnetic field of magnitude
H is applied, and neighboring spins are coupled via a ferro-
magnetic interaction of strength J > 0. The energy of a spin
configuration {σi} reads

U ({σi}) = −J
∑
〈i, j〉

σiσ j − H
∑

i

σi, (1)

where the brackets 〈i, j〉 denote summation over nearest-
neighbor spins. We also introduce the partition function

Z =
∑
{σi}

e−βU ({σi}), (2)

where the sum runs over all spin configurations, and β =
1/(kBT ) is the inverse temperature. The free energy can be
expressed as

F = −β−1 ln Z. (3)

We will also use the following dimensionless quantities:

J = βJ ,

h = βH,

F = −βF , (4)

so that we can express the free energy as

F = ln

[∑
{σi}

eJ
∑

〈i, j〉 σiσ j+h
∑

i σi

]
, (5)

and we write the (dimensionless) free energy per site as

f = F/N (6)

and the magnetization per site as

m = M/N, (7)

where M({σi}) = ∑
i σi is the total magnetization for a given

spin configuration. The free energy is important to understand
the phase behavior of the Ising model. Specifically, in the
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thermodymic limit, phase transitions are signaled by nonan-
alyticities in the free energy.

To understand this nonanalytic behavior, Lee and Yang
considered the complex partition function zeros [1,2]. The
partition function is an entire function for a finite-size system,
as it is a finite sum of exponentials, and it can thus be factor-
ized in terms of its zeros. Considering the partition function
as a function of the magnetic field, we can write it as [48]

Z (h) = Z (0)ech
∏

k

(1 − h/hk ), (8)

where hk are the complex magnetic field zeros and c is a
constant. The Lee-Yang zeros come in complex conjugate
pairs, hk and h∗

k , since the partition function is real for real
magnetic fields. The free energy can then be expressed in
terms of the Lee-Yang zeros as

F (h) = F (0) + ch +
∑

k

ln(1 − h/hk ). (9)

Lee and Yang showed that the partition function zeros with
increasing system size will approach the critical value of the
external field for which a phase transition occurs and the
free energy becomes nonanalytic. These ideas now form the
theoretical basis of phase transitions in interacting many-body
systems. However, while partition function zeros for a long
time were considered a purely theoretical concept, recent
works have shown that they can also be determined experi-
mentally [35–43].

B. The cumulant method

We now describe the cumulant method that we recently
developed to determine the partition function zeros by mea-
suring fluctuations of thermodynamic observables in systems
of finite sizes [9,32–34,44,45]. Here, we consider the mag-
netic field zeros, but the method can also be applied to other
partition function zeros, for instance, the zeros in the complex
plane of the inverse temperature, also known as Fisher zeros.
To begin with, we note that the partition sum and the free en-
ergy deliver the moments and cumulants of the magnetization
upon differentiation with respect to the magnetic field as

〈Mn〉 = ∂n
h Z (h)

Z (h)
(10)

and

〈〈Mn〉〉 = ∂n
h F (h). (11)

Importantly, the moments and cumulants of the magnetiza-
tion can be measured (or obtained from simulations), and the
method can thus be experimentally realized to investigate the
phase behavior of Ising lattices as well as other interacting
many-body systems. Experimentally, cumulants of up to order
15 have been measured for charge transport through a quan-
tum dot [49]. To proceed, we differentiate the free energy in
Eq. (9) with respect to the magnetic field and find

〈〈Mn〉〉 = −
∑

k

(n − 1)!

