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Time‑resolved classification 
of dog brain signals reveals early 
processing of faces, species 
and emotion
Miiamaaria V. Kujala1,2,3*, Jukka‑Pekka Kauppi3,4, Heini Törnqvist2, Liisa Helle3, Outi Vainio2, 
Jan Kujala1 & Lauri Parkkonen3

Dogs process faces and emotional expressions much like humans, but the time windows important for 
face processing in dogs are largely unknown. By combining our non-invasive electroencephalography 
(EEG) protocol on dogs with machine-learning algorithms, we show category-specific dog brain 
responses to pictures of human and dog facial expressions, objects, and phase-scrambled faces. We 
trained a support vector machine classifier with spatiotemporal EEG data to discriminate between 
responses to pairs of images. The classification accuracy was highest for humans or dogs vs. scrambled 
images, with most informative time intervals of 100–140 ms and 240–280 ms. We also detected 
a response sensitive to threatening dog faces at 30–40 ms; generally, responses differentiating 
emotional expressions were found at 130–170 ms, and differentiation of faces from objects occurred at 
120–130 ms. The cortical sources underlying the highest-amplitude EEG signals were localized to the 
dog visual cortex.

Domestic dogs (Canis familiaris) have developed a unique relationship with the human species over the last 
15,000–30,000 years1, and they show remarkable social reactivity to their human packs. The dog coexistence 
with humans have even affected the formation of the dog facial musculature, enabling clearer facial expressions 
in communication with humans2. During the last decade, domestic dogs’ visual capabilities have proved to be 
better than previously expected, including their visual acuity3. Dogs also perform rather well in object recogni-
tion tasks. They are able to visually distinguish faces from non-faces, observing them spontaneously differently4,5 
and they view faces in a holistic manner like humans, differentiating upright from inverted faces6,7. Dogs are 
also able to distinguish familiar faces from unfamiliar ones7,8 and they show both species-specific9 and emotion-
specific10–14 differentiation of faces. Thus, face perception in dogs is relatively well characterized by behavioral 
responses and eye gaze tracking.

But how are faces processed in the dog nervous system? The basic face processing is similar to that of other 
mammal species, most studied in humans, monkeys and sheep15,16. Recent advances in utilizing non-invasive 
functional magnetic imaging (fMRI) in dogs have already revealed face specificity in the dog brain17,18. Further-
more, dog fMRI studies have shown differentiation in canine processing of human and dog faces19 and between 
different emotional expressions20. As in humans and other primates21, temporo–occipital brain regions appear 
important for processing of faces in dogs17,18. In dogs, the localization of face processing appears more variable 
than what is found in the face processing of humans17,18—possibly reflecting the differences in brain networks 
of different dog breeds22.

To date, the field has focused on the very basic functions of the dog visual processing; either on the behavioral 
distinction of socially relevant visual categories or addressing the focus of brain processing of faces with func-
tional imaging, but the temporal aspects of face processing remain unclear. In humans, the dominant face-specific 
brain response peaks approximately 170 ms after the stimulus onset for review,23. Emotional information may 
affect event-related potentials (ERPs) at different time windows depending on the context, modifying the early 
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responses24–26 or the responses after 250 ms27,28. The first visuo-cortical ERPs of dogs have been detected at about 
75–100 ms29,30, likely corresponding to the visual P1 and N1 components in humans at around 75–200 ms31. 
In our previous non-invasive electroencephalography (EEG) study, these early ERPs showed some reactivity to 
the content of the stimuli30. However, our previous study was more of a feasibility test and not optimized for 
comparing different categories of objects.

Here, utilizing non-invasive EEG deemed feasible in dogs30,32, we aimed to deepen the knowledge of the 
temporal dynamics of visual processing in dogs, related to different visual categories: faces, species, and emo-
tion. We showed images of pleasant, threatening and neutral dog and human facial expressions as well as objects 
and phase-scrambled images to eight dogs that were previously trained with positive operant conditioning to 
undergo the EEG measurement procedures. We utilized a machine-learning approach in the analysis of the 
spatiotemporal EEG data to discriminate between brain responses to different image categories. Furthermore, 
we also employed a traditional analysis of event-related potentials to obtain a more comprehensive view of the 
possibilities of these two approaches in the analysis of canine ERPs. Moreover, to better connect our non-invasive 
EEG recordings with the existing literature on the brain areas underlying visual cognition, we also constructed 
the first EEG source model for dogs, and estimated the neural currents underlying the measured EEG signals.

Building on previous studies on processing of faces in the dog brain, we expected to be able to distinguish 
between brain responses to images containing faces vs. non-faces (objects and phase-scrambled images); images 
containing different species (dog vs. human); and images containing different emotional expressions. As aggres-
sive or threatening faces yield strong behavioral responses in dogs in comparison with other expressions11,12, 
we expected especially threatening faces of both species to be distinguishable from neutral or pleasant faces.

