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ABSTRACT

The possibility of explaining shear flow dynamos by a magnetic shear–current (MSC) effect is examined
via numerical simulations. Our primary diagnostics is the determination of the turbulent magnetic diffusivity
tensor η. In our setup, a negative sign of its component ηyx is necessary for coherent dynamo action by the
SC effect. To be able to measure turbulent transport coefficients from systems with magnetic background
turbulence, we present an extension of the test–field method (TFM), applicable to our setup where the pressure
gradient is dropped from the momentum equation: the nonlinear TFM (NLTFM). Our momentum equation is
related to Burgers’ equation and the resulting flows are referred to as magnetized burgulence. We use both
stochastic kinetic and magnetic forcings to mimic cases without and with simultaneous small-scale dynamo
action (SSD). When we force only kinetically, negative ηyx are obtained with exponential growth in both the
radial and azimuthal mean magnetic field components. Using isotropic magnetic forcing, the field growth
is no longer exponential, while NLTFM yields positive ηyx. By employing an alternative forcing from which
wavevectors having small components are removed, the exponential growth is recovered, but the NLTFM results
do not change significantly. Analyzing the dynamo excitation conditions for the coherent SC and incoherent α
and SC effects shows that the incoherent effects are the main drivers of the dynamo in the majority of cases. We
find no evidence for MSC-effect-driven dynamos in our simulations.

1. INTRODUCTION

In recent years, the possibility of large-scale dynamo
(LSD) action through the shear–current effect (Rogachevskii
& Kleeorin 2003, 2004) in flows where more conventional
dynamo effects, such as the α effect arising through stratifi-
cation and rotation, cannot operate, has gained a lot of inter-
est. In turbulence lacking helicity, say, due to the absence of
rotation or stratification in density or turbulence intensity, the
α tensor vanishes. The turbulent magnetic diffusivity tensor
η, however, is always found to have finite and positive diag-
onal components. Its off-diagonal components are in general
also finite if there is rotation or shear. Rotation alone gives
rise to the Ω×J or Rädler effect (Rädler 1969a,b) and shear
alone to the shear–current (SC) effect. For a suitable sign of
the relevant off-diagonal component of η, the latter can lead
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to dynamo action even without rotation, but the former would
not without shear. Both the Rädler and SC effects have been
discussed as additional or even major dynamo effects in stars
(Pipin & Seehafer 2009), accretion disks (Lesur & Ogilvie
2008; Blackman 2010), and galactic magnetism (Chamandy
& Singh 2018).

Astrophysical flows are also subject to vigorous small-
scale dynamo (SSD) action, which should occur in any flow
where the magnetic Reynolds and Prandtl numbers are large
enough. The SSD produces strong, fluctuating magnetic
fields at scales smaller than the forcing scale of the turbu-
lence, on time scales short in comparison to the LSD in-
stability (see, e.g., Brandenburg et al. 2012). Usually, the
SSD is thought to be detrimental to α-effect driven dy-
namos, where dynamo action can be strongly suppressed in
high Reynolds number regimes (e.g., Cattaneo & Vainshtein
1991; Vainshtein & Cattaneo 1992), unless the system can
get a rid of small-scale magnetic helicity by interacting with
its surroundings through helicity fluxes (e.g., Blackman &
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Field 2001; Brandenburg 2001; Brandenburg & Subramanian
2005). In the absence of magnetic background turbulence it
has not yet been possible to verify the existence of a dynamo
driven by the SC effect (Yousef et al. 2008b; Brandenburg
et al. 2008; Singh & Jingade 2015). Failure to understand the
origin of large-scale magnetic fields in these numerical works
in terms of the SC effect, together with the findings of signif-
icant α fluctuations in Brandenburg et al. (2008), provided
enough motivation to explore the possibility of LSD action
driven solely due to fluctuating α in shearing systems. Such
an incoherent α–shear dynamo was studied analytically in a
number of previous works, suggesting a possibility of gen-
eration of large-scale magnetic fields due to purely temporal
fluctuations in α in the presence of shear (Heinemann et al.
2011; Mitra & Brandenburg 2012; Sridhar & Singh 2014).

It has, however, been claimed that in the presence of forc-
ing in the induction equation, mimicking magnetic back-
ground turbulence provided, e.g., by the SSD, a thus mag-
netically driven SC dynamo exists (Squire & Bhattacharjee
2015a,b, 2016). In their analytic study, under the second–
order correlation approximation, Squire & Bhattacharjee
(2015a) argued for a significant magnetic contribution of the
type leading to coherent dynamo action in systems with both
shear and rotation with typical q = −S/Ω values for galactic
or accretion disks, while in the regime of shear dominating
over rotation, relevant to our current study, such contribution
was found weak. In Squire & Bhattacharjee (2016), it was
furthermore argued that the MSC “arises exclusively from
the pressure response of the velocity fluctuations”. As we
demonstrate in Appendix C, based on an analytical calcu-
lation, a magnetic contribution to ηyx exists even when the
pressure term is dropped, but then likely has a sign that is un-
favorable for dynamo action. However, since these analytic
results suffer from many simplifications, they cannot provide
a conclusive picture. Hence, it is important to study this issue
numerically, which is one of our aims in this work.

In their numerical studies, (Squire & Bhattacharjee 2015b,
2016) reported the generation of a large-scale magnetic field,
usually on the scale of the computational domain, with mag-
netic forcing while in the case of kinetic forcing only, the
generated patterns were reported to be temporally more er-
ratic and spatially less coherent. For a flow in y direction,
sheared in x, an attempt was made to measure the turbulent
transport coefficients using the Second Order Cumulant Ex-
pansion method of Marston et al. (2008), and the results indi-
cated negative ηyx and ηxx in the presence of magnetic forc-
ing. Incidentally, if confirmed in this case, a negative ηxx
could also imply dynamo action (Lanotte et al. 1999; De-
vlen et al. 2013). At that time, however, a suitable test-field
method (TFM), providing another measurement tool for the
turbulent transport coefficients, was not yet available.

Here, we present first steps towards such a toolbox, extend-
ing the method developed by (Rheinhardt & Brandenburg
2010, (RB10)) to include the self–advection term and rota-
tion, albeit still limited to simplified MHD (SMHD) equa-
tions, with the pressure gradient term being dropped. Al-
though this method does not yet provide a completely suit-
able tool for the systems studied by Squire & Bhattacharjee
(2015b, 2016), it does provide a working solution for simpli-
fied shear dynamos with magnetic forcing, mimicking SSD,
and can be envisioned to enable important scientific insights.
In this paper, we present the method, referred to as “nonlin-
ear test-field method” (NLTFM), and tests against previously
studied cases, along with other validation results. As our ma-
jor topic, we analyze runs with simplified MHD equations
that exhibit dynamo action in the same parameter regime as
previously claimed to host magnetic SC (MSC) effect dy-
namos.

2. MODEL AND METHODS

We perform local Cartesian box simulations with shearing-
periodic boundary conditions to implement large-scale shear
as a linear background flow imposed on the system. The
shear occurs in the x direction, which could represent, e.g.,
the direction from the rotational center of a cosmic body.
Here, y is the stream-wise, or azimuthal, direction, and z

points into the vertical direction. The magnitude of the shear-
ing motion is described by the input parameter S such that
the imposed linear shear flow is US = Sxŷ. The rotation of
the domain, Ω = (0, 0,Ω), is described by the input param-
eter Ω, the magnitude of the angular velocity. In the simu-
lations reported in this paper, however, rotation is neglected,
as here we concentrate on studying the possibility of the SC
effect alone. We will, however, retain rotation in the model
equations for completeness. Our boxes have edge lengths
Lx = Ly , and Lz with aspect ratio A = Lz/Lx chosen
A = 1 in many cases, but we consider also vertically elon-
gated boxes with A = 4, 8, 16. All calculations were carried
out with the PENCIL CODE.1

2.1. Simplified MHD

As stated in the introduction, the equations of SMHD as de-
fined here are similar to those of MHD, but lack the pressure
gradient. Correspondingly, the density ρ is held constant. We
solve the equations for the magnetic vector potential A and
the velocity U ,

DAA=U ×B + FM + η∇2A, (1)

DUU =−U ·∇U + J ×B/ρ+ FK

+ν(∇2U + ∇∇ ·U/3) (2)

1 http://github.com/pencil-code

http://github.com/pencil-code
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with the linear expressions

DAA=DA+ Sx̂Ay, (3)

DUU = (D + 2Ω×)U + SŷUx (4)

D=∂/∂t+ Sx∂/∂y. (5)

B = ∇×A is the magnetic field, J = ∇×B is the current
density in units where the vacuum permeability is unity, FK

and FM are kinetic and magnetic forcing functions, respec-
tively, η is the (molecular) magnetic diffusivity, and ν is the
kinematic viscosity, both considered constant. Equation (2)
can be considered a 3-dimensional generalization of Burgers’
equation, which is why one refers to its turbulent solutions as
“burgulence”; see the review by Frisch & Bec (2000) on such
flows.