(hk − h)n , n > 1, (12)

which can be further rewritten in polar coordinates as

〈〈Mn〉〉 = −(n − 1)!
∑

k

2 cos (n arg[hk − h])

|hk − h|n , n > 1,

(13)

recalling that the zeros come in complex conjugate pairs. We
now see that the sum for large cumulant orders, n � 1, is
dominated by the conjugate pair of zeros, ho and h∗

o, which are
closest to h on the real axis. Thus, for large cumulant orders,
we can approximate the cumulants as

〈〈Mn〉〉 � −(n − 1)!
2 cos (n arg[ho − h])

|ho − h|n , n � 1, (14)

which constitutes an important relation between the leading
pair of zeros and the cumulants. In particular, we can invert
this expression and determine the leading zeros from the cu-
mulants of the magnetization as [9,32,44,45]

[
2 Re[ho − h]

|ho − h|2
]

�
[

1 −μ(+)
n
n

1 −μ
(+)
n+1

n+1

]−1[
(n − 1)μ(−)

n

n μ
(−)
n+1

]
, (15)

where μ(±)
n ≡ 〈〈Mn±1〉〉/〈〈Mn〉〉 is the ratio of cumulants of

consecutive orders. Inverting the matrix, we find

Re[ho − h] � n(n + 1)〈〈Mn〉〉〈〈Mn+1〉〉 − n(n − 1)〈〈Mn−1〉〉〈〈Mn+2〉〉
2[(n + 1)〈〈Mn+1〉〉2 − n〈〈Mn〉〉〈〈Mn+2〉〉] , n � 1, (16)

and

|ho − h|2 � n2(n + 1)〈〈Mn〉〉2 − n(n2 − 1)〈〈Mn−1〉〉〈〈Mn+1〉〉
(n + 1)〈〈Mn+1〉〉2 − n〈〈Mn〉〉〈〈Mn+2〉〉 , n � 1, (17)

which make it possible to determine the Lee-Yang zeros from
the high cumulants of the magnetization.

C. The Ising chain

To provide an illustration of the cumulant method, we
first consider the one-dimensional Ising lattice with periodic

boundary conditions, σL+1 = σ1. In this case, the partition
function can be written as

Z (h) = Tr{TL} = λL
+ + λL

− (18)

in terms of the transfer matrix

T =
(

eJ+h e−J

e−J eJ−h

)
(19)
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FIG. 2. High cumulants of the magnetization and extracted Lee-Yang zeros for the Ising chain. (a) High magnetization cumulants as a
function of the system size L at the inverse temperature βJ = 0.6 and zero magnetic field. The odd cumulants vanish. The lines are guides to
the eye. (b) Imaginary part of the Lee-Yang zeros extracted from the cumulants at two different temperatures. The extracted Lee-Yang zeros
are shown with filled blue circles, while exact results are indicated with open red circles. The lines are guides to the eye. (c) Determination of
the convergence points in the thermodynamic limit.

and its eigenvalues

λ± = eJ [cosh(h) ±
√

sinh2(h) + e−4J ]. (20)

Based on these expressions, it is straightforward to calculate
the high cumulants of the magnetization as functions of the
system size. We also see that the free energy per site in the
thermodynamic limit,

f (h) = ln max{λ±(h)}, (21)

is given by the eigenvalue with the largest absolute value.
From this expression, it is evident that nonanalyticities in the
free energy may occur at eigenvalue crossings.

In Fig. 2(a), we show high cumulants of the magnetization
as a function of the system size. First, we note that all odd
cumulants vanish in the absence of a magnetic field, h = 0,
and that in fact also holds for the Ising model in two and three
dimensions. The implementation of the cumulant method then
simplifies since Eq. (16) immediately implies that the real
part vanishes, Re[ho] = 0, and Eq. (17) reduces to the simple
expression

Im[ho] � ±
√

2n(2n + 1)

∣∣∣∣ 〈〈M2n〉〉
〈〈M2(n+1)〉〉

∣∣∣∣, n � 1, (22)

involving the ratio of two subsequent even cumulants, which
alternate in sign as seen in Fig. 2(a). From this expression, we
then determine the Lee-Yang zeros as illustrated in Fig. 2(b)
for two different temperatures. Finally, to obtain the conver-
gence points in the thermodynamic limit, we extrapolate in
Fig. 2(c) the position of the Lee-Yang zeros with increasing
system size using 1/L as a natural small expansion parameter.
At finite temperatures, the Lee-Yang zeros remain complex
since the Ising chain does not exhibit a thermal phase transi-
tion. The zeros only reach the real axis at zero temperature.