Results
Event‑related responses.  Figure 1 shows the event-related responses—averaged across the eight dogs—to 
the images of humans, dogs and objects. The series of responses across the stimulus categories was markedly 
consistent, with highest-amplitude responses occurring at 105–110 ms after stimulus onset in the posterior P3 
and P4 channels. A second notable response peaks at around 140 ms in the same channels. Both responses were 
prominent also in the frontal F3 and F4 channels.

The responses to face vs. object stimuli differed statistically at 5/7 channels (p < 0.05, paired-samples t tests). 
Face and object categories differed statistically significantly at the following channels and time windows, in 
the order of the onset latency of the time window: T4 at 80–104 ms, P3 at 92–119 ms, P3 at 123–139 ms, P4 at 
123–139 ms, F4 at 139–166 ms, T4 at 139–166 ms, Cz at 146–170 ms, F4 at 162–182 ms, P4 162–182 ms, T4 at 
166–189 ms, Cz at 182–197 ms and T4 at 186–213 ms.

Table 1 shows the statistically significant time windows obtained in the ANOVA analysis across the stimulus 
species (dogs, humans) and expressions (happy, aggressive, neutral). A main effect for species was seen in 3/7 
channels between 45 and 100 ms, and in 1/7 channel at 201–205 ms. A main effect for facial expression was found 
in 4/7 channels: F4 at 29–37 ms; T3 at 127–135 ms; and P3 at 158–162 ms and 229–236 ms.

Table 2 shows planned contrasts (paired-samples t tests) that clarify the ANOVA facial expression and inter-
action effects within the significant time windows.

Machine‑learning analysis.  Figure 2 shows the average accuracy across the dogs for each binary clas-
sification task. Discrimination of any of the face stimulus categories from the scrambled images yielded the 
highest accuracies above 60% (range 60.9–63.4%; empirical chance level 48–52%). Comparable accuracies were 
obtained also with other classifiers (e.g., mean accuracy for face stimulus categories vs. scrambled images was 
> 60% with logistic regression using lasso regularization). Discrimination of objects from scrambled images 
resulted in the next highest average performance (56.1%), and the categories of neutral dogs (ND) and threaten-
ing/aggressive humans (AD) could be statistically significantly distinguished from objects (accuracy of 52.6% 
and 51.0%, respectively).

Figure 3a shows a matrix of statistically significant classification results computed separately for distinct time 
intervals. Only the tasks discriminating scrambled images from the rest of the categories were selected for this 
analysis because the accuracy of these tasks was clearly better than random classification according to Fig. 2. 
Significant classifications were clustered around 100–140 ms after the onset of the stimuli. Moreover, there 
was another cluster around 240–280 ms. These two distinct time intervals can be seen clearly when significant 
classifications are summed across the tasks and dogs (see Fig. 3b): exactly half of the classifications (out of 56 
corresponding to the 8 dogs and 7 tasks) were significant within the first peak (100–120 ms), and around 13% 
were significant around the later peak (240–280 ms).

Figure 4 displays the fraction of statistically significant classification results across dogs, tasks, and time 
intervals (see the matrix of Fig. 3a) for the different tasks of interest based on three divisions (species, expres-
sions, combined species and expressions). The division according to species (see Fig. 4a) reveals that the results 
of “dogs vs. scrambled” (15.2% of these tasks were significant) were more often significant than the results of 
“humans vs. scrambled” (12.0% of these tasks were significant). On the other hand, both humans and dogs were 
much more frequently discriminated from the scrambled images than from the images of objects (only 5.1% of 
these tasks were significant). When the division of the tasks is performed according to expressions (Fig. 4b), the 
task “happy vs. scrambled” was most frequently significant (15.4%), followed by “neutral vs. scrambled” (13.2%), 
and “aggressive vs. scrambled” (12.1%). Again, these relative numbers are higher compared to the reference task, 
object vs. scrambled.

Figure 4c shows the number of statistically significant classifications in terms of our original categorization 
consisting of both expression and species information. This division reveals that the tasks “HD vs. S” (16.9%) and 
“ND vs. S” (16.9%) yielded a higher number of statistically significant findings than the other tasks, including 
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Figure 1.   Grand-average evoked responses across the eight dogs for images of human faces (blue), dog 
faces (red) and objects (black) in the seven EEG channels (top = anterior; bottom = posterior). The schematic 
illustrates the electrode locations on the dog head. Grey dotted lines indicate 50 ms temporal intervals; solid 
grey bars indicate time windows where the responses to faces (human + dog) differed from objects.

Table 1.   ANOVA results testing the effects of species (sp), expression (exp) and interaction (int) on the 
amplitude of evoked responses. Subsequent significant time points are reported within the same temporal 
window, and the significant results are shown as average response amplitudes (µV) across the window. The 
results are listed in the ascending order according to the onset of the time window. HH happy humans, NH 
neutral humans, AH aggressive humans, HD happy dogs, ND neutral dogs, AD aggressive dogs.