The main advantage of using SMHD is to avoid the neces-
sity of dealing with density fluctuations and corresponding
effects in the mean quantities. However, as self-advection
U ·∇U is no longer discarded, we are here more general than
RB10, the models of which suffered, in physical terms, from
the implied assumption of slow fluid motions, that is, small
Strouhal numbers (St � 1) or Reynolds numbers (Re � 1).
A complete neglect of the self-advection term is inadequate
in the present context given that shear plays its essential role
just via this term. So merely the terms arising from an ad-
ditional mean flow and from the fluctuating velocity alone
could be neglected. The latter neglect, however, would be
equivalent to restricting the method to the second-order cor-
relation approximation (SOCA) w.r.t. to the self-advection
term which is not desirable.

2.2. Full MHD

The full MHD system of equations (FMHD), here with an
isothermal equation of state, is more complex because of the
occurrence of the pressure gradient, by which we need an ad-
ditional evolution equation for the density. Also the viscous
force is more complex, hence

DAA=U ×B + FM + η∇2A,

ρ(DU +U ·∇)U + ∇p=J ×B + ρFK + ∇ · (2νρS),

(D +U ·∇) ln ρ=−∇ ·U . (6)

Here, Sij = (Ui,j + Uj,i) − 1
3∇ · U are the components

of the rate-of-strain tensor S, where commas denote partial
differentiation, and p is the pressure related to the density via
p = c2sρ, with cs = const being the isothermal sound speed.

2.3. Test-field methods

Throughout, we define mean quantities by horizontal av-
eraging, i.e., averaging over x and y, denoted by an overbar.
So the means depend on z and t only. Fluctuations are de-
noted by lowercase symbols or a prime, e.g., a = A − A,

u = U−U , and (u×b)′ = u×b−u× b. The horizontal av-
erage is normally taken to obey the Reynolds rules. In situa-
tions with linear overall shear though, the complication arises
that US 6= US (when US is defined to be ∝ x, the mean
even vanishes), being hence not a pure mean, while ∂iUSj
is spatially constant, hence a pure mean. So the Reynolds
rule “averaging commutes with deriving” is violated. How-
ever, (US · ∇G)′ = US · ∇g for an arbitrary quantity
G = G + g. This is a consequence of US ·∇G = 0 and
US ·∇g =

∫ ∫
Sx∂yg dxdy =

∫
Sx
(∫
∂yg dy

)
dx = 0,

the latter because of periodicity in y. Thus US can effec-
tively be treated as a mean flow.

The evolution equations for the fluctuations of the mag-
netic vector potential, a, and the velocity, u, are following
from Eqs. (1) and (2) as

DAa=u×B + (u× b)′ + fM + η∇2a, (7)

DUu=
(
J × b+ j ×B + (j × b)′

)
/ρ

−(u ·∇u)′ −U ·∇u− u ·∇U (8)

+fK + ν
(
∇2u+ ∇∇ · u/3

)
,

Further, FK = FM = 0, that is, the forcings are pure fluctu-
ations.

2.3.1. Nonlinear TFM

In the quasi-kinematic test-field method (QKTFM) (see
Sect. 2.3.2), E is a functional of only u, U , and B (lin-
ear in B). However, in the more general case with a mag-
netic background turbulence, this is no longer the case. To
deal with this difficulty, RB10 added the evolution equations
for the background turbulence (u0,b0) which are similar to
Eqs. (7) and (8), but for zero mean field, to the equations of
the TFM. In general, E = u× b can be split into a contribu-
tion E0 = u0 × b0 that is independent of the mean field and

EB̄ = u0 × bB̄ + uB̄ × b0 + uB̄ × bB̄, (9)

where uB̄ and bB̄ denote the solutions of Eqs. (7) and (8)
without forcing (called “test problems”) which are supposed
to vanish for vanishingB. Thus u = u0+uB̄ , b = b0+bB̄ .
EB̄ can be written in two equivalent ways as

EB̄ = u× bB̄ + uB̄ × b0 = u0 × bB̄ + uB̄ × b. (10)

Both become linear in quantities with subscript B when b
and u are identified with the fluctuating fields in the “main
run”, which is the system (1)–(2) solved simultaneously with
the test solutions. In this way, we have recovered the men-
tioned linearity property of E[B] of the QKTFM. Likewise,
one writes the part of the mean ponderomotive force F ,
which results from the Lorentz force as

j × bB̄ + jB̄ × b0 or j0 × bB̄ + jB̄ × b (11)
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and that resulting from self-advection as

u ·∇uB̄ +uB̄ ·∇u0 or u0 ·∇uB̄ +uB̄ ·∇u ; (12)

cf. Eqs. (29) and (30) of RB10. Corresponding expressions
can be established for the fluctuating parts of the bilinear
terms, (u × b)′, (j × b)′, and (u · ∇u)′. We recall that
these different formulations of the fluctuating parts, result in
different stability properties of the test problems, see also the
test results presented in Appendix B.1. Here we chose to
use in Eqs. (10)–(12) and the corresponding expressions for
the fluctuating terms the respective first version, resulting in
what is called the ju method; see Table 1 of Rheinhardt &
Brandenburg (2010).2

The kinematic limit —The given alternative formulations be-
come equivalent when the mean quantities, possibly evolv-
ing in the main run, are too weak to have a marked influence
on the fluctuating fields. Then, u → u0 and b → b0. Em-
ploying this means dropping terms like uB̄ × bB̄ in mean
EMF and mean force as is the correct way to obtain the latter
as quantities of first order in B. Then all possible versions
of the NLTFM (which actually ceases to be nonlinear) give
identical results up to roundoff errors.

We solve Eqs. (7) and (8) not by setting B to the actual
mean field resulting from the solutions of Eqs. (1) and (2),
but by setting it to one of several test fields,BT. Those are

B(1) = (cos kBz, 0, 0), B(2) = (sin kBz, 0, 0), (13)

B(3) = (0, cos kBz, 0), B(4) = (0, sin kBz, 0), (14)

where kB is the wavenumber of the test field, being a multi-
ple of 2π/Lz . From the solutions of Eqs. (7) and (8) we can
construct the mean electromotive force, E = u× b and the
mean ponderomotive force, F = j × b/ρ− u ·∇u, which
are then expressed in terms of the mean field by the ansatzes

E i = αijBj − ηijJj , (15)

F i = φijBj − ψijJj , (16)

where i, j adopt only the values 1, 2 as a consequence of set-
ting the anyway constant Bz arbitrarily to zero. Hence, each
of the four tensors, αij , ηij , φij , ψij , has four components,
i.e., altogether we have 16 unknowns. Note that often the α
and η tensors are defined as just the symmetric parts of our
αij and ηij while their antisymmetric parts are cast into the
vectorial coefficients of the γ and δ effects. These four co-
efficients describe in turn the effects of turbulent generation,
diffusion, pumping and the (non-generative, non-dissipative)

2 The methods are named after the fluctuating fields, which are taken over
from the main run; thus the four possible combinations of the expressions
in Eq. (10) and Eq. (11) yield ju, jb, bb, and ub. Including Eq. (12) would
produce more combinations with three-letter names like juu etc.

so-called Rädler effect. In the presence of shear, the coef-
ficient ηyx plays a prominent role, see Sect. 3.3. In spite
of what could be expected from the Lorentz force, being
quadratic in B, the turbulent ponderomotive force Eq. (16)
is linear in B. This is because of the presence of the mag-
netic background turbulence b0 via, in the kinematic limit,
j0 × bB̄ + jB̄ × b0.

2.3.2. Quasikinematic TFM

We state here for comparison the governing equations for
the QKTFM (see also Schrinner et al. 2005, 2007). They con-
sist of just Eq. (7) with fM = 0, but not Eq. (8), and Eq. (15).
Then, Eq. (10) reduces simply to

EB̄ = u× bB̄, (17)

and we find the contribution uB̄ × b0 missing. Again, for
further details see RB10.

2.3.3. Resetting

The test problems Eqs. (7) and (8) are often unstable, but
this does not necessarily affect the values of the resulting tur-
bulent transport coefficients: They usually show statistically
stationary behavior over limited time spans although the test
solutions are already growing. For safety reasons, we always
reset them to zero in regular intervals (typically every 50 time
units); see Hubbard et al. (2009) for a discussion. To mask
the initial transient, we also remove 20% of the data from the
beginning of each resetting interval.

2.4. Forcing

The standard forcing, implemented in the PENCIL CODE,
employs white–in–time “frozen” harmonic non-helical plane
waves. Their wavevectors are randomly selected from a thin
shell in k space of radius kf that fit into the periodic compu-
tational domain (for details see, e.g. Käpylä et al. 2020). In
most of our simulations, we apply this forcing for both fK
and fM in Eqs. (7) and (8). The wavevectors are further se-
lected such that no mean field or mean flow are directly sus-
tained, that is, the case ky = 0 is excluded.3 However, due to
roundoff errors, it is unavoidable that averages over harmonic
functions deviate slightly from zero. We call this effect “leak-
age of the forcing into the mean fields”. Strong shear could
produce a linearly growing By out of a small Bx due to such
leakage. This is why we checked its effect in purely mag-
netic runs and found the growth of By to be limited and both
components to stay within margins close to numerical pre-
cision. Nevertheless, as will be discussed in Sect. 3.1, with
this magnetic forcing setup, the mean magnetic fields very

3 Without shear, only those with kx = ky = 0 had to be excluded, but due
to shear-periodicity, 2π/kx is no longer an integer fraction of Lx.
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quickly (in a few turnover times) reach dynamically effective
strengths without showing a clear exponential stage.

