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ABSTRACT The data generated in many application domains can be modeled as big data over networks, i.e.,
massive collections of high-dimensional local datasets related via an intrinsic network structure. Machine
learning for big data over networks must jointly leverage the information contained in the local datasets
and their network structure. We propose networked exponential families as a novel probabilistic modeling
framework for machine learning from big data over networks. We interpret the high-dimensional local
datasets as the realizations of a random process distributed according to some exponential family. Networked
exponential families allow us to jointly leverage the information contained in local datasets and their network
structure in order to learn a tailored model for each local dataset. We formulate the task of learning the
parameters of networked exponential families as a convex optimization problem. This optimization problem
is an instance of the network Lasso and enforces a data-driven pooling (or clustering) of the local datasets
according to their corresponding parameters for the exponential family. We derive an upper bound on the
estimation error of network Lasso. This upper bound depends on the network structure and the information
geometry of the node-wise exponential families. These insights provided by this bound can be used for
determining how much data needs to be collected or observed to ensure network Lasso to be accurate.
We also provide a scalable implementation of the network Lasso as a message-passing between adjacent
local datasets. Such message passing is appealing for federated machine learning relying on edge computing.
We finally note that the proposed method is also privacy-preserving because no raw data but only parameter
(estimates) are shared among different nodes.

INDEX TERMS Big data, networks, statistical machine learning, federated learning, privacy-preserving
machine learning, lasso.

I. INTRODUCTION
The data generated in many important application domains
have an intrinsic network structure. Networked data arises in
the study of social networks, natural language processing and
personalized medicine [3], [9], [51]. Most existing network
science provides powerful tools for the analysis of such data
based solely on its intrinsic network structure [14], [38].

We consider networked data where each node of the net-
work represents a local dataset or high-dimensional data
point. To study disease spread, we represent individuals by
nodes in a network whose links indicate physical proxim-
ity as relevant for disease transmission [38, Ch. 17]. Exist-
ing compartment models consider all individuals to behave
(structurally) similar, somewhat like an ‘‘i.i.d. assumption’’
in statistical learning theory. However, the tendency to get
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infected might strongly depend on personal factors such as
current health status. These personal factors can be char-
acterized via a plethora of attributes, ranging from health-
care records up to the recent travel history [35]. In natural
language processing, text corpora are represented as networks
of documents that are connected via co-authorship [9].

To jointly capitalize on network structure and the
information conveyed by high-dimensional data points,
we introduce networked exponential families. Networked
exponential families couple network structure with (node-
wise) local parameters of an exponential family [50]. Con-
ceptually, they unify and considerably extend non-parametric
models for learning clustered or smooth graph signals and,
more generally, networked (generalized) linear models [11],
[28], [32]. Another special case of networked exponential
families are networked time series models. Networked time
series models are useful for networks of weather observation
stations (see Section VII-B).
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Networked exponential families can also be applied to
non-parametric density estimation [36]. Indeed, we might
represent partitions of the feature space as a planar graph
with nodes representing individual regions. The distribution
of the data points within a particular region is estimated using
an exponential family whose parameters are optimized for a
specific region. Another important application of networked
exponential families is to stratified models [40]. Indeed, strat-
ified models are networked exponential families with each
node in the network representing one stratum [48].

Networked exponential families are powerful statistical
models for many important application domains such as per-
sonalized (high-precision) health-care [31], or natural lan-
guage processing [4], [9]. In contrast to [9], which uses a
probabilistic model for the network structure of text corpora,
this article assumes the network structure as fixed and known.

While traditional clustering methods only use network
structure, methods based on networked exponential families
also use the information provided by node attributes. Joint
clustering and optimization has been considered in [52] for
probabilistic models of the network structure. We consider
the network structure fixed and given and use a probabilistic
model for the node attributes (features and labels).

A. EXISTING WORK
The closest to this work is [32] which considers regression
with network cohesion (RNC). The RNC model is a special
case of networked exponential families. While RNC uses a
shared weight vector and a local (varying) intercept term, this
article allows for arbitrarily varying weight vectors (see end
of Sec. II).