Effect Ch Latency (ms) p min p max HH NH AH HD ND AD

exp F4 29–37 0.014 0.039 − 0.038 0.146 − 0.308 0.183 0.434 − 1.199

sp F4 45–100 0.003 0.035 − 0.515 − 0.756 − 0.932 0.123 0.462 0.117

sp P4 68–80 0.005 0.023 − 1.057 − 0.160 − 0.646 1.087 1.068 0.109

sp T4 76–88 0.012 0.029 − 1.273 − 0.530 − 1.434 − 0.533 0.482 0.507

exp T3 127–135 0.027 0.049 − 1.094 0.758 − 0.654 − 1.866 2.040 − 0.427

exp P3 158–162 0.011 0.027 2.386 − 1.659 0.377 1.227 − 0.940 0.050

sp T4 201–205 0.035 0.038 0.465 − 0.645 0.045 1.619 1.470 0.927

int F3 209–213 0.013 0.019 1.903 0.622 1.714 0.705 1.275 1.095

exp P3 229–236 0.017 0.031 − 0.710 1.047 − 1.193 − 0.273 0.404 − 2.051



4

Vol:.(1234567890)

Scientific Reports |        (2020) 10:19846  | https://doi.org/10.1038/s41598-020-76806-8

www.nature.com/scientificreports/

Table 2.   The planned contrasts (paired-samples t tests) clarifying the ANOVA results (main effect of 
expression and interaction effect). The comparisons between happy, aggressive and neutral facial expressions 
within each time window are shown separately for human (HH, NH, AH) and dog (HD, ND, AD) faces. ^ A 
trend towards significance; *significant at the level of p < 0.05.

Ch Latency Value HH versus NH HH versus AH NH versus AH HD versus ND HD versus AD ND versus AD

F4 29–37

p min 0.659 0.416 0.267 0.582 0.096^ 0.056^

p max 0.715 0.489 0.329 0.799 0.166 0.066^

T min − 0.460 0.730 1.049 − 0.576 1.545 2.176

T max − 0.380 0.864 1.205 − 0.264 1.922 2.293

T3 127–135

p min 0.033* 0.289 0.089^ 0.122 0.195 0.054^

p max 0.174 0.974 0.150 0.293 0.481 0.263

T min − 2.650 − 1.148 1.618 − 1.759 − 1.431 1.217

T max − 1.513 − 0.033 1.974 − 1.137 − 0.744 2.311

P3 158–162

p min 0.119 0.123 0.131 0.022* 0.384 0.267

p max 0.160 0.156 0.211 0.082^ 0.444 0.385

T min 1.571 1.591 − 1.713 2.032 0.810 − 1.205

T max 1.777 1.752 − 1.377 2.921 0.930 − 0.926

P3 229–236

p min 0.070^ 0.464 0.222 0.298 0.245 0.038*

p max 0.286 0.761 0.260 0.608 0.267 0.103

T min − 2.140 0.316 1.224 − 1.124 1.207 1.875

T max − 1.155 0.775 1.341 − 0.537 1.270 2.551

F3 209–213

p min 0.038* 0.288 0.010* 0.102 0.172 0.460

p max 0.040* 0.960 0.012* 0.235 0.335 0.854

T min 2.516 − 0.052 − 3.484 − 1.880 − 1.522 0.190

T max 2.545 1.149 − 3.370 − 1.298 − 1.035 0.781

Figure 2.   Average accuracy of each classification task. The tasks are ordered in the decreasing order of the 
accuracy: green circles indicate significant (p < 0.01) and red circles non-significant (p < 0.01) task accuracies. 
Blue box plots denote the null distribution obtained from the permutation test.
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“HH vs. S” (13.9%), “AH vs. S” (12.5%), “AD vs. S” (11.8%), and “NH vs. S” (9.6%). Also in this case, the relative 
number of findings for the reference task, object vs. scrambled, was the lowest (5.1%) albeit the accuracy for 
these two tasks was very close to the chance level.

Cortical sources.  Figure 5 shows the estimated cortical sources of the canine electrophysiological visual 
evoked responses. Modeling with equivalent current dipoles (ECD) revealed that the evoked responses with 
highest amplitude (at 90–110 ms) originated in the occipital cortex (Fig. 5a) as three distinct clusters of dipoles 
with goodness of fit of at least 93%. The largest dipole moments (of the 10 fitted dipoles) were observed for the 
cluster of dipoles fitted at 101–105 ms (Fig. 5b).