Hence, another forcing setup was designed, referred to as
“decimated forcing”. In addition to ensuring that ky = 0

is excluded, we took out all those wavevectors for which
|kx,y,z| ≤ kmin = 2k1. As will be discussed in the results
section, the decimated forcing has the advantage of reducing
the amplitude of the mean fields generated during the initial
stages, thus allowing us to determine the growth rate of an ex-
ponentially growing dynamo instability. While the standard
choice is expected to provide a good approximation to homo-
geneous isotropic velocity turbulence, isotropy could be lost
in the decimated case, given that all wavevectors are parallel
or almost parallel to the spatial diagonals of the box.

However, as is discussed in Appendix A, the generated tur-
bulence does not markedly deviate from that by the standard
forcing in terms of isotropy. Also, repeating the kinetically
forced runs (fM = 0) with decimated forcing does not sig-
nificantly alter the dynamo solutions.

2.5. Mean flow removal

In all cases, be it full or simplified MHD, the first instabil-
ity to be excited is the generation of a mean flow with hor-
izontal components. These are most likely signatures of the
vorticity dynamo (see, e.g., Elperin et al. 2003; Käpylä et al.
2009). As it can de-stabilize the test problems, we have de-
cided to suppress the mean flow by subtracting it from the so-
lution U in every timestep, which also avoids leakage of the
forcing into U . With respect to a possible effect on the mag-
netic field, we refer to Yousef et al. (2008a), who reported,
for a very similar simulation setup as is used here, that the
presence of U did not significantly change the properties of
the shear dynamo; see their Section 3.4.

2.6. Input and output quantities

The simulations are fully defined by choosing the shear
parameter S, the forcing setup, amplitude, and wavenumber,
kf , the kinematic viscosity ν, and the magnetic diffusivity η.
The boundary conditions are (shearing) periodic in all three
directions. The following quantities are used as diagnostics:
We quantify the strength of the turbulence by the fluid and
magnetic Reynolds numbers

Re =
urms

νkf
, ReM =

urms

ηkf
= PrM Re, (18)

where

PrM =
ν

η
, (19)

is the magnetic Prandtl number. The Lundquist number and
its ratio to ReM are given by

Lu =
Brms

ηkf
√
ρ
,

Lu
ReM

=
Brms

urms
√
ρ
, (20)

which is only used in SMHDwhere ρ = const. The strength
of the imposed shear is measured by the dynamic shear num-
ber

ShK =
S

urmskf
. (21)

As in earlier work, we normalize the turbulent magnetic dif-
fusivity tensor by the SOCA estimate

η0 = urms/3kf (22)

or the molecular diffusivity η. The magnetic field is nor-
malized by the equipartition field strength, Beq = 〈ρu2〉1/2,
where angle brackets denote volume averaging.

We define the root-mean-square (rms) value of a field V
as Vrms = 〈V 2〉1/2 while Bi,rms =

〈
B

2

i

〉1/2
z

are the rms
values of the mean field components. 〈.〉 denotes volume
averaging and 〈.〉ξ averaging over a coordinate ξ. Kine-
matic dynamo growth rates λ are defined as 〈dt logBrms〉t
or 〈dt logBi,rms〉t.

3. RESULTS

The naming of the runs is such that the first letter, F or
S, indicates full or simplified MHD, while the second and/or
third refers to the forcing regime: K and KM referring to
purely kinetic and combined kinetic and magnetic forcing
with equal amplitude, respectively. The number following
the letters indicates the vertical aspect ratio A of the box. A
trailing letter “d” stands for “decimated forcing”.

3.1. Overall behavior of the main runs

As our starting point, we defined a setup, related to one
from Squire & Bhattacharjee (2015b), with marginal dy-
namo excitation (in incompressible MHD) with an aspect ra-
tio A = 8. We denote this run as FK8a, and tabulate ReM,
the growth rate of the initial kinematic stage, λ, and the η
components measured by QKTFM in Table 1. As reported
by Squire & Bhattacharjee (2015b), we also observe an ini-
tial decay of the rms and mean magnetic fields, but later on
temporary saturation at very low values, after which a very
slow decay is observed, indicative of a nearly marginally ex-
cited dynamo state. Due to the finite Bx present at all times,
a much stronger (roughly 40 times) By is maintained due to
the shear, but as the dynamo is nearly marginal, these mean
fields remain at very low strengths.

Next, we repeat this run, but with SMHD which yields
Run SK8a in Table 1. Now rms and mean fields grow, the
mean radial and azimuthal components showing exponential
growth at the same rate, albeit still very slow. Nevertheless,
the dynamo instability is somewhat easier to excite than in
FMHD. The azimuthal component is again much stronger
than the radial one with the ratio By,rms/Bx,rms similar to
the FMHD case.
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Table 1. Summary of the runs with constant shear and forcing wavenumber.

Run ReM λ/(η0k
2
f ) ηxx/η0 ηyy/η0 ηyx/η0 ηxy/η0 αrms/η0kf ηrms/η0

FK1a 2.1 −0.0354 0.557±0.006 0.547±0.007 0.048±0.001 0.351±0.009 0.018±0.009 0.054±0.013
FK1b 11.9 0.0140 0.608±0.015 0.598±0.014 0.023±0.001 0.419±0.032 0.022±0.011 0.031±0.012
FK8a 2.1 −0.0008 0.572±0.010 0.563±0.011 0.044±0.002 0.378±0.009 0.001±0.002 0.048±0.014
FK8b 12.7 0.0166 0.641±0.019 0.634±0.017 0.023±0.001 0.473±0.024 0.009±0.005 0.026±0.009
SK1a 2.0 0.0006 0.367±0.001 0.393±0.002 −0.003±0.000 0.279±0.002 0.021±0.004 0.009±0.001
SK1b 12.3 0.0183 0.440±0.004 0.412±0.001 −0.011±0.002 0.461±0.009 0.020±0.009 0.017±0.009
SK4a 2.1 −0.0042 0.367±0.003 0.390±0.003 −0.004±0.000 0.279±0.003 0.008±0.002 0.006±0.001
SK4b 13.3 0.0185 0.334±0.037 0.339±0.044 −0.004±0.005 0.239±0.073 0.008±0.004 0.007±0.008
SK8a 2.1 0.0033 0.367±0.003 0.390±0.004 −0.003±0.000 0.274±0.003 0.006±0.002 0.005±0.002
SK8b 12.8 0.0192 0.401±0.005 0.424±0.005 −0.015±0.000 0.367±0.010 0.007±0.002 0.017±0.004
SKM1a 1.9 — 1.794±0.039 1.278±0.045 0.200±0.025 −0.725±0.083 0.010±0.055 0.250±0.090
SKM4a 2.1 — 2.012±0.179 1.191±0.014 0.221±0.012 −0.560±0.015 0.046±0.017 0.230±0.072
SKM8a 1.8 — 3.054±0.625 1.481±0.131 0.338±0.064 −0.186±0.045 0.036±0.011 0.352±0.213
SKM16a 2.0 — 2.238±0.552 1.215±0.010 0.249±0.062 −0.580±0.055 0.022±0.008 0.260±0.191
SKM1ad 2.1 0.0103 1.228±0.214 1.326±0.074 0.247±0.043 0.237±0.117 0.149±0.062 0.441±0.212
SKM4ad 1.9 0.0315 1.279±0.150 1.455±0.066 0.222±0.022 0.369±0.072 0.081±0.017 0.270±0.119
SKM8ad 1.5 0.0948 1.688±0.165 2.040±0.150 0.516±0.061 0.383±0.154 0.111±0.069 0.543±0.260
SKM16ad 1.9 0.0344 1.231±0.070 1.589±0.019 0.364±0.116 0.279±0.026 0.033±0.015 0.292±0.015

Notes: For all runs, kf/k1 = 5 (k1 = 2π/Lx), and S = −0.25, yielding a roughly invariable ShK of −1.6. In runs with labels ‘a’, the
magnetic Prandtl number PrM is 1/3, while for ‘b’ it is 20.

We continue by repeating these runs with decreased mag-
netic diffusivity, resulting in roughly six times larger mag-
netic Reynolds number, ReM (Runs FK8b and SK8b). In
both simulations we observe exponential growth of the rms
and mean magnetic fields, somewhat faster with SMHD than
with FMHD. We also determine the fastest growing dynamo
mode and its vertical wavenumber, kz and list them in Ta-
ble 3; the fastest growing mode is the nearly the same,
kz/k1 = 9, in both models. Hence, we can conclude that,
going from FMHD to SMHD retains the dynamo mode, but
changes its excitation condition and growth rate somewhat.