To verify the Lee-Yang zeros obtained with the cumulant
method, we compare them with exact expressions for the zeros
of the partition function. To this end, we solve for the zeros of
Eq. (18) and find

ln λ+(hk ) = ln λ−(hk ) + i
π (2k + 1)

L
, (23)

where k is an integer. From the explicit expression for the
eigenvalues (20), we then find the Lee-Yang zeros as

hk = ±i arccos

[√
1 − e−4J cos

(
π (2k + 1)

2L

)]
. (24)

In Fig. 2(b), we compare the extracted Lee-Yang zeros with
the exact results for the leading Lee-Yang zeros (k = 0) and
find very good agreement. We also see that the convergence
points in the thermodynamic limit read

hc = ± i arcsin(e−2J ), (25)

which again agree well with the results in Fig. 2(c). At finite
temperatures, the convergence points remain complex, while
at low temperatures, J = βJ � 1, we find hc � ± ie−2J ,
which indeed only vanishes at zero temperature.

D. Finite-size scaling

To understand the approach of the Lee-Yang zeros to the
real axis, we now analyze their finite-size scaling. To this end,
we first express the magnetization moments as

〈Mn〉 =
∫

dM MnP(M, L), (26)

where P(M, L) is the probability distribution of the magne-
tization M for the system of linear size L. To determine the
scaling of the moments, we follow the arguments of Binder
by invoking a finite-size scaling ansatz for the probability
distribution near the critical point [50–52]:

P(M, L) = aLxP̃(bLyM, L/ξ ). (27)

Here, the correlation length for large systems is denoted by ξ ,
the scaling function is denoted by P̃, and a, b, x, and y are
constants. The normalization condition,

∫ ∞
−∞ dMP(M, L) =

1, translates into the relation [52]

Lx−y a

b

∫ ∞

−∞
dzP̃(z, L/ξ ) = 1 (28)

upon the substitution z = bLyM. Since this relation should be
valid for any system size, it must hold that x = y, and the
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integral over the scaling function must be constant, such that
we can define

c =
∫ ∞

−∞
dzP̃(z, 0) = b

a
, (29)

near criticality. We now find the scaling relation

〈Mn〉 = L−nx fn(L/ξ ), (30)

having introduced the function fn(L/ξ ) =
1

cbn

∫
dyynP̃(y, L/ξ ) after the change of variable, y ≡ bLxM

[52]. The following relation,

〈〈Mn〉〉 = 〈Mn〉 −
n−1∑
m=1

(
n − 1
m − 1

)
〈〈Mm〉〉〈Mn−m〉, (31)

between cumulants and moments implies that the cumulants
must also scale as

〈〈Mn〉〉 = L−nx gn(L/ξ ), (32)

where the scaling functions for the cumulants, gn, can be
expressed in terms of the scaling functions for the moments,
fn. From Eq. (12), we now see that the zeros must approach
the critical value as [44,45]

|ho − hc| ∝ Lx,

Im[ho] ∝ Lx,
(33)

where hc (with Im[hc] = 0) is the critical field for which the
system exhibits a phase transition.

In addition, we can relate the critical exponents to the
universal critical exponents of the phase transitions. The mag-
netic susceptibility is defined as

χ = ∂h〈M〉/N = 〈〈M2〉〉/N ∝ ξγ /ν, (34)

where γ and ν are the critical exponents related to the mag-
netic susceptibility and the correlation length, respectively.
We then find

χ = L−2xg2(L/ξ )/Ld ∝ ξγ /ν, (35)

and thereby conclude that g2 must scale as

g2(L/ξ ) ∝ (L/ξ )−γ /ν. (36)

Moreover, the exponents must be related as 2x = −γ /ν − d
since the right-hand side of Eq. (35) is independent of L.
Drawing on the hyperscaling relation, νd = 2B + γ , where
B is the critical exponent associated with the magnetization,
we find x = B/ν − d . The finite-size scaling for the Lee-Yang
zeros then finally becomes

|ho − hc| ∝ LB/ν−d ,

Im[ho] ∝ LB/ν−d . (37)

In the next sections, we use these relations to determine the
convergence points of the Lee-Yang zeros for the Ising model
in two and three dimensions by extrapolating their positions
in the thermodynamic limit.