Figure 3.   Time-resolved decoding of the scrambled versus other categories. (A) The matrix of statistically 
significant (p < 0.05, corrected) decoding results for each time interval (horizontal axis) and task pairs (vertical 
axis), separately for each dog. Colors indicate individual dogs, and each number (1–7) on the vertical axis 
corresponds to a different classification task (tasks are listed in the box at right). (B) The number of statistically 
significant classification results (%) over time, summarizing the findings across all dogs. Category abbreviations: 
S scrambled, HH happy human, NH neutral human, AH aggressive human, HD happy dog, ND neutral dog, AD 
aggressive dog, and O object.
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Discussion
Classification of faces and non‑faces.  Face perception is widespread across vertebrates15,16, thus inves-
tigation of facial processing in non-human species has two-fold implications. First, it adds to our understanding 
of the surrounding biological diversity and answers to our curiosity of the non-human minds—in this case, how 
does a dog see and process the social world? Second, it contributes to our views of the uniqueness of humans. 
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Figure 4.   The fractions of statistically significant classification results across tasks, dogs and time points for 
three divisions of interest. (A) Species versus scrambled, (B) Expressions versus scrambled, and (C) Combined 
expressions and species versus scrambled. Within each division, discrimination results of the object category 
from the scrambled images are shown as a reference.

Figure 5.   Cortical sources of the visual evoked response at 90–110 ms in one dog. (A) The location of ECDs 
with the highest goodness-of-fit in each time point (or time window, where the location remains constant) are 
shown with white circles, in both the axial (top row) and sagittal (bottom row) view of the dog brain. (B) Dipole 
moments of each of the ECDs fitted separately at each time point or time points with constant locations (91 ms, 
93–99 ms, 101–105 ms and 107–109 ms). (C) The dipole moment of the ECD with highest amplitude between 
90–110 ms shown over the whole epoch (from − 50 to 300 ms). A anterior, P posterior, R right, L left, D dorsal, V 
ventral.
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How similar or different are we from our biological relatives, near or far in the evolutionary tree? Especially, 
here the question is: to what extent are the social cognitive processes, present in humans, shared across different 
species? Humans and dogs have had a special companionship dating back to prehistory1, and unraveling the 
emotional and face perception mechanisms in dogs shed light on these questions, also tackling the uniqueness 
of human brain processes.

In this work, our main achievements were: (1) We decoded the brain signals of individual dogs over the 
first 350 ms after image perception and predicted the stimulus category observed by the dog based on single 
event-related trials; (2) We clarified the important temporal windows characterizing dog event-related brain 
responses to processing emotional facial expressions; (3) We detected early responses approx. at 30–40 ms, that 
were highly pronounced for the threatening facial expressions, especially those of conspecifics; (4) We created 
an EEG forward model for one dog and estimated the cortical current generators of the most prominent visual 
brain responses. The decoding results highlight overlapping time windows in the brain processes of multiple 
dogs, showing the success of the method across individuals. Previous research with fMRI has utilized machine-
learning approaches in the dog cognition research in detecting voxel activation patterns in listening to human 
words33; an fMRI preprint has also reported differentiation of human emotional expressions20.

As expected from the previous fMRI studies tapping specificity of faces in the canine brain17–20, we success-
fully discriminated the dog electrophysiological brain responses to both human and dog faces (happy/pleasant, 
neutral and aggressive/threatening) from the phase-scrambled non-face images. Highest classification accuracies 
were obtained for the tasks discriminating faces from scrambled images (accuracy in all task pairs above 60%). 
Statistically significant classification accuracies were also obtained for the task "objects vs. scrambled images" 
(56%). In the single-category comparisons where each emotion and species was independently compared without 
data pooling, brain responses to two categories of faces, neutral dogs and aggressive/threatening humans, could 
be separated statistically significantly from brain responses to objects. However, also the comparisons between 
other faces vs. objects were approaching significance.

When considering the number of SVM classifications (across time points and subjects) with all facial expres-
sions of the same species pooled together, the percentage of correct classifications between dogs and scrambled 
images was the highest (15%), followed by the classification between humans and scrambled images (12%). 
Instead, the discrimination between objects and scrambled images was significant in only about 5% of the com-
parisons. Thus, the dog brain processing of dog faces differed most clearly from the scrambled images, highlight-
ing the relevance of the conspecifics to dogs, previously shown behaviorally in eye gaze tracking5. The human 
faces also recruited clearly distinct brain patterns from the scrambled images, but to a lesser extent than dog faces.

Both behavioral and brain functional imaging studies have shown that dogs do differentiate between faces and 
non-faces4,5,17,18. In the current analysis of the event-related brain responses, face stimuli differed significantly 
from objects at approx. 80–200 ms from the stimulus onset. At the latencies of 123–213 ms, two or more channels 
picked up the face vs. object difference concurrently, adding to the reliability of the results. This time window 
both precedes and coincides with the face-specific response in humans around 170 ms for review, see23, but the 
current results suggest that the face processing in dogs may be more widespread both spatially and temporally 
than in humans. Importantly, the obtained differences are not likely to be due to the low-level stimulus properties 
of luminance or contrast, since the current face stimuli did not differ from the object stimuli in these metrics.