As the dynamo growth is slow, simulations with A = 8

are too costly to be run until saturation. Hence, to investigate
whether with reducedA the dynamo mode could be retained,
we repeated the runs with A = 1 (Runs FK1a, FK1b, SK1a
and SK1b). As is evident from Tables 1 and 3, these runs be-
have very much like their tall box counterparts, the low-ReM
FMHD model being slightly subcritical and the high-ReM
one supercritical, while the SMHD runs are both supercrit-
ical. The fastest growing mode now has k/k1 = 1, corre-
sponding to k/k1 = 8 in the tall box. We also perform a set
of runs in SMHD with A = 4; see Runs SK4a and SK4b.
The former exhibits a very slowly decaying solution instead
of a growing one, which is an anomaly in the SMHD set,
but the latter one, again, exhibits a growth rate very similar

to the cubic (SK1b) and tall box (SK8b) cases, both with a
wavenumber kz/k1 = 4. All in all, the ‘b’ runs give rather
clear evidence that the cubic simulation domains retain the
same dynamo mode as the taller ones.

The time evolution of the rms and mean fields from the
cubic runs, integrated until saturation, are shown in the top
panel of Figure 1 with solid and broken lines, respectively.
The growth rate of the SMHD run is somewhat larger, but
the saturation strength is lower than in FMHD. The ratio
By,rms/Bx,rms, however, is the same. We also show the mean
fields in a zt diagram in Figure 2, top panel. We see the emer-
gence and saturation of the Fourier mode k = 1 both in the
radial and azimuthal components, where each negative (pos-
itive) patch ofBy is accompanied by a much weaker positive
(negative) patch in Bx. The patches disappear and re-appear
quasi-periodically, and also their vertical position is not con-
stant. Our kinetically forced FMHD runs reproduce earlier
results of similar systems (compare the upper leftmost panel
of our Figure 2 to Figure 7 of Brandenburg et al. (2008)) with
rather coherent patches in By , while the SMHD counterpart
(middle left panel of Figure 2) shows a somewhat more er-
ratic pattern; here, however, we must note that the time series
of the SMHD run is much longer. These results are in dis-
agreement with the purely kinetically forced, incompressible
runs of Squire & Bhattacharjee (2015b) (their Figure 9(a)),
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Figure 1. Time evolution of rms and mean magnetic field strengths
from different runs. Top: comparison of a higher–Rm FK (black),
an SK (orange), and a decimated SKM run (blue). Bottom: compar-
ison of SKM runs with A = 1, with standard (black, Run SKM1a)
and decimated (blue, Run SKM1ad) forcing. Solid – Brms, dotted
– By,rms, dashed – Bx,rms.

which show a much more erratic pattern than what we ob-
serve either in FMHD or SMHD.

Finally, we repeat the simulations, labelled ‘a’ (PrM =

1/3), with the same parameters, but using the magnetic forc-
ing in addition to the kinetic one, so that the same rms ve-
locity is obtained as in the kinetically forced cases, with
equal contributions from the kinetic and magnetic forcings.
This set of parameters should very closely correspond to the
case studied in Squire & Bhattacharjee (2015b), Figure 9(d).
As seen there, too, we observe a nearly immediate appear-
ance (during the first five turnover times) of a strong By
as is shown for Run SKM1a in Figure 1, lower panel. Al-
though Squire & Bhattacharjee (2015b) did not show the
evolution of Bx, our results give indication that By arises
due to the action of the strong shear on Bx. After the ini-

tial rapid growth, we do not see any further increase of Bx
while linear growth up to turmskf ≈ 170 and quasi-regular
oscillations occur in By . Hence, we are not able to report a
growth rate for Run SKM1a in Table 1, and also not for the
larger A runs SKM4a, SKM8a and SKM16a for the same
reason. From Figure 2, middle panel, we see that, again,
the kz = 1 vertical Fourier mode is the preferentially ex-
cited one, although the patterns seen in the zt plots are much
more short–lived and erratic in time than in the kinetically
forced counterpart SK1a (same figure, top panel). Remark-
ably, there is no kinematic stage, but the large-scale pattern
appears nearly instantly. (Note that the whole time range
shown for Run SKM1a is roughly as long as the kinematic
range exhibited by Run SK1b.) The appearance and evolu-
tion of By also disagrees with the results of Squire & Bhat-
tacharjee (2015b), who observed a much less erratic pattern
to arise in a closely matching parameter regime see their Fig-
ure 9(d).

The rapidly emerging mean fields in the magnetically and
kinetically (henceforth magneto-kinetically) forced runs are
related to the standard forcing scheme used in all the simula-
tions presented so far. Even if this scenario could be regarded
as a genuine dynamo instability, its investigation is out of
the scope of our current numerical setup, because obviously
much higher cadence in time should be used in an attempt
to follow the possible kinematic stage. Also, the simulations
should be started from a fully matured turbulent MHD back-
ground state, as currently the mean–field growth occurs dur-
ing the initial transient state, where even turbulence itself is
not yet saturated.

Hence, instead of fully dwelling on the cause of the rapid
initial growth, we turn into using the decimated forcing with
kmin = 2, and repeat Run SKM1a as a decimated version,
now denoted SKM1ad and shown in Figure 1 lower panel
(black lines). We still see the rapid appearance of the mean
fields, but their magnitudes are now much lower than in the
case of our standard forcing, plotted with blue lines in the
same figure for comparison. After the rapid excitation phase,
we observe a slow exponential growth of both Bx and By ,
reminiscent of the dynamo instability seen in the FK and SK
runs. The growth rate is now larger than in the kinetically
forced counterparts FK1a and SK1a, see Table 1; when com-
pared with the higher–ReM runs FK1b and SK1b, as can be
seen from Figure 1 upper panel, the growth rates are nearly
equal. We also produced three more runs with varying as-
pect ratioA (SKM1ad, SKM8ad, and SKM16ad), and notice
that the growth rate is increasing with A up to 8, but then
decreases again. We also performed a magneto-kinetically
forced FMHD run, where rapidly emergent mean fields are
seen in spite of using the decimated forcing (see Fig. 2 lowest
panel, showing Run FKM1bd, with parameters correspond-
ing roughly to Runs FK1b and SKM1ad.) The emerging
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large-scale field structures are very similar to those in the
magneto-kinetically forced SMHD cases, but less coherent
than in the kinetically forced FMHD case. Similar to the
SMHD cases with standard forcing, the growth rates are dif-
ficult to estimate, but we do note that the dynamo is now eas-
ier to excite than in the kinetically forced FMHD case, where
the large-scale field emerged only at 600 turnover times in-
stead of a few tens. Hence, we cannot confirm the finding
of Squire & Bhattacharjee (2015b) that more coherent struc-
tures emerge when one goes from kinetic to magnetic forc-
ing, as was the case in their incompressible study.

Based on these runs with different forcings, we propose
that the slow dynamo instability could have been drowned by
the stronger initial mean fields when forced with the standard
forcing. Although the growth rate of the dynamo instabil-
ity is similar to the kinetically forced cases, and the growing
wavenumber of the dynamo instability are the same in both
cases, the change of the growth rate as function of the aspect
ratio of the box indicates that some key properties of the dy-
namo instability do change when magnetic forcing is used.
In the next section we make an attempt to investigate what
exactly has changed by measuring the turbulent transport co-
efficients in the systems with the relevant TFM variant.

3.2. Turbulent transport coefficients

3.2.1. Strong shear cases

In this subsection we compare cases of strong shear in ki-
netically forced FMHD and SMHD, and magneto-kinetically
forced SMHD, measured with the appropriate variant of the
TFM. We choose S = −0.25, which, with the selected am-
plitude of the forcing, results in the shear number ShK ≈
−1.6, indicating a strong influence of shear on the system.
This setup closely matches the cases investigated by Squire
& Bhattacharjee (2015b).

First we use the QKTFM to measure the turbulent trans-
port coefficients in the kinetically forced FMHD cases, the
results being presented in Table 1. We measure zero mean
in all α components, hence we tabulate only the rms values
of the α fluctuations; αrms = 〈α2

ij〉
1/2
t . the same applies

to all other runs studied here. In the low ReM cases (FK1a,
FK8a) we measure relatively isotropic diagonal components
of the η tensor, positive and somewhat smaller values of ηxy
and much smaller positive values of ηyx. The magnitude of
the normalized ηyx values, however, exceeds the correspond-
ing fluctuations in α. In these cases, no indications of LSD
instability is seen.

In the high ReM cases (FK1b and FK8b), the diagonal
components of η have, as expected, higher magnitudes,
showing only mild anisotropy, as in the low ReM cases, so
that the ηxx somewhat exceeds ηyy . ηxy is increased with
respect to the diagonal components, reaching roughly 3/4 of
their magnitudes. ηyx is still positive, and decreases in mag-

nitude. In these cases we see LSD action, but with ηyx being
positive, it seems unlikely that the dynamo is of SC-origin,
in agreement with previous numerical studies (Yousef et al.
2008b; Brandenburg et al. 2008; Singh & Jingade 2015).
They did not consider as large values of the shear param-
eter as here, so we can now extend this conclusion to the
strong shear regime. This is consistent with a series of ear-
lier analytical works which treated shear non-perturbatively
and found no evidence of SC-assisted LSD (Sridhar & Sub-
ramanian 2009a,b; Sridhar & Singh 2010; Singh & Sridhar
2011). We analyze the possible dynamo driving mechanism
in more detail in Sect. 3.3.