E. The Ising square lattice

We now consider the Lee-Yang zeros of the two-
dimensional Ising model. The model is exactly solvable in the

absence of a magnetic field [53], however, here we include the
magnetic field to investigate the Lee-Yang zeros. To this end,
we write the partition function in terms of a transfer matrix
and its eigenvalues as [54]

Z (h) = Tr{TL} =
2L∑
j=1

λL
j . (38)

Here, the 2L × 2L transfer matrix,

T = [2 sinh(2J )]L/2V3V2V1, (39)

is given by a product of the three matrices

V1 =
L∏

i=1

e�Xi , V2 =
L∏

i=1

eJZiZi+1 , V3 =
L∏

i=1

ehZi (40)

with tanh � = e−2J , and we have defined

Xi = 1 ⊗ 1 ⊗ · · · ⊗ σx ⊗ · · · ⊗ 1 ⊗ 1 (41)

and

Zi = 1 ⊗ 1 ⊗ · · · ⊗ σz ⊗ · · · ⊗ 1 ⊗ 1, (42)

with the standard Pauli matrices on position i = 1, . . . , L,

σx =
(

0 1
1 0

)
, σz =

(
1 0
0 −1

)
. (43)

In the thermodynamic limit, the free energy per site is
determined by the largest eigenvalue of T as

f (h) = 1

L
ln max{λi(h)}. (44)

However, in the following, we again need to evaluate the
cumulants of the magnetization in lattices of finite size. Gen-
erally, it is difficult to evaluate high derivatives numerically,
and we here pursue a different approach. We express the
moments of the magnetization as

〈Mn〉 = Tr
{
∂n

h TL
}

Z (h)
(45)

and then use a recursive expression for the derivatives of
powers of the transfer matrix. We first note that

∂hTL = MTL + T∂hTL−1, (46)

having used that ∂hT = MT, since V3 = ehM with

M =
∑

i

Zi. (47)

For the higher derivatives, we then find

∂n
h Tl = M∂n−1

h Tl +
n−1∑
m=0

(
n − 1

m

)
Mn−1−m T∂m+1

h Tl−1 (48)

for l = 1, . . . , L, having made use of the binomial series,

(a + b)n =
n∑

m=0

(
n

m

)
an−mbm. (49)

With these expressions, we can accurately evaluate the high
moments of the magnetization and subsequently obtain the cu-
mulants using Eq. (31) or, equivalently, using the convenient
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FIG. 3. Lee-Yang zeros for the Ising square lattice in two dimensions. (a) Imaginary part of the Lee-Yang zeros, shown with blue points, ex-
tracted from the magnetization cumulants with increasing system size for three different temperatures, where βc = ln(1 + √

2)/2J � 0.44/J
is the critical inverse temperature. For comparison, we show with red circles numerically exact results for the zeros. (b) Extraction of the ratio
of critical exponents, B/ν, based on Eq. (37). For the Ising lattice, it is known that B = 1/8 and ν = 1. (c) Extrapolation of the Lee-Yang zeros
in the thermodynamic limit above, β = 0.8βc, and below, β = 1.2βc, the critical temperature. At low temperatures, the Lee-Yang zeros reach
the real axis, signaling a phase transition.

n × n determinant formula

〈〈Mn〉〉
(−1)n+1

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

〈M1〉 1 0 0 . . .

〈M2〉 〈M1〉 1 0 . . .

〈M3〉 〈M2〉
(

2

1

)
〈M1〉 1 . . .

〈M4〉 〈M3〉
(

3

1

)
〈M2〉

(
3

2

)
〈M1〉 . . .

. . . . . . . . . . . .
. . .