Threat and emotional information of facial expressions.  In previous behavioral and gaze-tracking 
experiments where dogs have viewed facial expressions from 2D presentations, aggressive or threatening faces 
have often provoked pronounced responses in dogs in comparison with other expressions11,12,14,34, and emotional 
effects have been present in fMRI data of dogs19,20. Therefore, we also expected brain responses especially to 
threatening expressions of both species to differ from the responses to neutral or pleasant expressions. Unfortu-
nately, the comparisons between different emotional expressions of the same species did not reach sufficient clas-
sification accuracy in the machine-learning approach. Instead, in the conventional analysis, we detected an early 
response difference already at the latency of 30–40 ms, showing highest amplitude for the threatening/aggressive 
dog faces. The response latency suggests a subcortical, likely preconscious origin. This coincides with the stud-
ies of human amygdalar response to unconsciously detected, evident threat or conspecific fear35. Threatening 
stimuli are known to draw pre-attentive responses even in the absence of subjects’ conscious recollection of the 
stimulus36. In rodent studies, the early responsiveness of the amygdala has been characterized in the classical 
studies of conditioned fear for review, see37. Furthermore, our previous studies of dog eye gaze tracking clearly 
showed the behavioral response equivalent to amygdala-mediated “freezing response”—like failure to disengage 
from the threatening dog faces12. This phenomenon is well known in both human and non-human animals for 
reviews, see38,39.

The previous fMRI research has identified the face-responsive areas in the dog temporal cortex17–19, which has 
reciprocal connections with the basolateral amygdaloid complex40. In mammals, the lateral amygdalar nucleus is 
associated with fear conditioning, and the basolateral and basomedial nuclei are associated with anxiety and fear-
related freezing for review, see38. Furthermore, amygdalar connections from the basal nucleus to the motor system 
have been detected in primates41 and cats 42. In monkeys, basolateral amygdala is highly reactive to threatening 
conspecific facial expressions43. These amygdala–neocortex connections may underlie our current findings of 
the early threat response in dogs. Canine temporal cortex bears some important similarities to the human brain 
network processing facial emotion: temporal cortex regions with stronger responses to dog faces have similar 
functional connectivity to the human superior temporal gyrus, and the areas with stronger responses to human 
faces have comparative functional connectivity to the human fusiform face area19.

As amygdala processes both negative and positive emotions44, we cannot rule out the effect of arousal in the 
current emotion-sensitive responses instead of the stimulus valence. Previously, when the current stimuli were 
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rated by human subjects, threatening/aggressive dogs received the highest scores for both arousal and negative 
valence, followed by threatening/angry humans45. The early brain responses of dogs in this study follow the 
same pattern. Previously, also the dogs’ eye gaze separated both human and dog threatening expressions clearly 
from others, but in different ways: dog threat caused a sustained attention, but human threat caused an aversive 
response12. Both sustained attention46 and avoidance47 are well-known reactions to threat also in human studies. 
In the current study, we found early brain responses linked to threat detection, most pronounced for the threat-
ening dog faces. Future work is needed to establish whether the different behavioral outcomes can be traced to 
differing stimulus properties (such as ecological validity and arousal) or observer properties (such as different 
anxiety profile of observers being represented in the sample).

In the emotional categories differentiated by machine-learning-based classification, threat was not easily 
detected. Brain responses to happy faces were generally the ones most often separated from the scrambled images: 
17% of the SVM classification tasks were statistically significant between responses to happy dogs vs. scrambled 
images, and 14% were significant for distinguishing happy humans vs. scrambled images. Brain responses to neu-
tral dogs were also as often separated (17%) from the scrambled images as happy dogs. The similar classification 
accuracy for happy and neutral dog faces may be partially due to similar conditions for classifications, as the dogs 
observed these expressions very similarly in our recent eye-tracking study12. Also in a recent fMRI study, happy 
human faces were the most prominently distinguished from other categories20. There may be several explaining 
factors for this, but the detected threat likely causes heightened vigilance, which may affect the signal-to-noise 
ratio of the data and consequently hinder the machine-learning analysis conducted on the basis of single trials.

Our event-related data analysis showed emotional expression-dependent effects at 127–170 ms from the 
stimulus onset, largely coinciding with the time window affected by emotional faces in comparable human ERP 
studies26,27. The time window is overlapping with the window differentiating faces from objects in the current 
study and detected partially in the same channels, suggesting that face processing in dogs may be connected to 
the processing of the affective content of the stimulus. In humans, the cortical face response is modulated by both 
attention and emotional expression, whereas the amygdala face response remains unaffected by attention48. In 
the current data the attention of dogs was non-manipulated, thus the biological relevance of the affective content 
of the stimuli likely affected the dogs’ attention and the face-sensitive cortical processing.

Visual responses localized in the occipital cortex: distinction of species or low‑level differ-
ences?  Dogs gaze dog and human faces partially differently5, and they have anatomically distinguishable 
brain activations for human and dog faces19. Here, we show differences between the dog event-related brain 
responses to human vs. dog faces at 45–100 ms, reflected in more than one EEG channels and replicating the 
finding from our previous study30 with a larger data set. Although early electrophysiological brain responses 
reflect differences in low-level visual properties within the stimuli, such as luminance or contrast49,50, we wanted 
to maintain the stimuli as natural as possible. Thus, the visual properties between stimulus categories were not 
equalized. For this reason, the dog faces differed from human faces both in their luminance and contrast, thus 
our results on the species-dependent effects within canine event-related responses cannot be distinguished from 
the effects of low-level visual properties.