Next we turn to the kinetically forced SMHD cases, ana-
lyzed both with the QKTFM and NLTFM, yielding consis-
tent results, as discussed in Sect. B.2. The biggest difference
to FMHD is that all η components are systematically smaller
in SMHD, and moreover, ηyx has changed sign to negative
values, being statistically significant within errors; see Ta-
ble 1. Also, the rms α values are similar or a bit larger, and
clearly exceed the ηyx component. In the face of the turbu-
lent transport coefficients, it seems understandable that for
the low ReM cases the LSD is excited in SMHD, but not in
FMHD, as the diffusive coefficients are lower, while the in-
ductive ones are larger. Also, the sign of ηyx would now be
favorable to enable the SC effect to support a LSD. Further,
it is noteworthy that the diagonal components of η become
more notably anisotropic, but now ηyy mostly exceeds ηxx.
In Figure 3, we show for Run SK1b the probability density
distributions of all tensor components. The diagonal α com-
ponents exhibit larger values than the off-diagonal ones, αxx
being especially strong. The off-diagonal components are
very similar to each other, while αyy is slightly larger than
them, but clearly smaller than αxx. The diagonal η compo-
nents are close to being isotropic. ηyx is fluctuating tightly
around zero, and exhibits a very small negative mean. The
distribution of ηxy is broad, but always in the positive.

Lastly, we turn to the magneto-kinetically forced SMHD
cases, analyzed with the NLTFM. In the low-ReM runs, all
components of η show larger magnitudes in comparison to
the kinetically forced cases. Its diagonal components now
show very strong anisotropy, with ηxx being again dominant
over ηyy as in the FMHD cases. ηxy has changed sign to
negative values, while ηyx is again positive. The rms val-
ues of α and η are (mostly) increased, in particular those of
the latter. The probability density functions of the transport
coefficients, shown in Figure 3, right column, show clearly
the anisotropy of the diagonal components of η and the sign
change of ηxy to large negative values, with ηyx now exhibit-
ing a clearly positive mean with some negative values as well.
The α components are very similar to the kinetically forced
SMHD case, with αxx attaining much larger values than αyy
and the off-diagonal components. The positive sign of ηyx
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Figure 2. Butterfly (zt) diagrams of By (upper plot in each panel) and Bx (lower plot in each panel). Run FK1b is kinetically forced
FMHD, Run SK1b is kinetically forced SMHD, SKM1a magneto-kinetically forced SMHD, SKM1ad its counterpart with decimated forcing,
and FKM1bd is a magneto-kinetically forced run in FMHD, with parameters close to SKM1ad and FK1b and decimated forcing.

rules out the existence of a SC–effect dynamo in these cases.
As will be discussed in detail in Sect. 3.3, the α and η fluc-
tuations then remain as possible candidates to provide the
necessary ingredients for a LSD.

3.2.2. Dependence on the shear parameter

In this section we report on the dependence of the turbulent
transport coefficients on the shear number ShK in runs with
both kinetic and magnetic forcing. We list our runs, their ba-
sic diagnostics, and the turbulent transport coefficients mea-

sured with the NLTFM, in Table 2. As the standard forc-
ing was used here, we did not see any exponential growth
in the evolution of the mean fields; see Sect. 3.1 for a rea-
soning. Hence, no growth rates are reported, and we note
that all the transport coefficients are measured from a stage,
where the mean magnetic fields are dynamically significant
As can be seen from the listed Lu, these runs are all strongly
magnetically dominated, likely because the small-scale mag-
netic fields are primarily generated by the magnetic forcing.
Our purpose is to scan a wider range of shear strengths for
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Figure 3. Probability density functions of all turbulent transport coefficients. Top: αij , bottom: ηij . Left: kinetically forced SMHD Run SK1b,
right: magneto-kinetically forced SMHD Run SKM1a.

Figure 4. Dependence of the turbulent diffusivity tensor components, measured with NLTFM, on the shear number in the magneto-kinetically
forced cases. In the big plots we normalize to the SOCA estimate η0, while in the insets to the molecular diffusivity η.
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Table 2. Summary of the runs with varying shear.

Run ShK ηxx/η0 ηyy/η0 ηyx/η0 ηxy/η0 αrms/(η0kf) ηrms/η0

SKM1a001 −0.094 2.125±0.028 2.129±0.012 0.030±0.016 0.001±0.009 0.094±0.015 0.137±0.050
SKM1a002 −0.187 2.126±0.024 2.131±0.009 0.045±0.009 −0.023±0.003 0.101±0.029 0.142±0.066
SKM1a003 −0.278 2.120±0.023 2.123±0.015 0.061±0.006 −0.035±0.009 0.092±0.034 0.137±0.036
SKM1a004 −0.369 2.123±0.011 2.121±0.013 0.088±0.005 −0.063±0.017 0.096±0.014 0.153±0.043
SKM1a005 −0.458 2.122±0.020 2.109±0.013 0.093±0.017 −0.084±0.009 0.081±0.033 0.147±0.047
SKM1a006 −0.547 2.101±0.013 2.074±0.003 0.107±0.017 −0.125±0.005 0.088±0.032 0.164±0.071
SKM1a008 −0.719 2.084±0.004 2.046±0.023 0.133±0.022 −0.173±0.014 0.084±0.019 0.173±0.081
SKM1a009 −0.808 2.116±0.048 2.049±0.016 0.165±0.013 −0.218±0.024 0.077±0.032 0.196±0.074
SKM1a01 −0.873 2.057±0.033 1.962±0.016 0.164±0.023 −0.237±0.031 0.081±0.034 0.196±0.083
SKM1a011 −0.947 2.053±0.037 1.932±0.006 0.165±0.008 −0.275±0.019 0.080±0.031 0.197±0.073
SKM1a015 −1.226 1.968±0.014 1.775±0.027 0.193±0.019 −0.391±0.033 0.074±0.027 0.219±0.094
SKM1a02 −1.582 1.963±0.070 1.622±0.015 0.219±0.010 −0.535±0.007 0.067±0.018 0.233±0.068
SKM1a021 −1.623 1.911±0.011 1.553±0.008 0.220±0.025 −0.542±0.018 0.064±0.030 0.238±0.103
SKM1a025 −1.709 1.769±0.026 1.303±0.012 0.207±0.018 −0.549±0.055 0.058±0.030 0.223±0.083
SKM1a031 −1.985 1.676±0.058 1.150±0.011 0.228±0.012 −0.628±0.053 0.056±0.024 0.238±0.069
SKM1a0325 −2.057 1.662±0.103 1.114±0.024 0.224±0.002 −0.663±0.110 0.050±0.014 0.236±0.035
SKM1a035 −2.156 1.630±0.062 1.060±0.004 0.238±0.013 −0.686±0.023 0.052±0.012 0.248±0.083

Notes: Forcing wavenumber kf/k1 = 5. The magnetic Reynolds number, ReM, varies from 1.4 (for weak shear) to 2.1 (for strong shear), and
the Lundquist number, Lu, from 4.2 (for weak shear) to 4.8 (for strong shear).



12 KÄPYLÄ ET AL.

possible occurrences of a negative ηyx as function of ShK,
which could enable an SC-driven LSD. The results are de-
picted in Figure 4, where we present the η components in two
different normalizations. As can be seen, with weak shear
(|ShK| < 0.5), the diagonal components of η are isotropic,
while with stronger shear, anisotropy develops such that ηxx
linearly increases while ηyy linearly decreases in the SOCA
normalization. Normalizing to molecular diffusivity, both
components are decreasing linearly, ηxx less steeply than
ηyy. For weak shear, ηyx adopts small positive values, which
keep increasing linearly with shear in the SOCA normaliza-
tion. The linear trend is less clear in the molecular diffusivity
normalization. Furthermore, ηxy attains weakly negative val-
ues for weak shear, and increasingly negative ones for strong
shear. The trend is very close to linear when molecular dif-
fusivity is used for normalization. Hence, we find no possi-
bility for an MSC effect driven dynamo at any shear number
investigated.

The dependencies of ηij on shear, as obtained here, are in
broad agreement with the results of Singh & Sridhar (2011)
based on an analytical study in which arbitrarily large values
of the shear parameter S could be explored; see references
therein for more discussion. The two off-diagonal compo-
nents ηxy and ηyx were found to start from zero at zero shear
and, while the more relevant ηyx increases with |S| to re-
main positive, ηxy behaves in a more complicated manner
than found here, exhibiting both signs depending on the value
of S: It decreases with increasing |S| to become negative up
to a certain value of shear, as in the present work; we refer
the reader to Singh & Sridhar (2011) for more detail on its
behavior at larger shear.

3.2.3. Dependence on the aspect ratio

We have studied the dependence of the turbulent transport
coefficients on the aspect ratio A of the domain in the three
different cases (FMHD, SMHD with kinetic/kinetic and mag-
netic forcing) with fixed shear parameter S = −0.25. The
measured growth rate of the rms magnetic field, which co-
incides with the ones of of Bx and By except for standard
magnetic forcing, and the measured turbulent transport coef-
ficients are listed in Table 1; see runs with labels 4, 8, and 16,
indicating A.