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

In Fig. 3(a), we show the imaginary part of the leading Lee-
Yang zeros as a function of the system size L, obtained from
the high cumulants of the magnetization at three different
temperatures, above and below the critical point. In Fig. 3(b),
we proceed by using Eq. (37) to extract the ratio of critical
exponents, B/ν, which comes close to the known value for the
two-dimensional Ising model of 1/8. Finally, in Fig. 3(c), we
use the ratio of the critical exponents to extrapolate the posi-
tion of the Lee-Yang zeros in the thermodynamic limit. Above
the critical temperature, the Lee-Yang zeros remain complex,
since there is no phase transitions. By contrast, below the
critical temperature, the Lee-Yang zeros reach the real axis
corresponding to the first-order phase transition that occurs as
the magnetic field is tuned across h = 0. These results show
how it is possible to predict the critical behavior of the Ising
model by measuring the fluctuations of the magnetization in
small lattices.

F. The cubic Ising lattice

The determination of the Lee-Yang zeros in the previous
section was based on numerically exact transfer-matrix calcu-
lations of the magnetization cumulants. To provide another
illustration of the cumulant method, we now consider the
cubic Ising lattice in three dimensions for which we determine
the magnetization cumulants from Monte Carlo simulations.
In this way, we obtain numerical data for the magnetiza-
tion cumulants, similarly to what one could measure in an

experiment. We can thereby estimate the uncertainty associ-
ated with a finite-size sample of data.

Figures 4 and 5 show the determination of the Lee-Yang
zeros based on the Monte Carlo simulations. In each figure,
we show from left to right the imaginary part of the Lee-Yang
zeros as a function of the system size, the determination of
the ratio of critical exponents based on Eq. (37), and finally
the extrapolation of the Lee-Yang zeros in the thermodynamic
limit. Above the critical temperature, the Lee-Yang zeros re-
main complex, since there is no phase transition, while they
reach the real axis below and at the critical temperature. Im-
portantly, in Fig. 5, we have increased the number of Monte
Carlo simulations compared to Fig. 4, and we see how the
accuracy of the results improve accordingly. These findings
illustrate how one could determine the Lee-Yang zeros of a
finite-size spin lattice by measuring the fluctuations of the
total magnetization.

III. LARGE-DEVIATION STATISTICS

A. Connection to Lee-Yang zeros

In the first part of the paper, we saw how the Lee-Yang
zeros can be extracted from the magnetization cumulants
in finite lattices. In this second part, we are concerned
with the connection between the Lee-Yang zeros and the
large-deviation statistics of the magnetization. Fundamentally,
statistical mechanics and large-deviation theory are intimately
linked through concepts such as entropy, rate functions, free
energies, and cumulant generating functions [47]. Here, we
discuss a connection between the Lee-Yang zeros and the
large-deviation statistics. To this end, we write the magneti-
zation distribution as

P(M ) =
∑
{σi}

e−βU ({σi})

Z (h)

∫ π

−π

dχ

2π
eiχ (

∑
j σ j−M ), (50)

where the Boltzmann factor over the partition function yields
the probability for the spin configuration {σi}, and we have
made use of an integral representation of the Kronecker delta.
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FIG. 4. Lee-Yang zeros for the Ising lattice in three dimensions. (a) Imaginary part of the Lee-Yang zeros extracted from the magnetization
cumulants at three different temperatures, where βc � 0.22165/J is the critical inverse temperature. The cumulants were obtained by averaging
over five sets of Monte Carlo simulations, each with 5 × 105 measurements. The red bands indicate the standard error over the five sets.
(b) Extraction of the ratio of critical exponents, B/ν, based on Eq. (37). The extracted value is close to the best known value of B/ν � 0.5181,
with the uncertainty given by the standard error over the five sets. (c) Extrapolation of the Lee-Yang zeros in the thermodynamic limit above
and at the critical temperature.