In human electrophysiology research, interactive effects of low-level and socio-emotional properties have been 
reported already at the level of the early ERP components, around 100 ms from the stimulus onset51. However, 
the emotion-dependent effects in early ERP components are still under debate due to currently mixed findings52. 
It is possible that this early categorization of faces reflected in the dog brain responses is due to interactive effects 
of the low-level and biologically relevant stimulus properties, but unfortunately with the current data, we cannot 
conclusively resolve this issue for the dog event-related brain responses.

The brain responses at 45–100 ms, detected at the temporo-posterior channels, also had highest response 
amplitudes in the current study. The locations of the ECDs also indicate the source of these responses in the visual 
occipital cortices of the dog. This study is the first to estimate the cortical current sources of the non-invasively 
measured canine event-related brain potentials. To achieve this, we created the forward and inverse models of 
the dog head as the volume conductor, required to calculate the origins of the measured signals. Notably, the 
dog head has a thick musculature between the signal generation and the EEG measurement sites compared to 
a human head, affecting the signal conduction. Moreover, the limitations of the electrode network coverage 
have to be taken into account in this kind of studies. Nevertheless, our results give new directions and develop 
expectations for the future studies on canine cortical source localization.

Time windows important for processing social visual information.  As the time windows impor-
tant for canine cognitive brain processes are largely unknown based on the previous literature, one of the main 
rationales of the present study was to clarify the temporal dynamics of brain processing of different visual cat-
egories in dogs. Previous studies have shown the first N1-like visual event-related responses of dogs to appear 
around 100 ms after stimulus onset29,30, and our previous study recording non-invasive ERPs suggested some 
category-dependent reactivity of the brain responses already at the early 100 ms responses30.

In the machine-learning approach of the present study, we clarified two time windows that yielded sig-
nificant category-dependent classification of the brain responses. The first cluster of significant findings was 
at 100–140 ms and the second at 240–280 ms after the stimulus onset. Importantly, these processing windows 
were visible at the level of individual dogs. The first time window corresponds to the early 100 ms brain response 
already shown previously30 and this time window appears to be significant in differentiation of all other stim-
uli—faces and objects—from scrambled images. Notably in the second time window of 240–280 ms, none of 
the classification results arises between objects vs. scrambled images. This suggests that this time-window plays 
pronounced role in processing socially relevant information. This later time window roughly corresponds to the 
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ERP latencies that have shown reactivity for emotional information in humans27,28. Additionally, we observed 
significant classification results in a number of time windows from the individual dogs, as shown in Fig. 3. These 
differences may be due to the anatomical differences between the individuals, but they may as well reflect the 
individual differences in the cognitive processing of the dogs. Currently, we have no way of obtaining the exact 
origins of these differences.

We conclude that the time windows for canine processing of visual social information obtained in the current 
study are much in line with the previous literature on human ERP literature, as well as the previous neuroim-
aging studies on dogs. The current results suggest a marked effect of the socio-emotional content to the dog 
brain responses, rendering the dog event-related responses comparable but more spatiotemporally distributed 
compared to the human responses.

Methods
Ethics statement.  The study was performed in strict accordance with the Finnish Act on Animal Experi-
mentation (62/2006), and all experimental protocols were approved by either the Viikki Campus Research Ethics 
Committee, University of Helsinki or the National Animal Experiment Board. All the experimental procedures 
related to the electroencephalography study had a prior approval by the Viikki Campus Research Ethics Com-
mittee, University of Helsinki (approval in the Board Meeting held on the 20th of March, 2013). At the time 
of the measurements, dogs were owned by the University of Helsinki, thus there was no need to obtain the 
informed consent from dog owners. No invasive procedures were applied in the EEG measurements, and only 
positive operant conditioning was used in the animal training. During the measurements, dogs were fully alert 
and conscious at all times with no medication, and measurements were conducted on voluntary basis: neither 
mechanical nor manual restraint was applied. The acquisition of magnetic resonance images (MRIs) had a prior 
approval by the National Animal Experiment Board (approval in the Board Meeting held on the 9th of Novem-
ber, 2011, #ESAVI/5794/04.10.03/2011).

Subjects.  Subjects were eight (8) healthy, neutered, purpose-bred beagles from five different litters. The 
dogs were raised as a social group and housed in a group kennel [6 males, 2 females, weighing 12.9. ± 1.9 kg 
(mean ± SD)], and all dogs were 6 years old at the time of the measurements. Purpose-bred dogs formed the 
subject group, since the aim was to avoid excess variation due to environmental effects. The subject dogs of the 
same breed, with comparable head sizes and forms, also enabled the comparison of the responses at a group-
level. Furthermore, the dogs were already pre-trained for the task and had participated in similar non-invasive 
cognitive studies before12,30,32. They were keen to participate and performed the experiments well. All dogs were 
later re-homed to private families.