In the kinetically forced FMHD and SMHD cases, the
growth rate of the magnetic field is largely independent of
the aspect ratio of the box, indicating that always one and the
same dynamo mode is growing. We also measure the verti-
cal wavenumber of the fastest growing dynamo mode in the
kinematic stage, (see Table 3) which support this conclusion,
as we see the wavenumber increasing proportional toA. The
turbulent transport coefficients do not show a marked depen-
dence on A either.

In SMHD with standard kinetic and magnetic forcing, the
situation is somewhat different. As we cannot draw conclu-
sions on the growth rate of the magnetic field in these cases,
we use the corresponding cases with decimated forcing as
a guideline. The latter (see Table 1, runs with label end
‘d’) show that the growth rate is increasing with A up to 8
and then decreases again in the tallest box. In Figure 5 we
show ηyx as a function of A. It can be seen that the mag-
nitudes of the turbulent transport coefficients change some-
what as function of the aspect ratio, although the magnitudes
seem to saturate for the tallest box. The diagonal components
grow in magnitude, ηxx somewhat more than ηyy making the
anisotropy in the turbulent diffusivity even larger. The neg-
ative values measured for ηxy tend to get smaller in taller
boxes. The positive values of ηyx increase with A, hence we
see no tendency for larger boxes to be more favorable for the
SC dynamo. The fluctuating α and η behave similarly, with
their magnitudes first increasing, but then decreasing for the
tallest box. The decimated forcing cases show a similar trend
for A = 4, 8, and 16 (SKM4ad, SKM8ad, and SKM16ad)
while the case A = 1 (SKM1ad) shows higher values of the
transport coefficients not agreeing with this trend.

As the number of grid points is proportional to A at fixed
resolution, resource limitations dictated to integrate the large
A runs only over significantly shorter time spans. However,
as we have discussed above, the mean fields grow initially
very rapidly in all runs with standard forcing, irrespective of
the aspect ratio. Hence, the effect of the different integration
times on the values of transport coefficients can be ruled out.

One could also speculate that some spatio-temporal nonlo-
cality (see e.g. Rheinhardt & Brandenburg 2012) might come
into play with magnetic forcing, but when choosing our forc-
ing wavenumbers, we have taken care of the kf being scaled
with respect to the computation domain vertical extent such
that the forcing wavenumber should have remained constant.
Our procedure, however, does not take into account memory
effects in any way.

The dependence of the growth rate on the aspect ratio could
also be due to different dynamo modes being excited in boxes
of different size. This was found by Shi et al. (2016) in a
similar context, but including rotation, in which case the tur-
bulence was self–sustained (i.e., not driven as in our study)
by the magnetorotational instability (MRI). 4 They found the
dynamo to be more efficient in taller boxes, and interpreted
this by having “cut out” some modes in the smaller boxes.
However, determining the vertical wavenumber of the fastest
growing mode in the kinematic stage for the decimated forc-

4 Note that in this case there is no background turbulence, not even a kinetic
one, as the turbulence is “created” by the MRI due to the presence of a
mean field. Thus, an exclusively magnetic SC effect, as defined by Squire
& Bhattacharjee (2015a), cannot exist.
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Figure 5. Dependence of ηyx on the aspect ratio A for SMHD
cases with standard kinetic and magnetic forcing.

ing runs, we find no evidence for this. As the turbulence
in the cases with standard and decimated forcing is differ-
ent though, we cannot regard this as completely conclusive
evidence that rules out this scenario.

3.3. Interpretation of the dynamo instability

For SC driven dynamos, the dispersion relation from lin-
ear stability analysis for solutions, exponential in time, reads
(see, e.g., Brandenburg et al. 2008)

λ±
ηTk2z

= −1± 1

ηT

√(
S

k2z
+ ηxy

)
ηyx + ε2, (23)

with ηT = η + ηt, ηt = (ηxx + ηyy)/2, ε = (ηxx − ηyy)/2.
A necessary and sufficient condition for growing solutions
is that the radicand is positive, and larger than η2T. In other
words (for ε ≈ 0)

DηS ≡
(
S

k2z
+ ηxy

)
ηyx
η2T

> 1, (24)

which is often further simplified by ignoring the contribu-
tion from ηxy , as it is considered negligible in comparison to
S/k2z . This also holds for the systems studied here, but we
note that in all our cases, ηxy is much larger than ηyx and in
the kinetically forced cases even comparable to the diagonal
components. Hence, setting it to zero, as has been done in
some fitting experiments to determine the turbulent transport
coefficients (see, e.g., Shi et al. 2016), is not justified. Es-
pecially in the magneto-kinetically forced cases with strong
shear, the assumption ε ≈ 0, made in those fitting experi-
ments, breaks down, too.

For incoherent α–shear driven dynamos, the relevant dy-
namo number reads (see, e.g., Brandenburg et al. 2008)

DαS =
αrms |S|
η2Tk

3
z

, (25)

Table 3. Dynamo numbers for the runs in Table 1.

Run kzLz/2π DηS DηrmsS DαS

FK1a 1* −1.4 1.6 2.8
FK1b 1 −3.9 5.3 19.2
FK8a 9* −1.0 1.1 0.7
FK8b 9 −2.8 3.2 4.7
SK1a 1 0.1 0.3 2.9
SK1b 1 2.7 4.2 25.5
SK4a 4 0.1 0.2 1.5
SK4b 4 1.3 2.6 14.6
SK8a 4 0.5 0.7 8.2
SK8b 9 2.1 2.4 3.6
SKM1a 1* −2.7 3.3 6.8
SKM4a 4* −2.9 3.0 3.0
SKM8a 4* −12.2 12.7 13.1
SKM16a 9* −9.4 9.9 7.5
SKM1ad 1 −4.0 7.2 19.6
SKM4ad 4 −3.4 4.1 9.8
SKM8ad 8 −5.7 6.1 6.8
SKM16ad 15 −4.7 4.9 5.1

Runs marked with * are not dynamo active, hence the wavenumber
of the growing dynamo mode is extracted from other runs of similar
aspect ratio.

where usually only the fluctuations of αyy are considered for
αrms. They determined the critical DαS to be ≈ 2.3 for
white–noise α fluctuations. They also reported that the di-
agonal and off–diagonal components of the α tensor were
nearly equal. In the SMHD cases studied here, this is no
longer the case, as is shown in Figure 3, where αxx domi-
nates.

Brandenburg et al. (2008) also discussed the possibility of
a contribution from an incoherent SC effect by fluctuations
of ηyx with vanishing mean. They studied a model, where
both incoherent effects were acting together, the incoherent
α effect mainly through αyy while the incoherent SC effect
is described by the dynamo number

DηrmsS =
ηyx,rms |S|
η2Tk

2
z

. (26)

They found that for small DηrmsS the critical dynamo num-
ber, detected for the incoherent α effect alone, was not much
altered while for higher values that critical number could be
clearly reduced. Hence, to decide which dynamo effect is
at play in systems with large fluctuations, one should always
consider the dynamo numbers for both incoherent effects si-
multaneously.

Moreover, the presence of an additional coherent SC effect
can alter the dynamo excitation condition which we now ac-
count for by adding a term from a coherent ηyx to the simpli-
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fied zero-dimensional (0-D) dynamo model of Brandenburg
et al. (2008); see their Appendix C. The equation solved is
the linear mean–field induction equation

DA
Dt

= −SAyx̂+ E − ηJ , (27)

where the mean EMF now reads

E i = αij,inc(t)Bj − (ηyx,inc(t) + ηyx) δi2Jx. (28)

The incoherent effects are modelled with δ–correlated noise
in time having zero means, while the coherent contribution
from ηyx is constant. By the ansatzA ∼ exp(ikzz), Eq. (27)
turns into the 0-D model, with governing parameters DαS ,
DηS , and DηrmsS , defined above.

We have verified that dynamo action in this model with-
out any incoherent effects takes place when DηS is exceed-
ing unity, as expected from the stability criterion (24). We
compute new stability maps in the DηrmsS –DαS plane for
a series of dynamo numbers DηS , in the range [−1.5, 2].
These values are similar in magnitude as those realized in
our simulations, although not covering the extremal values
obtained in the magnetic forcing cases. These are shown in
Figure 6, where panels (d) and (e) closely match the stabil-
ity map of the incoherent effects alone (compare with Fig-
ure 12 of Brandenburg et al. 2008). As expected, adding a
coherent SC effect with a positiveDηS enhances the dynamo
instability, especially by lowering the critical dynamo num-
ber for the incoherent α–shear dynamo. This is seen through
the shift of the stability line (white contours in Figure 6) to
the left (towards smaller values of DαS) from (f) to (i). The
incoherent SC dynamo threshold is also lowered, but the ef-
fect is more subtle, as seen through the much less dramatic
shift of the stability boundary downwards (towards smaller
values of DηrmsS) in Figure 6, panels (f)–(i). For DηS > 1,
the coherent SC effect alone would result in the excitation of
a dynamo, but the presence of the incoherent effects cause
small islands in which dynamo action is suppressed; see the
dark red areas surrounded by the white contour in Figure 6,
panels (g and h).