Using Eq. (2), we then obtain

P(M ) =
∫ π

−π

dχ

2π

Z (h + iχ )

Z (h)
e−iχM

=
∫ h+iπ

h−iπ

dκ

2π i
eN[�m (κ )−�m (h)], (51)

having substituted κ = h + iχ and defined the function

�m(h) = f (h) − mh (52)

in terms of the free energy and the magnetization per site.
For large system sizes, N � 1, the integral in Eq. (51) is
amenable to a saddle-point approximation. Specifically, the
large-deviation statistics takes the form

ln P(m)

N
� �m(κ0) − �m(h), (53)

where κ0 = κ0(m) solves the saddle-point equation, �′
m(κ ) =

0, which can also be formulated as

〈m〉(κ ) = m. (54)

Thus we need to find the value of the auxilary magnetic field κ

for which the average magnetization would equal m. In many
cases, it is difficult to solve Eq. (54), since the free energy
and the average magnetization are complicated functions of
the magnetic field.

To find an approximate solution of the saddle-point equa-
tion, we now make a crude ansatz for the free energy.
Specifically, we assume that the Lee-Yang zeros converge to
square-root branch points of the free energy, which is typi-
cal for eigenvalue crossings. Thus, close to the convergence
points, hc and h∗

c , we make the ansatz [9,45]

f (h) � m0

√
(hc − h)(h∗

c − h) (55)

for the free energy, where m0 is an unknown parameter. For
the average magnetization, we now find

〈m〉(h) � m0[h − Re(hc)]√
|hc|2 + h[h − 2Re(hc)]

, (56)
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FIG. 5. Lee-Yang zeros for the Ising lattice in three dimensions. (a) Imaginary part of the Lee-Yang zeros extracted from the magnetization
cumulants at three different temperatures, where βc � 0.22165/J is the critical inverse temperature. The cumulants were obtained by averaging
over 15 sets of Monte Carlo simulations, each with 2 × 107 measurements. The red bands indicate the standard error over the 15 sets.
(b) Extraction of the ratio of critical exponents, B/ν, based on Eq. (37). The extracted value is close to the best known value of B/ν � 0.5181,
with the uncertainty given by the standard error over the 15 sets. (c) Extrapolation of the Lee-Yang zeros in the thermodynamic limit above
and at the critical temperature.
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FIG. 6. Large-deviation statistics of the magnetization for the Ising chain. (a) Large-deviation statistics at a finite temperature in the absence
of a magnetific field. The solid line corresponds to Eq. (61), while the dashed line is an ellipse whose upper part is given by Eq. (58) with
the Lee-Yang zeros inserted and m0 = 1. (b) Large-deviation statistics as in the left panel, but with an applied magnetic field, which tilts the
ellipse. (c) At very low temperatures, the ellipse collapses to a nearly straight line.

and we can then solve Eq. (54), which yields

κ0 � Re(hc) + |Im(hc)| m√
m2

0 − m2
, (57)

having chosen the solution for which the average magnetiza-
tion increases as the magnetic field is increased, taking the
imaginary part of hc to be positive. (We throw away a solution
for which the magnetization decreases.) Inserting this solution
into the ansatz for the free energy, we find a simple expression
for the large-deviation statistics,

ln P(m)

N
� m[h − Re(hc)] − f (h) + |Im(hc)|m0|m0| − m2√

m2
0 − m2

.

(58)

From the approximation above, we expect that the large-
deviation statistics will simply be given by a straight line with
slope h − Re(hc), if the Lee-Yang zeros reach the real axis and
the convergence point thus is real. The third term, f (h), does
not involve the magntization and is just a constant vertical
shift of the large-deviation function. The last term becomes
relevant, if the Lee-Yang zeros do not reach the real axis,
and the convergence points remain complex. Interestingly,
this term is independent of the magnetic field. Thus, if the
large-deviation function is known at zero magnetic field, one
can predict how it will evolve as a magnetic field is applied.
Furthermore, if m0 is positive, the last term simplifies and then
describes the upper part of an ellipse.

The expression for the large-deviation function provides a
link between Lee-Yang theory and large-deviation statistics.
However, it relies on the ansatz (55) for the free energy, which
is not obvious, although it may capture many essential features
of first-order phase transitions. To improve our understanding
of the ansatz, we now compare it with the large-deviation
statistics for the Ising model in one, two, and three dimen-
sions.