Another main difference between [32] and our approach is
the choice of regularizer for the networkedmodel.While [32],
similar to most existing work on semi-supervised learning
[10], uses the graph Laplacian quadratic form as a smoothness
measure, our approach controls the non-smooth total varia-
tion (TV) of the model parameters. TV-based regularization
produces predictors which are piece-wise constant over well-
connected subset of nodes. This behaviour is useful in image
processing of natural images which are composed or homoge-
nous segments whose boundaries result in sharp edges [17].

This article substantially extends our prior work on net-
worked linear models for regression and classification [1],
[28], [29], [47]. We have recently derived conditions on the
data network structure such that nLasso accurately learns a
clustered graph signal [29]. The clustered graph signal model
is a special case of a networked linear regression model (see
Section III-A)

Minimizing the Laplacian quadratic form amounts to
solving a linear system. In contrast, TV minimization is
intrinsically non-linear which requires more advanced tech-
niques such as proximal methods [8], [41] (see Section VI).
The higher computational cost of TV minimization affords
improved accuracy when learning from a small number of
observed data points (see [37] and Section VII-A).

We learn the parameters of networked exponential families
with the network Lasso (nLasso). The network Lasso is a
recently proposed extension of the Lasso to networked data
[20], [22]. It is an instance of regularized empirical risk
minimization, using total variation for regularization [18],
[21]. We show how the nLasso can be implemented as highly
scalable message passing protocol over the data network
structure. This method is privacy-preserving in the sense of
not sharing any raw data but only (estimates) of parameter
vectors for the node-wise exponential families.

B. CONTRIBUTION
We now summarize our main contributions.
• We introduce networked exponential families as a novel
modelling paradigm for high-dimensional data points
having an intrinsic network structure (‘‘big data over
networks’’).

• We present sufficient conditions on the network struc-
ture and observed data points that allow to accurately
learn the parameters of an underlying networked expo-
nential family with high probability.

• We solve the nLasso for learning the parameters of a net-
worked exponential family using a highly scalable mes-
sage passing algorithm. This algorithm is suitable for
federated learning and edge computing environments,
where computation is carried by a collection of low-
complexity units (e.g., IoT devices) [30], [33].

• We verify our theoretical findings using illustrative
numerical experiments. The source files for these
experiments are made available to ensure reproducible
research.

C. OUTLINE
We introduce networked exponential families in Section II.
Section III details how some recently proposed models for
networked data are obtained as special cases of networked
exponential families. In Section IV, we show how to learn
a networked exponential family using an instance of the
nLasso optimization problem. We present an analysis of the
nLasso estimation error in Section V. Section VI presents
the implementation of nLasso using a primal-dual method
for convex optimization. The computational and statistical
properties of nLasso in networked exponential families are
illustrated in numerical experiments within Section VII.

D. NOTATION
The Euclidean norm of a vector x =

(
x1, . . . , xd

)T
∈ Rd

is ‖x‖2 :=
√∑d

r=1 x
2
r . The spectral norm of a matrix is

‖M‖ := sup‖x‖≤1 ‖Mx‖. The convex conjugate of a function
f is f ∗(y) := supx(y

T x− f (x)). The vector e(j) ∈ Rd denotes
the jth column of the identity matrix Id of size d × d . Given
a subset A ⊆ B we denote the complement as A := B \A.

II. NETWORKED EXPONENTIAL FAMILIES
We consider networked data represented by an undirected
weighted graph (the ‘‘empirical graph’’) G = (V, E,A) (see
Figure 1). The nodes i ∈ V = {1, . . . ,N } represent individual
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FIGURE 1. A networked exponential family is a probabilistic model for
(high-dimensional) data points z(i ) related by some intrinsic network
structure. The data points z(i ) might represent individuals during a
pandemic which are related by contact-networks as well as bio-medical
network structures.

data point (such as social network users). Data points i, j ∈ V
are connected by an undirected edge e = {i, j} ∈ E with
weight

Ae = Aij > 0 (1)

if they are considered similar (e.g., befriended users). We
denote the edge set E by {1, . . . ,E := |E |}. The neighbour-
hood of a node i ∈ V is N (i) := {j : {i, j} ∈ E}.
We assume the empirical graph G is fixed and known.

The empirical graph might be obtained via physical proxim-
ity (in time or space), physical connection (communication
networks) or statistical dependency (probabilistic graphical
models) [15], [25], [50]. Section VIII briefly speculates on
how our analysis could allow to use network design methods
for data-driven learning of the empirical graph.