Stimuli.  Altogether, eight different categories of stimuli were presented. Stimuli were color photographs of 
dog faces with direct gaze (10 images of threatening/aggressive dogs (AD), 10 images of neutral dogs (ND), and 
10 images as pleasant/happy dogs (HD); photographs of human faces with direct gaze (10 threatening/aggressive 
humans (AH), 10 neutral humans (NH), and 10 pleasant/happy humans (HH); 10 images of general household 
objects (OB) and 10 images of abstract pixel compositions, phase-scrambled from the neutral dog faces (S). The 
stimulus images were acquired from our previous studies with further details of the human and dog faces12,45.

Differences in low-level visual properties of the stimulus categories could spuriously contribute to classifica-
tion, thus these properties were calculated for each category. Luminance of the faces/objects were the following 
(mean ± SD): AD 112 ± 25; ND 103 ± 33; HD 120 ± 42; AH 135 ± 19; NH 140 ± 24; HH 142 ± 23; OB 130 ± 21. The 
RMS contrasts were the following (mean ± SD): AD 15.8 ± 0.2; ND 15.4 ± 0.7; HD 15.8 ± 0.3; AH 15.9 ± 0.1; NH 
15.8 ± 0.2; HH 15.9 ± 0.1; OB 16.0 ± 0.0. The face stimuli (AD, ND, HD, AH, NH, HH) did not differ statistically 
from the objects (OB) in either luminance or contrast, but human faces differed from dog faces in both luminance 
(p = 0.002; two-sample t test) and contrast (p = 0.04; two-sample t test). The different emotional expression cat-
egories did not differ from each other (AD + AH vs. HD + HH; AD + AH vs. ND + NH; ND + NH vs. HD + HH) 
in either luminance or contrast.

Preprocessing.  To reduce the effect of muscular and other artefacts in the data, independent component 
analysis (ICA) was applied53, separately to each measurement block. ICA decomposition was performed for the 
time window from one second before the first and two seconds after the last stimulus onset within the block. 
The artefactual components within each block were identified based on visual inspection of the topography and 
spectral content of the components. The influence of the components that were labeled artefactual was removed 
by including only the other components in the reconstructed EEG data. In addition to the ICA, the possible 
electric leakage of the stimulus trigger signal to EEG channels was removed with a general linear model.

Stimulus presentation.  Stimulus images were displayed on a standard 22″ LCD monitor and were approx. 
14.6 × 16.0 cm2 (width × height) in size, overlaid on a gray background screen of 47.4 × 29.7 cm2 (1680 × 1050 
pixels), and presented at a frame rate of 60 Hz. Stimulus presentation was controlled with Presentation software 
(https​://nbs.neuro​-bs.com/) running on a standard PC.

Stimuli were presented in a pseudorandomized order at a distance of 70 cm, while the dogs laid still on a 
10-cm thick Styrofoam mattress and leaned their jaw on a purpose-designed u-shaped chin rest, as in our previ-
ous studies5,30. Each stimulus was shown for 500 ms with a uniformly-distributed random inter-stimulus-interval 
of 720–1560 ms, within 5 separate stimulus blocks of 15–20 stimuli per block; altogether, 85–88 stimuli were 
shown during one measurement session (10–11 stimuli per category). Each block of the session started with a 
stimulus from a different category, and the total duration of each measurement session was approx. 2 min 30 s. 

https://nbs.neuro-bs.com/
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Between stimulus blocks, the dog was rewarded with a piece of food and let to settle again on the measurement 
mattress. The total measuring time within one measurement session, including rewarding periods, ranged from 
5 to 20 min depending on the re-settling needed by the dog; only one session was recorded per day per dog. 
The data were gathered in fourteen separate recording sessions, each on a separate day, one week between the 
measurement days.

Data acquisition.  The measurements took place at the facilities of Faculty of Veterinary Medicine, Univer-
sity of Helsinki. Dogs were pre-trained, with operant-positive conditioning (clicker), for the non-invasive EEG 
task in our previous studies30,32. During the data acquisition, they wore neonatal EEG electrodes (Unilect 40555 
with bio-adhesive solid gel, 22 × 22 mm2, Unomedical a/s, Denmark) designed for newborn babies and a dog vest 
carrying the portable EEG amplifier (weighing 200 g). They settled in the measurement mattress on their own 
and rested their heads at a chin rest but were not restrained in any way.

To attach the electrodes, hair from the top of the dog’s head was shaved and the skin was cleaned with iso-
propyl alcohol to ensure a proper contact of the electrodes with the skin. Subsequently, drops of cyanoacrylate 
were applied to the edges of the electrode pads, and medical skin tape was applied on top of the electrodes to 
ensure their attachment.