B. The Ising chain

For the Ising chain, we can solve Eq. (54) exactly using
the explicit expression for the free energy in Eq. (21). The

saddle-point equation then reads

〈m〉(κ ) = sinh(κ )√
sinh2(κ ) + e−4J

= m (59)

with the solution

κ0 = sinh−1

(
m√

1 − m2
e−2J

)
. (60)

Inserting this solution into Eq. (53), we find the large-
deviation function for the Ising chain,

ln P(m)

N
= mh − ln

[
cosh(h) +

√
sinh2(h) + e−4J

]

+ ln

⎡
⎣ e−2J

√
1 − m2

+
√

1 + m2

1 − m2
e−4J

⎤
⎦

− m sinh−1

(
m√

1 − m2
e−2J

)
. (61)

At first sight, the result does not resemble Eq. (58). How-
ever, upon closer inspection, we see that at low temperatures,
e−2J = e−2βJ  1, we can expand it as

ln P(m)

N
� mh − f (h) + e−2J

√
1 − m2, (62)

which exactly corresponds to Eq. (58) with hc =
±i arcsin(e−2J ) � ±ie−2J and m0 = 1. At even lower
temperatures, J = βJ � 1, it simplifies further to the
straight line,

ln P(m)

N
� mh − |h|. (63)

Figure 6 shows the large-deviation statistics of the Ising
chain for different temperatures and magnetic fields. We show
the exact result in Eq. (61) together with the approximation
in Eq. (58), where we have inserted the convergence points of
the Lee-Yang zeros that we extracted from the magnetization
cumulants. The figure illustrates how the ansatz for the free
energy in Eq. (55) leads to an accurate description of the
large-deviation function, and it provides an important link
between Lee-Yang theory and large-deviation statistics. Next,
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FIG. 7. Large-deviation statistics for the two-dimensional Ising lattice. Numerically exact results are shown in red, while the blue lines
are the approximation (58) with the convergence points of the Lee-Yang zeros inserted, having used m0 = −(1 + Im[hc/J]), which provides
a good approximation. For β = 0.8βc, the convergence point is Im[hc/J] = 0.0865(9) and m0 ≈ −1.0865, while for β = 0.9βc, we have
Im[hc/J] = 0.0209(5) and m0 ≈ −1.0209. In the last two columns, we have Im[hc/J] = 0.

we explore this link in further detail for the Ising model in
higher dimensions.

C. The Ising square lattice

For the Ising square lattice, we calculate the large-deviation
statistics using a numerically exact approach. For large lat-
tices, we can write the average magnetization per site as the
logarithmic derivative of the largest eigenvalue of the transfer
matrix,

〈m〉 = ∂h f (h) = ∂hλmax

Lλmax
, (64)

where the eigenvalue problem reads

T|λmax〉 = λmax|λmax〉, (65)

and the left and right eigenvectors are normalized as
〈λmax|λmax〉 = 1. Now, using the Hellmann-Feynman

theorem, we can express the magnetization as

〈m〉 = 〈λmax|(∂hT)|λmax〉
Lλmax

= 〈λmax|MT|λmax〉
Lλmax

= 〈λmax|m|λmax〉, m = M/L,

(66)

which resembles the expectation value of an observable in
quantum mechanics. Based on this result, we can numerically
calculate the magnetization as a function of the magnetic field
and then solve the saddle-point equation using a standard
numerical root-finding method.

In Fig. 7, we show the large-deviation statistics of the
magnetization for the Ising square lattice in two dimen-
sions. Results are displayed for several different temperatures,
above, below, and at the critical temperature, both with and
without an applied magnetic field. Just as for the Ising chain,
the exact results for the large-deviation statistics are very well
captured by the approximation (58), where we have inserted
the convergence points of the Lee-Yang zeros. Below and at
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FIG. 8. Large-deviation statistics for the three-dimensional Ising lattice. Results based on Monte Carlo simulations are shown in red, while
the blue lines are the approximation (58) with the convergence points of the Lee-Yang zeros inserted. The width of the red markers indicate the
bin size. In the first three columns, we have used the linear size L = 8, and in the fourth one L = 10. For the first two columns, the Lee-Yang
zeros converge to the complex points Im[hc/J] = 0.0876(4) and Im[hc/J] = 0.0275(4), respectively, and we have used m0 = −0.94 and
m0 = −0.84 for the fitting. In the last two columns, the Lee-Yang zero converge to hc = 0. For the Monte Carlo simulations, we have used
2 × 107 measurements for each panel.