Beside network structure, datasets convey additional infor-
mation via attributes z(i) ∈ Rd of data points i ∈ V . We
model the attributes z(i) of data points i ∈ V as independent
random variables distributed according to (a member of)
some exponential family [50]

p(z;w(i)) := b(i)(z) exp
(
(w(i))T t(i)(z)−8(i)(w(i))

)
. (2)

The distribution (2) is parametrized by the weight vectors
w(i)
∈ W (i), for i ∈ V . The weight vectors are fixed but

unknown and the main focus of this article is the accurate
estimation (learning) of these weight vectors. In order to
ensure (2) defines a valid probability measure (non-negative
and total measure equal to one), we must restrict the weight
vectors to some subset W (i)

⊆ Rd (see [50, Sec. 3.2]).
It is convenient to collect weight vectors w(i) assigned to

each n ode i into a vector-valued graph signal w : V →
Rd which maps a node i to the function value w(i). The
(hypothesis) space of all such vector-valued graph signals is

H := {w : V → Rd
: i 7→ w(i)

∈W (i)
}. (3)

We also define the related space of vector-valued signals
defined on the edges E of the empirical graph G as

D := {u : E → Rd
: e 7→ u(e)}. (4)

Strictly speaking, (2) represents a probability density func-
tion relative to some underlying base measure ν defined on

the value range of the sufficient statistic t(i)(z(i)). Important
examples of such a basemeasure are the countingmeasure for
discrete-valued t(i) or the Lesbegue measure for continuous-
valued t(i). The distribution defined by (2) depends on z(i)

only via the sufficient statistic t(i)(z(i)). In what follows,
we suppress the argument and write t(i) with the implicit
understanding that it is a function of the random vector z(i).
Several important properties of the model (2) can be read

off the cumulant function 8(i)(·) :W (i)
→ R, [50]

8(i)(w(i)) := log
∫
t∈Rd

b(t) exp(−tTw(i))ν(dt). (5)

The domain W (i)
⊆ Rd of the cumulant function is given by

all weight vectors w(i) such that the integral in (5) exists and
is finite. The Fisher information matrix (FIM) F(i) for (2) is
the Hessian

F(i)
= ∇

28(i)(w(i)), F (i)
m,n(w

(i)) :=
∂28(i)(w(i))

∂w(i)
m w

(i)
n

. (6)

The structure of F(i) determines the statistical and computa-
tional properties of (2) (see Section V and VI ).

The node-wise models (2), for all nodes i ∈ V , are coupled
by requiring the weight vectors w(i) to be similar for well-
connected data points. In particular, we require the weight
vectors to have a small total variation (TV)

‖w‖TV :=
∑
{i,j}∈E Aij‖w

(j)
− w(i)

‖. (7)

Requiring a small TV of the weight vectors w(i), for i ∈ V ,
forces them to be approximately constant over well connected
subsets (clusters) of nodes. It will be convenient to define the
TV for a subset S of edges:

‖w‖S :=
∑
{i,j}∈S

Aij‖w(j)
− w(i)

‖. (8)

Networked exponential families are obtained as the combi-
nation of (2) with a constraint on the TV (8) of weights w in
(8).

Networked exponential families are somewhat similar to
the RNC model put forward in [32]. Let us detail some
key differences between those two modelling frameworks.
First, RNC considers the special case of distributions (2) with
the sufficient statistic t(i) =

((
x(i)
)T
, 1
)T and a partitioned

weight vectorw =
(
βT , α(i)

)T . The component β is the same
for all nodes i ∈ V , while the intercept α(i) is allowed to
vary over nodes V . In contrast, we allow the entire weight
vector w to vary between different nodes. Moreover, while
the RNC model uses the smooth Laplacian quadratic form of
the intercepts α(i), we use the non-smooth TV (7) to ensure
that the weight vectors conform with the network structure of
the data.

III. SOME EXAMPLES
We now discuss important special cases of generic expo-
nential families (2). These special cases are obtained for
specific choices for the sufficient statistic t(i)(z) and cumulant
function 8(i)(·) :W (i)

→ R (5).
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A. NETWORKED LINEAR REGRESSION
Consider networked data points i ∈ V with features x(i) ∈ Rd

and label y(i) ∈ R. Maybe the most basic (yet quite useful)
model for the relation between features and labels of a data
point is the linear model

y(i) = (x(i))Tw(i)
+ ε(i), (9)

with Gaussian noise ε(i) ∼ N (0, σ 2) of known variance σ 2
i

which can vary for different nodes i ∈ V . The linear model
(9) is parametrized by the weight vectors w(i) for each i ∈ V .
The weight vectors are coupled by requiring a small TV (7)
[28].