In the dynamo numbers (24)–(26) we also need the vertical
wavenumber kz of the dynamo mode which we determined
from Fourier analysis of the mean fields during the kinematic
phase of the dynamo. For those runs that are not dynamo ac-
tive, we used kz from a corresponding dynamo active run
with higher ReM (for kinetically forced runs) or a different
forcing function (for magneto-kinetically forced runs), but
the same aspect ratio; see Table 1, and denote those runs for
which we obtained kz from elsewhere with an asterisk. We
also note that, if the dynamo enters saturation, the kinemat-
ically preferred mode is not necessarily any longer present.
Independent of the aspect ratio of the box, all the saturated
models exhibit a magnetic field at the scale of the box or, in
other words, at the smallest permissible wavenumber.

In the FMHD cases, we obtain negative DηS and incoher-
ent SC dynamo numbers of similar magnitude, with DαS

tending to be larger than DηrmsS , especially in Run FK1b.
In the case of Run FK8a, no dynamo action is seen, and none
of the dynamo numbers predict a dynamo either. In the other
case without dynamo, Run FK1a, the η-related dynamo num-
bers predict no dynamo action, while DαS alone would do
so (DαS = 2.8 > DαS,crit = 2.3). Its critical value, how-
ever, can be increased in this case, mainly by the presence of
the rather strong coherent SC with a negative dynamo num-
ber. The two dynamo active cases have DαS clearly above
the critical value. Hence, the presence of moderate suppress-
ing factors cannot prevent the dynamo instability. It clearly
seems to be the incoherent α–shear one in the FMHD cases,
because DηS is far too small in this case.

In the kinetically forced SMHD cases, however, ηyx is,
negative, allowing for the possibility of a coherent SC dy-
namo. All our runs of this type are dynamo-active, but only
the high ReM cases exhibit supercritical DηS (> 1). Except
for the case of Run SK4a, the DαS and DηrmsS values indi-
cate supercriticality for the incoherent dynamo instabilities,
explaining again most of our findings. Run SK4a has a low
positive DηS , but also the incoherent effects are well below
their critical dynamo numbers. The coherent SC effect could,
therefore, assist the dynamo, but this effect should be negligi-
ble according to the 0-D model. Hence, this dynamo remains
unexplained with any dynamo scenario. Dynamo excitation
is easier than in the FMHD cases, which might indicate that
the coherent SC effect assists dynamo action favorably, but
this could also be due to the SMHD simplifications.

In the magneto-kinetically forced SMHD cases, the dy-
namo numbers indicate stability against the MSC effect, but
are all, according to individual 0-D model runs (not presented
here), supercritical for the incoherent dynamo effects, the in-
coherent SC effect being even more pronounced now than
in the kinetically forced cases. Although the cases with stan-
dard forcing do not show exponential growth, their decimated
forcing counterparts do so. Hence our interpretation here is
that a dynamo is present in all the cases with kinetic and
magnetic forcing. Even though the coherent SC effect now
exhibits larger negative dynamo numbers we find, by run-
ning individual 0-D models, that in all cases it should not
be able to damp the dynamo instability. Hence, again, the
most likely mechanism for exciting the dynamo is the inco-
herent α–shear effect, with supercritical dynamo numbers in
all cases. However, we cannot rule out the co-existence of an
incoherent SC effect, as some runs also indicate supercriti-
cality against it.

4. CONCLUSIONS

We have studied different types of sheared MHD systems
with the quasi-kinematic (QKTFM) and non-linear (NLTFM)
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Figure 6. Stability diagrams for different values of DηS : from top left to bottom right, -1.5,-1.0,-0.5,-0.1,0.1,0.5,1.0,1.5, and 2.0.
White: zero–growth–rate contour. Color scales: λ/ηTk2.

test-field methods. In those cases studied with the NLTFM,
we simplified the MHD equations neglecting the pressure
gradient in the momentum equation which allows us to ig-
nore the equation for the fluctuating density in the test-field
formulation, simplifying it somewhat. In the case of the full
MHD equations studied with the QKTFM, we extend the pre-
vious results to even stronger shear, but still find no evidence

for negative values of the ηyx component that could lead to
LSD action through the SC effect.

In kinetically forced magnetized burgulence (SMHD), we
measure negative values of ηyx. Indeed, dynamo action with
both radial and azimuthal magnetic field components grow-
ing exponentially at the same rate is found. The dynamo
numbers for the coherent and the incoherent effects, based on
the measured turbulent transport coefficients, however, when
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employed in a simplified 0–D dynamo model, indicate that
even in this case the dynamo is mainly driven by the inco-
herent α–shear effect, possibly assisted by the coherent SC
effect one.

In the case of systems with standard magnetic forcing,
we do not find exponential growth of the mean magnetic
field. When we repeat this experiment with a decimated forc-
ing function, removing the lowest wavenumbers, exponential
growth is recovered. Hence, in our interpretation, there is
still a dynamo instability in the magneto-kinetically forced
cases, but it becomes engulfed by the rapid growth of the
mean field due the presence of these low wavenumbers in the
forcing, preventing us from seeing the exponential growth of
the mean field. The measured ηyx are again positive, and
increasing as a function of the magnitude of shear and the
aspect ratio of the box, therefore incapable of driving a dy-
namo through the MSC effect. This finding is compatible
with our analytical derivation predicting a positive contribu-
tion to ηyx in the case the pressure term is neglected, albeit
restricted to ideal MHD; see Sect. C. The computed dynamo
numbers, compared against the 0-D model, again indicate the

most likely driver of the dynamo to be the incoherent α–shear
effect.

We acknowledge that the simplified MHD equations used
here prevent our conclusions from being generally applica-
ble. Hence we cannot fully reject the postulated possibility
of a dynamo driven by the MSC effect. The measurements
should be repeated with the full MHD equations, analyzed
with a fully compressible TFM, also solving for the density
fluctuations.
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18 KÄPYLÄ ET AL.

Figure 7. PDFs of all three velocity components from 643 shearless hydrodynamic runs with kf/k1 = 5, discussed in Appendix A. (a)
standard, (b) decimated forcing with kmin/k1 = 2. All pdfs are nearly Gaussians with kurtosis ∼ 0.

APPENDIX

A. COMPARISON OF STANDARD AND DECIMATED FORCING

To investigate the possible anisotropy due to the removal of all |kx,y,z|/k1 ≤ kmin/k1 from the forcing (decimation), we
perform two hydrodynamic simulations without shear. Both runs were performed with 643 grid points and kf/k1 = 5, one
without decimation and one with, using kmin/k1 = 2. All other parameters were the same and urms was similar in the two cases,
with Mach number Ma = urms/cs = 0.002 and Re = 0.04. In Figure 7 we show probability density functions (PDFs) of the
three components of u from a snapshot of each run. These PDFs are normalized such that

∫
P (ui) dui = 1. We find that the

PDFs of ux, uy , and uz are in both cases on top of each other suggesting that the stochastic flows are nearly isotropic, at least in
a statistical sense. Let us define the kurtosis, kurtx, of the distribution P (x) as,

kurtx =
1

σ4

∫ ∞
−∞

(x− x)4P (x)dx− 3, (A1)

where x and σ are its mean and variance, respectively. We find that the kurtoses for all three velocity components are nearly zero,
suggesting Gaussian distributions.

Furthermore, we define a dimensionless quantity ζ(θ, φ) =
√
〈(u · n̂)2〉/urms, useful to assess the degree of anisotropy, with

n̂ = (sin θ cosφ, sin θ sinφ, cos θ), and the polar and azimuthal angles θ and φ, respectively, as in a spherical coordinate system.
For the two runs discussed just above, we show in Figure 8 distributions of ζ(θ, φ) which reveal anisotropic features, both in the
standard (undecimated) and the decimated case, at two different times. However, at least in the undecimated case the flows are
expected to be statistically isotropic when data from a large number of snapshots are combined, as there is no preferred direction
in the system. We show the variation of ζ as a function of φ at two fixed values of θ (45◦ and 90◦) in Figure 9, after performing
an average over eight snapshots. As expected, the degree of anisotropy decreased compared to a single snapshot; it is below 7%

as inferred from the values of ζ in Figure 9. We also notice an m = 2 modulation which is more pronounced in the decimated
case, likely due to gaps in the thin k shell around kf . The statistical isotropy of the flow is expected to be improved further at
higher resolution and when data from a longer time-series are combined.

B. VALIDATION OF THE NLTFM

B.1. Comparison of the different variants of the NLTFM

As is described in Rheinhardt & Brandenburg (2010), with respect to the terms u× b and j × b there are four possibilities to
define the NLTFM, depending on how one combines the fluctuating fields from the main run, u, b, j with the test solutions uB ,
bB , jB . These variants were denoted as ju (using j and u in the pondero- and electromotive forces, respectively), jb (using j and
b), bu (using b and u), and bb (using b in both). Further variants due to the term u·∇u are not considered here. Previously it was
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Figure 8. Distribution of ζ =
√
〈(u · n̂)2〉/urms, in the θφ plane, at times νk2f t = 25 (top) and 27.5 (bottom); from the two hydrodynamic

runs discussed in Appendix A. Left: standard; right: decimated with kmin/k1 = 2.