the critical temperature, the large-deviation statistics is given
by a straight line, whose tilt is determined by the applied
magnetic field. In particular, as the magnetic field is tuned
across zero, the average magnetization (given by the highest
point on the curves) displays an abrupt jump, corresponding
to a first-order phase transition. By contrast, above the critical
temperature, the Lee-Yang zeros remain complex, and the
imaginary part of the zeros gives rise to the finite curvature
of the large-deviation statistics. Again, an applied magnetic
field tilts the distributions, however, the change of the average
magnetization is smooth, since there is no phase transition in
this case.

D. The cubic Ising lattice

Finally, we return to the cubic Ising lattice in three dimen-
sions and evaluate the large-deviation statistics using Monte
Carlo simulations. Here, the key challenge is to accurately
sample the rare events in the tails of the distributions for

sufficiently large lattices. The results of the Monte Carlo
simulations are shown in Fig. 8 for different temperatures,
above, below, and at the critical point. We also show results
with an applied magnetic field, which tilts the large-deviation
statistics of the magnetization. Above the critical temperature,
the distribution already takes on the large-deviation form with
N = 83 = 512 spins, and the results are captured by the ansatz
(58) with the complex convergence points of the Lee-Yang
zeros inserted. From the Monte Carlo simulations, we can
accurately sample the bulk part of the distributions, however,
we cannot access the very rare events in the tails due to the
limited number of measurements. As we move the critical
point in the third column, we see that the distribution of the
magnetization has not completely reached the large-deviation
form, which should be concave [47]. Thus the slightly bi-
modal distribution reveals that the system is not quite large
enough to take on the large-deviation form. Still, the part of
the distribution that can be accessed with the Monte Carlo
simulations is well-captured by the ansatz (58). Finally, in
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the last column, where the temperature is below the critical
point, we have increased the system size to N = 103 = 1000
spins. In this case, however, this system is still not large
enough to take on the large-deviation form and clear finite-size
effects are visible. The increased system size also makes it
further difficult to access the rare tails of the distribution,
which are exponentially suppressed with the system size,
and therefore exponentially harder to realize in the Monte
Carlo simulations. On the other hand, using the ansatz (58)
together with the convergence points of the Lee-Yang zeros,
we can predict the exponentially small probabilities to observe
a rare fluctuation of the magnetization, as indicated by the
blue line. It is worth to mention that more advanced Monte
Carlo methods exist [55–57], such as flat-histogram methods,
umbrella sampling, and multicanonical methods, however,
implementing them is beyond the scope of this work.

IV. CONCLUSIONS

In summary, we have used a recently developed cumulant
method to determine the Lee-Yang zeros of the Ising model in
one, two and three dimensions from the high cumulants of the
magnetization in lattices of finite size. The method is based on
the fluctuations of the magnetization, which in principle can
be measured, and our approach is therefore attractive from
an experimental point of view. Having determined the con-
vergence points of the Lee-Yang zeros in the thermodynamic
limit, we have shown how they encode important information

about the large-deviation statistics of the magnetization. In
particular, using a simple ansatz for the free energy, we have
expressed the large-deviation function in terms of the Lee-
Yang zeros and found good agreement with calculations for
the Ising model in all three dimensions. This result may hold
for many systems that exhibit a first-order phase transition.

Our work opens several perspectives for future research.
While the determination of Lee-Yang zeros here was based
on calculations of the magnetization cumulants, it would be
interesting to implement our method in an experiment by
measuring the magnetization fluctuations in an Ising lattice
of finite size. In addition, the method is not restricted to
equilibrium problems only, but may equally well be applied to
dynamical phase transitions in quantum many-body systems
after a quench [25–27] or quantum phase transitions in the
groundstate of an interacting quantum spin chain [58,59].
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