The model (9) is obtained from (2) using the choices z(i) :=
y(i) with t(i)(z) = (z/σ 2

i )x
(i) and 8(i)(w) = (wT x(i))2/(2σ 2

i ).
In some applications we might have only a crude estimate

for the label of some data points. We can cope with varying
levels of accuracy in observed labels by using a varying noise
variance σ 2

i in (9). For nodes i ∈ V for which we only have a
rough label estimate, we use a larger noise variance σ 2

i in (9).

B. NETWORKED LOGISTIC REGRESSION
Consider networked data points i ∈ V with features x(i) ∈
Rd and labels y(i) ∈ {−1, 1}. Within logistic regression,
we interpret the label y as the realization of a random variable
with probability distribution

p(y(i) = 1;w(i)) := 1/(1+ exp(−(w(i))T x(i))). (10)

The distribution (10) is parametrized by the weight vectorw(i)

for each node i ∈ V . Note that (10) is the posterior distribution
of label y(i) given the features x(i) if the feature vector x(i)

is a Gaussian random vector conditioned on y(i). Networked
logistic regression requires the weight vectors w(i) in (10) to
have a small TV (7) [1], [47].

The logistic regression model (10) is the special case of (2)
for the choices z(i) := y(i), t(i)(z) := x(i)z/2 and

8(i)(w(i)) =
(
w(i))T x(i)/2+ log

(
1+ exp

(
−
(
w(i))T x(i))).

C. NETWORKED LDA
Consider a networked dataset representing a collection of
text documents (such as scientific articles). The LDA is a
probabilistic model for the relative frequencies of words in
a document [4], [50]. Within LDA, each document is consid-
ered a blend of different topics. Each topic has a characteristic
distribution of the words in the vocabulary.

A simplified form of LDA represents each document i ∈
V containing N ‘‘words’’ by two sequences of multino-
mial random variables z(i)w,1, . . . , z

(i)
w,N ∈ {1, . . . ,W } and

z(i)t,1, . . . , z
(i)
t,N ∈ {1, . . . ,T } with V being the size of the

vocabulary defining elementary words and T is the number
of different topics. It can be shown that LDA is a special case
of the exponential family (2) with particular choices for t(·)
and 8(i)(·) (see [4], [50]).

IV. NETWORK LASSO
This article focuses on accurate learning of the true underly-
ing weightsw(i) (see (2)) based on the nodes attributes z(i) for
a small ‘‘training set’’ M = {i1, . . . , iM } ⊆ V . A reasonable
estimate for the weight vectors is obtained from maximizing
the likelihood of observing the attributes z(i),

p
(
{z(i)}i∈M

)
=

∏
i∈M

p(z(i);w(i))

(2)
=

∏
i∈M

b(i)(z(i)) exp
((
t(i)
)Tw(i)

−8(i)(w(i))
)
.

(11)

Maximizing (11) is equivalent to minimizing

Ê(w) := (1/M )
∑
i∈M
−
(
t(i)
)Tw(i)

+8(i)(w(i)). (12)

The criterion (12) is not enough to learn the weights w(i)

for all i ∈ V . Indeed, (12) ignores the weights of unobserved
nodes i ∈ V \M. We need to impose additional structure
on the estimate for the weight vectors. In what follows,
we require any reasonable estimate ŵ(i) to conform, in a
specific sense, with the cluster structure of the empirical
graph G [38].
Networked data is often organized as clusters (or com-

munities) which are well-connected subset of nodes. Many
supervised learning methods use a clustering assumption that
nodes belonging to the same cluster represent similar data
points. We implement this clustering assumption by requiring
the parameter vectors w(i) in (2) to have a small TV (7).