The EEG data were acquired with an ambulatory Embla Titanium-recorder and RemLogic 2.0—software 
(Embla Systems, Colorado, USA). The EEG setup comprised 7 electrodes: F3 and F4 laterally approximately over 
the left and right frontal cortex, respectively; T3 and T4 over the lateral temporal cortices; P3 and P4 over the 
parieto-occipital cortices, and Cz in the middle; reference electrode was placed on the right ear and a ground 
electrode in the lower back. The EEG signals were band-pass filtered to 0.15–220 Hz and digitized at 512 Hz.

Conventional sensor‑level analysis.  For the analysis of event-related responses, the data were first band-
pass filtered to 2–40 Hz. Trials that showed amplitude deviations of more than 100 μV within the time window 
of interest (− 150 to 350 ms with respect to the stimulus onset) were rejected. As a result, 114–146 trials were 
included in the subsequent analyses per condition in individual dogs; in total, 1043–1078 trials per condition 
were acquired. Evoked responses were then averaged within each dog and experimental condition. The average 
signal in the baseline window (− 150 to 0 ms) was subtracted from the responses.

Effects of the stimulus categories were tested with analysis of variance (ANOVA) across the stimulus species 
(dogs, humans) and expressions (happy, aggressive, neutral). In this hypothesis-driven analysis, the responses 
were tested statistically with overlapping, 16-ms long time windows moving in steps of 4 ms, in the range of 0 
to 250 ms with respect to stimulus onset. The threshold for significant findings was set at p < 0.05, uncorrected 
for the number of time-windows but only findings of ≥ 2 contiguous significant time windows are reported. 
Additionally, the differences between event-related responses to face vs. object stimuli were tested separately as 
a planned contrast, with similar procedures as above.

Analysis with machine learning.  We trained a support vector machine (SVM) classifier54 from spati-
otemporal EEG data, band-pass filtered to 2–25 Hz, to discriminate between epochs originating from different 
image categories. For the machine-learning analysis, all recorded trials (epochs) were included to ensure the data 
suffiency, yielding 128–155 trials across the eight conditions and dogs. Before classifier training, we averaged 
temporally adjacent data points using a non-overlapping time window of 20 ms. This way the dimensionality 
of the original data was reduced with only a minimal loss of temporal information. After vectorization of the 
resulting time–channel matrix, we obtained 301-dimensional feature vectors for classifier training and testing. 
We trained a separate SVM classifier for each binary classification task, leading to (7·8)/2 = 28 classifiers for each 
dog, using the statistics and machine learning toolbox of Matlab (MathWorks, Inc., Natick, MA, USA).

We used a linear kernel in the SVM and applied tenfold cross-validation to estimate the test accuracy of the 
trained classifiers. We also constructed classifiers for each 20-ms time interval separately to investigate tempo-
ral evolution of discriminative information between categories from the onset of the stimulus. In this case, the 
dimension of the feature vectors was 7, corresponding to the number of EEG channels. For each classifier, we 
conducted a permutation test to assess whether the classification accuracies were significantly above the chance 
level55. For this purpose, we randomly permuted category labels of the training data 200 times prior to classi-
fier training and testing and generated a null distribution from the corresponding classification accuracies. The 
significance threshold corresponding to p < 0.05 was obtained using a maximum-statistics approach56 simulta-
neously across all time-windows and category-pairs. This significance threshold was also Bonferroni-corrected 
for the number of dogs.

Source modeling of evoked responses.  The cortical sources of the evoked responses were estimated in 
one dog whose anatomical head MR images could be obtained. Here, equivalent current dipole (ECD) modeling 
was applied57, implemented in the FieldTrip toolbox58.

The structural T1-weighted head MRI was acquired with 0.2-T open magnet (Esaote S.p.A, Genova, Italy) at 
the Veterinary Teaching Hospital, University of Helsinki, using a spoiled-gradient echo sequence with a matrix 
size of 256 × 256, time of repetition 1520 ms, and field of view 180 × 190 mm2. In total, 41 slices were acquired 
with a thickness of 2.5 mm and a 0.2-mm gap between slices. During the data acquisition, the dog was sedated 
and resting in the MR scanner.

The MRIs were segmented using Freesurfer version 5.359, and a boundary element method-based EEG forward 
model consisting of the brain, skull and scalp compartments with conductivities of 0.3 S/m; 0.006 S/m and 0.3 
S/m, respectively, was constructed with MNE-Python60. Possible source locations were considered in a regular 
volumetric grid with 2-mm spacing between the source points.
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Prior to source estimation, the EEG data were band-pass filtered to 2–25 Hz and the evoked responses across 
all facial stimulus categories were averaged using a rejection threshold of 50 μV, resulting in 719 epochs. The 
cortical sources of the most prominent visual EEG response in the time window of 90–110 ms were estimated 
by fitting an equivalent current dipole (ECD) separately at each time point within the 90–110-ms window. In 
addition to the dipole location and orientation, dipole strength and goodness-of-fit were estimated separately 
at each time point.

Data availability
The datasets recorded and analyzed in the current study are available from zenodo.org with the following digital 
object identifier: https​://doi.org/10.5281/zenod​o.41145​99.
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