Figure 9. Variation of ζ with the azimuthal angle φ at polar angles θ = 45◦ (left) and 90◦ (right), after averaging over eight snapshots from
the runs discussed in Appendix A. Solid/black: standard; dashed/red: decimated with kmin/k1 = 2.

Table 4. η tensor components measured with the different variants of NLTFM from Run SKM1a007.

Method ηxx/η0 ηyy/η0 ηyx/η0 ηxy/η0

ju 2.110± 0.023 2.089± 0.007 0.112± 0.026 −0.208± 0.028

jb 2.276± 0.152 2.106± 0.020 0.124± 0.009 −0.212± 0.018

bb 2.297± 0.144 2.116± 0.018 0.129± 0.018 −0.188± 0.017

bu 2.155± 0.047 2.127± 0.017 0.113± 0.014 −0.212± 0.022
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Figure 10. Time evolution of ηxx from Run SKM1a007 with the four variants of the NLTFM. Black: ju, blue: bb, orange: bu, red: jb. Upper
panel: early stages, lower panel: late stages of the simulation.

concluded that the ju method would be the most stable one (Rheinhardt & Brandenburg 2010). Here we examine how the different
variants behave in SMHD with standard (random) forcing. The results for Run SKM1a007 are listed in Table 4 and depicted in
Figure 10, showing the ηxx component obtained with all four variants. We can see that jb and bb produce measurements that
are nearly identical at any phase of the simulation. The measurements with bu deviate from these occasionally, but the largest
deviations occur for ju. While the three former variants tend to produce turbulent transport coefficients that clearly grow within
the resetting intervals, ju produces plateaus, this difference being especially pronounced in Figure 10, top panel. This is indicative
of the test problems getting unstable during the resetting interval, which can lead to overestimation of and increased uncertainties
in the measured transport coefficients. With the resetting time of 50 (in code units) in most of our simulations, however, the
measured differences between the variants were very small, but nevertheless we observed a tendency of the tensor components
to be larger in magnitude when jb and bb were used; see also Table 4. Hence, throughout the paper we use the ju variant which
produces measurements with clearer plateaus in the turbulent transport coefficients.

B.2. Kinetically forced SMHD analyzed with QKTFM and NLTFM

To further validate the NLTFM, we perform runs of kinetically forced SMHD, and measure the turbulent transport coefficients
with both QKTFM and NLTFM. We compare them in two regimes: one where the magnetic field is very weak, and another where
the magnetic field is already dynamically significant. We choose the setup SK4b, and show our results in Figure 11 in terms of
ηyx as function of time. Although some differences due to the randomness of the forcing have to be expected, we observe a very
good agreement between the two methods.

C. AN ANALYTICAL ESTIMATE FOR ηY X

To obtain an analytical estimate for ηyx in the absence of the pressure term, we assume ideal MHD (η = ν = 0) and constant
density, neglect terms quadratic in the fluctuations (SOCA), and assume vanishing mean flow, except for U (S), and vanishing
initial conditions of those parts of the fluctuations which are due to the influence of shear and B. Then we have to first order in
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Figure 11. Time evolution of ηyx from Run SK4b with QKTFM (orange) and NLTFM (black). Measurements from a stage, when the dynamo
field is still weak (left) and dynamically significant (right).

B,

ηyx = −
〈
b(00)x (y, t) I1 − Sx

(
b(00)x (y, t) I2 +

∫ t

0

∂yb
(00)
x (ξ, τ)dτ I1

)
+ S2x2

∫ t

0

∂yb
(00)
x (ξ, τ)dτ I2

〉
xy

, (C2)

I1 =

∫ t

0

(
b(00)y (ξ, τ) + S

∫ τ

0

b(00)x (ξ′, τ ′)dτ ′
)
dτ, (C3)

I2 =

∫ t

0

∫ τ

0

(
∂yb

(00)
y (ξ′, τ ′) + S

∫ τ ′

0

∂yb
(00)
x (ξ′′, τ ′′)dτ ′′

)
dτ ′dτ, (C4)

where ξ = y + Sx(τ − t), ξ′ = y0 + Sx(τ ′ − t) etc. and the arguments x and z were dropped. The magnetic field is in units of
(ρ0µ0)1/2 and

[
u(00), b(00)

]
is the background turbulence (i.e., forB = 0) without influence of shear (S = 0), hence

∂tb
(00) = ∇×

(
u(00) × b(00)

)′
+ fM, (C5)

∂tu
(00) = −

(
u(00) ·∇u(00) − j(00) × b(00)

)′
+ fK.

Remarkably, there is no contribution from u(00) to ηyx and only b(00)x 6= 0 is necessary for ηyx 6= 0. To zeroth and first order in
S we obtain

ηyx =− S
〈
b(00)x (y, t)

∫ t

0

∫ τ

0

b(00)x (y, τ ′)dτ ′dτ

〉
xy

−
〈
b(00)x (y, t)

∫ t

0

b(00)y (y, τ)dτ

〉
xy

(C6)

− S
〈
xb(00)x (y, t)

∫ t

0

∂yb
(00)
y (y, τ)(τ − t) dτ

〉
xy

+ S

〈
xb(00)x (y, t)

∫ t

0

∫ τ

0

∂yb
(00)
y (y, τ ′) dτ ′dτ

〉
xy

(C7)

+ S

〈
x

(∫ t

0

∂yb
(00)
x (y, τ)dτ

)(∫ t

0

b(00)y (y, τ)dτ

)〉
xy

, (C8)

where the second contribution in (C6) vanishes in isotropic background turbulence because of
〈
b
(00)
i (y, t)b

(00)
j (y, τ)

〉
xy
∝ δij .

Integration by parts in (C7) yields∫ t

0

∂yb
(00)
y (y, τ)(τ − t) dτ = −

∫ t

0

∫ τ

0

∂yb
(00)
y (y, τ ′) dτ ′dτ. (C9)
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Further, we have

b(00)x (y, t)

∫ t

0

∫ τ

0

∂yb
(00)
y (y, τ ′) dτ ′dτ = ∂y

(
b(00)x (y, t)

∫ t

0

∫ τ

0

b(00)y (y, τ ′) dτ ′dτ

)
(C10)

− ∂yb(00)x (y, t)

∫ t

0

∫ τ

0

b(00)y (y, τ ′) dτ ′dτ, (C11)

in which the first term on the rhs vanishes under averaging over y. Hence, for the terms (C7) - (C8) we obtain

S

〈
x

[(∫ t

0

∂yb
(00)
x (y, τ)dτ

)(∫ t

0

b(00)y (y, τ)dτ

)
− 2 ∂yb

(00)
x (y, t)

∫ t

0

∫ τ

0

b(00)y (y, τ ′) dτ ′dτ

]〉
xy

. (C12)

Because of isotropy and mirror-symmetry of the background turbulence, the correlator
〈
b
(00)
i (y, t)∂kb

(00)
j (y, τ)

〉
xy

vanishes ∀i, j.
Hence, it is only the factor x in (C12) which possibly prevents this term from vanishing, in contrast to the first term in (C6), which
is based on a correlator, usually assumed positive definite.

On the other hand, truly Galilean-invariant turbulence should not exhibit an explicit x dependence. Given that the forcing
in our simulations indeed obeys Galilean invariance, deviations from it in u and b can only emerge due to the “memory” of
the turbulence, which is made “everlasting” by the absence of dissipative damping. Thus, for the purpose of interpreting our
numerical results, we may disregard (C12) and assume that only the first term in (C6) determines the sign of ηyx.

Comparing with Squire & Bhattacharjee (2015a) by setting ν = η = 0 in their Eqs. (32)–(35)5 we find the following agree-
ments:

• no contribution from u(00) (or Wu in their terms) to ηyx, only from b(00) (or Wb),

• ηyx has the opposite sign of S and is thus unfavorable for the MSC dynamo

(for this we have to assume a positive correlation
〈
b
(00)
x (y, t;x, z) b

(00)
x (y, τ ′;x, z)

〉
xy

).

In summary, our analytical result is in qualitative accordance with the numerical ones for the magneto-kinetic forcing cases.
For the purely kinetic ones, however, the analytics predicts vanishing ηyx, while the numerical experiments do produce it, even
with a favorable sign for dynamo action, albeit too weak to be its main driver, and also weaker than in comparable magneto-
kinetic forcing setups. As vanishing ηyx is in agreement with the ideal limit of Squire & Bhattacharjee (2015a), we conclude
that a non-zero contribution to ηyx from kinetic fluctuations and shear (their (ηyx)Su ), requires the presence of dissipative terms,
most likely, η 6= 0, as their result (32) suggests. It also reveals that there must be an “optimal” magnitude of η which maximizes∣∣(ηyx)Su

∣∣ because it vanishes again in the limit η → ∞. To be too far from the optimal η in numerical setups might explain the
absence of a dynamo, enabled by (ηyx)Su .

5 Note that they employ a sign-inverted definition of S.