We are led to learning the weights ŵ for (2) via the regu-
larized empirical risk minimization (ERM)

ŵ ∈ arg min
w∈H

Ê(w)+ λ‖w‖TV . (13)

The learning problem (13) is an instance of the generic
nLasso problem [20]. The parameter λ in (13) allows to trade-
off small TV ‖ŵ‖TV against small error Ê(ŵ) (cf. (12)).
Choosing λ can be based on validation [22] or the error
analysis in Section V.

It will be convenient to reformulate (13) using the block-
incidence matrix D ∈ R(dE)×(dN ) as

De,i =


AijId e = {i, j}, i < j
−AijId e = {i, j}, i > j
0 otherwise.

(14)

The e-th block of Dw is Aij(w(i)
− w(j)) in (7) and, in turn,

‖w‖TV = ‖Dw‖2,1 (15)

with the norm ‖u‖2,1 :=
∑

e∈E ‖u
(e)
‖2 defined on D (see

(4)). We can then reformulate the nLasso (13) as

ŵ ∈ arg min
w∈H

h(w)+ g(Dw), (16)

with h(w) = Ê(w) and g(u) := λ‖u‖2,1.
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Related to the incidence matrix (14), is the graph Laplacian

L = 3⊗ Id −
(
A ◦ A

)
⊗ Id , (17)

with the (element-wise) squared weight matrix
(
A ◦ A

)
i,j =

A2i,j (see (1)) and the ‘‘degree matrix’’

3 = diag{β1, . . . , βN } ∈ RN×N , with βi :=
∑
{j,i}∈E

A2i,j.

The (sorted) eigenvalues 0 = λ1 ≤ λ2 ≤ . . . of L reflect
the connectivity of the graph G. A graph G is connected if
and only if λ2 > 0. Moreover, the spectral gap ρ(G) := λ2
provides a measure of the connectivity of the graph G.
The Laplacian matrix L is closely related to the incidence

matrix D (see (14)). Both matrices have the same nullspace.
Moreover, the spectrum of DDT coincides with the spectrum
ofL. The column blocks S(j) ∈ R(Nd)×d of the pseudo-inverse
D†
=
(
S(1), . . . ,S(|E |)

)
∈ R(Nd)×(|E |d) of D satisfy

‖S(j)‖2,∞ ≤
√
2d max

i,j
Ai,j/ρ(G). (18)

This bound can be verified using the identity D†
=

(DDT )†DT and well-known vector norm inequalities (see,
e.g., [23]).

V. STATISTICAL ASPECTS
We now turn to the characterization of statistical properties
of nLasso by analysing the prediction error w̃ = ŵ − w
incurred by a solution ŵ of the nLasso problem (13). In order
to analyze the error incurred by the nLasso (13), we assume
that the true weight vectors are clustered

w(i)
=

∑
C∈P

v(C)IC[i]. (19)

Here, v(C) ∈ Rd is the value of the true weigh vector for all
nodes in the cluster C. We also used the indicator map IC[i] =
1 for i ∈ C and IC[i] = 0 otherwise.
The model (19) involves a partitioning P = {C1, . . . , C|P |}

of the nodes V into disjoint subsets (‘‘cluster’’) Cl . The model
(19) is a special case of piece-wise polynomial signal model
which allows the weight vectors to vary within each cluster
[12].

In principle, our analysis applies to an arbitrary choice for
the partition P . However, the analysis is most useful if the
partition is such that the boundary

∂P := {{i, j} ∈ E : i ∈ Cl, j ∈ Cl′ , l 6= l ′} (20)

is small in some sense. In particular, we focus on partitions
such that

∑
e∈∂P Ae is small.

We will use the model (19) is a (‘‘zero-order’’) approx-
imation for the true underlying weight vectors in (2). The
analysis below indicates that nLasso methods are robust to
model mismatch, i.e., the true underlying weight vectors in
(2) can be well approximated by (19).
Assumption 1: Node attributes z(i) are distributed accord-

ing to (2)with weight vectorsw(i) that are piece-wise constant

over some partition P = {C1, . . . , C|P |} (see (19)). We mea-
sure the clusteredness of the partition P using the spectral
gap

ρP := min
Cl∈P

ρ(Cl). (21)

We emphasize that the partition underlying the model (19)
is only required for the analysis of the nLasso error. For the
implementation of nLasso (see Section VI), we do not need
any information about the partition P .

The next assumption requires the node-wise exponential
families to be well conditioned. In particular, we require the
eigenvalues of the FIMs F(i) (see (6) to be upper and lower
bounded with known constants.
Assumption 2: The FIM F(i) (see (6)) satisfies

UI � F(i)(w(i)) � LI for any w(i)
∈W (i), (22)

with some constants U ≥ L > 1.
Our third and final assumption involves the training setM

and requires the cluster boundaries to be well connected to
nodes in the training set. Conceptually, this assumption is
similar to inconvertibility conditions such as the restricted
isometry property or the compatibility condition in com-
pressed sensing [7], [16]. This assumption ensures that no
clustered weight vectors (see (19)) can be small on the entire
training setM. We measure the size of the weight vectors on
the training set via the norm

‖w‖M :=
√
(1/M )

∑
i∈M

∥∥w(i)
∥∥2.

Assumption 3: There is K > 0 and L > 1 such that for
any piece-wise constant z ∈ H (see (3) and (7)),

L‖z‖∂P ≤ K‖z‖M + ‖z‖∂P . (23)

Note that both, Assumption 2 and 3, use the same constant
L in the lower bounds (22) and (23), respectively. Our main
analytic result is an upper bound on the probability that the
nLasso error exceeds a given threshold η.
Theorem 1: Consider networked data G and training set

M such that Assumption 1, 2 and 3 are satisfied with con-
dition number (see 23) κ := K+3

L−3 < 1. We estimate the
weight vectors w using a solution ŵ of nLasso (13) with
λ := η/(5κ2) using some pre-specified error level η > 0.
Then,

P{‖ŵ− w‖TV ≥ η}

≤ 2|P| max
l=1,...,|P |

exp
(
−

|Cl |η2

8 · 25dUκ2

)
+ 2|E | exp

(
−

Mρ2Pη
2

64 · 25Ud‖A‖2∞κ4

)
. (24)

The bound (24) becomes useful, tending towards zero, for
sufficiently large clusters Cl and sufficiently large training set
M. In particular, the bound is useful for massive datasets rep-
resented by some large empirical graph which is composed
of a modest number of clusters or segments. One application
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involving large empirical graphs and a rather small number of
clusters is image segmentation (see [46] and Section VII-C).

The bound (24) indicates that, for a prescribed accuracy
level η, the training set size M has to scale according to
κ4/ρ2P . Thus, the sample size required by Algorithm 1 scales
with the fourth power of the condition number κ = K+3

L−3 (see
Assumption 3) and inversely with the spectral gap ρP of the
partitioning P .

Thus, nLasso methods (13) (such as Algorithm 1) require
less training data if the condition number κ is small and the
spectral gap ρP is large. This is reasonable, since having
a small condition number κ = K+3

L−3 (see Assumption 3)
typically requires the edges within clusters to have larger
weights on average than the weights of the boundary edges.

It alsomakes sense that nLasso is more accurate for a larger
spectral gap ρP . Indeed, a large spectral gap ρP indicates that
the nodes within each cluster Cl are well connected. A graph
G consisting of well-connected clusters Cl favours clustered
graph signals (see (19)) as solutions of nLasso (13).

VI. COMPUTATIONAL ASPECTS
The objective function in (16) is highly structured as a sum
of a smooth convex function h(w) and a non-smooth convex
function g(Dw). Both of these two components can be opti-
mized efficiently when considered separately. This suggests
to use proximal methods to solve (16) [41].

A recently popularized instance of proximal methods is
the alternating direction method of multipliers (ADMM) [5],
[20]. However, we will choose another type of proximal
method which is based on a dual problem to (16) [8], [42].
This primal-dual method is appealing since its analysis pro-
vides natural choices for the algorithm parameters. In con-
trast, tuning the ADMM parameter is non-trivial [39].

A. PRIMAL-DUAL METHOD
To develop an efficient method for solving (16), we start with
reformulating the problem (16) as a saddle-point problem

min
w∈RdN

max
u∈D

uTDw+ h(w)− g∗(u), (25)

with the convex conjugate g∗ of g [8].
Any solution (ŵ, û) of (25) is characterized by [43]

−DT û ∈ ∂h(ŵ), and Dŵ ∈ ∂g∗ (̂u). (26)

This condition is, in turn, equivalent to

ŵ− TDT û ∈ (IdN + T∂h)(ŵ), and

û+6Dŵ ∈ (IdE +6∂g∗)(̂u), (27)

with positive definite matrices 6 ∈ RdE×dE ,T ∈ RdN×dN .
The matrices 6,T are design parameters whose choice will
be detailed below. The condition (27) lends naturally to the
following coupled fixed point iterations [42]

wk+1 = (I+ T∂h)−1(wk − TDTuk ) (28)

uk+1 = (I+6∂g∗)−1(uk +6D(2wk+1 − wk )). (29)

If the matrices 6 and T in (28), (29) satisfy

‖61/2DT1/2
‖
2 < 1, (30)

the sequence wk+1 (see (28), (29)) converges to a solution of
(13) [42, Thm. 1]. The condition (30) is satisfied for

6 := diag{(1/(2Ae))I}e∈E , T := diag{(τ/d (i))I}i∈V ,

(31)

with d (i) =
∑

j 6=i Aij and some τ < 1 [42, Lemma 2].
The update (29) involves the resolvent operator

(I+6∂g∗)−1(v) = arg min
v′∈D

g∗(v′)+ (1/2)‖v′ − v‖2
6−1

,

(32)

where ‖v‖6 :=
√
vT6v. The convex conjugate g∗ of g (see

(16)) can be decomposed as g∗(v) =
∑E

e=1 g
∗

2(v
(e)) with the

convex conjugate g∗2 of the scaled `2-norm λ‖.‖. Moreover,
since 6 is a block diagonal matrix, the e-th block of the
resolvent operator (IdE +6∂g∗)−1(v) can be obtained by the
Moreau decomposition as [41, Sec. 6.5]

((IdE +6∂g∗)−1(v))(e)

(32)
= arg min

v′∈Rd
g∗2(v

′)+ (1/(2σ (e)))‖v′ − v(e)‖2

= v(e) − σ (e)(Id + (λ/σ (e))∂‖.‖)−1(v(e)/σ (e))

=

{
λv(e)/‖v(e)‖ if ‖v(e)‖ > λ

v(e) otherwise,

where (a)+ = max{a, 0} for a ∈ R.
The update (28) involves the resolvent operator (I+T∂h)−1

of h (see (12) and (16)), which does not admit a simple
closed-form solution in general. Using (31), the update (28)
decomposes into independent node-wise updates

w(i)
k+1 :=

 arg min
w∈Rd

g(i)(w) for i ∈M

w(i) for i ∈ V \M
(33)

with g(i)(w) := −wT t(i) +8(i)(w)+ τ̃ (i)‖w− w(i)
‖
2, τ̃ (i) :=

M/(2τ (i)) and

w := wk − TDTuk . (34)

The update (33) is a regularized maximum likelihood esti-
mator for exponential families [50, Eq. 3.38]. The varying
regularization term τ̃ (i)‖w−w(i)

‖
2 enforces w(i)

k+1 to be close
to w(i). The vector w(i) is a corrected version of the previous
iterate w(i)

k (see (34)).
In general, there is no closed-form solution for the update

(33). However, the update (33) is a smooth convex optimiza-
tion problem that can be solved efficiently using iterative
methods such as L-BGFS [34]. We detail a computationally
cheap iterative method for approximately solving (33) in Sec.
VI-C.

Let us denote the approximate solution to (33) by ŵ(i)
k+1 and

assume that it is sufficiently accurate such that

ek = ‖ŵ
(i)
k+1 − w(i)

k+1‖ ≤ 1/k2. (35)
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We require the approximation quality (for approximating
the update (33)) to increase with the iteration number k .
According to [13, Thm. 3.2], the error bound (35) ensures
the sequences obtained by (28) and (29) when replacing the
exact update (33) with the approximation ŵk+1 still converge
to a saddle-point of (25) and, in turn, a solution of the nLasso
problem (16).

Algorithm 1 Primal-Dual nLasso

Input: G = (V, E,A), {z(i)}i∈M, M, λ, D
Init: set 6,T via (31), k := 0, ŵ0 := 0, û0 := 0
1: repeat
2: ŵk+1 := ŵk − TDT ûk
3: for each observed node i ∈M do
4:

compute ŵ(i)
k+1 by (approximately) solving (33)

5: end for
6: u := uk +6D(2ŵk+1 − ŵk )

7: û(e)k+1 = u(e) −
(
1− λ

‖u(e)‖

)
+

u(e) for e ∈ E

8: k := k + 1
9: until stopping criterion is satisfied

Output: (ŵk , ûk ).

Note that Algorithm 1 requires as input only the empirical
graph along with the observed node attributes z(i), for i ∈M.
Algorithm 1 does not require any specification of a partition
of the empirical graph. Moreover, in contrast to the ADMM
implementation of nLasso (see [20, Alg. 1]), the proposed
Algorithm 1 does not involve any additional tuning parameter
for solving (16).

B. COMPUTATIONAL COMPLEXITY
Algorithm 1 can be implemented as message passing
over the empirical graph G (see [1]). During each itera-
tion, messages are passed over each edge {i, j} ∈ E in
the empirical graph. The computation of a single mes-
sage requires a constant amount of computation. The
precise amount of computation, measured by the num-
ber of additions and multiplications, required for a sin-
gle message depends on the particular instance of the
update (33).

For a fixed number of iterations used for Algorithm 1, its
computational complexity scales linearly with the number of
edges E . For bounded degree graphs, such as grid or chain
graphs, this implies a linear scaling of complexity with num-
ber of data points.

However, the overall complexity for Algorithm 1 depends
crucially on the number of iterations required to achieve
accurate learning. A worst-case analysis shows that, even
when computing the exact updates (33), the number of iter-
ations scales inversely with the required estimation accu-
racy [8]. This convergence speed is optimal for chain
graphs [26].

C. APPROXIMATE PRIMAL UPDATE
We discuss a simple iterative method for approximately solv-
ing the primal update (33). A solution w(i)

k+1 of (33) is char-
acterized by the zero gradient condition [6]

∇f
(
w(i)
k+1

)
= 0 (36)

with f (w) := −wT z(i)+8(i)(w)+ τ̃ (i)‖w−w(i)
‖
2. Applying

basic calculus to (36),
w(i)
= w(i)

+ (τ (i)/M )
(
z(i) −∇8(i)(w(i))

)
. (37)

The necessary and sufficient condition (37) (for w(i) to solve
(33)) is a fixed point equation w(i)

= T (w(i)) with

T : Rd
→ Rd

: w 7→ w(i)
+ (τ (i)/M )

(
z(i) −∇8(i)(w)

)
.

(38)

By the mean-value theorem [45, Thm. 9.19.], the map T
is Lipschitz with constant (τ (i)/M )‖F(w)‖ where F(i) is the
FIM (6). Thus, if we choose τ (i) such that

R := (τ (i)/M )‖F(w)‖ < 1, (39)

themap T in (38) is a contraction and the fixed-point iteration

w̃(r+1)
= T w̃(r) (38)

= w(i)
+ (τ (i)/M )

(
z(i) −∇8(i)(w̃(r))

)
(40)

will converge to a solution of (33).
Moreover, if (39) is satisfied, we can bound the deviation

between the iterate w(r) and the (unique) solution w(i)
k+1 of

(33) as (see [45, Proof of Thm. 9.23])

‖w̃(r)
− w(i)

k+1‖ ≤ (Rr/(1− R))‖w̃(1)
− w̃(0)

‖. (41)

Thus, if we use the approximation ŵ(i)
k+1 := w̃(r) for the

update (33), we can ensure (35) by iterating (40) for at least

r ≥ log
[
(1− R)‖w̃(1)

− w̃(0)
‖/k2

]
/ logR. (42)

Computing the update (40) requires the evaluation of
the gradient ∇8(i)(w̃(r)) of the cumulant function 8(i)(w).
According to [50, Prop. 3.1.],

∇8(i)(w) = E{t(z(i))} with z(i) ∼ p(z;w). (43)

In general, the expectations (43) cannot be computed exactly
in closed-form. A notable exception are exponential families
p(z;w) obtained from a probabilistic graphical model defined
on a triangulated graph such as a tree. In this case it is possible
to compute (43) in closed-form (see [50, Sec. 2.5.2]). Another
special case of (2) for which (43) can be evaluated in closed-
form is linear and logistic regression (see Sec. III).

D. PARTIALLY OBSERVED MODELS
The learning Algorithm 1 can be adapted easily to cope with
partially observed exponential families [50]. In particular,
for the networked LDA described in Sec. III, we typically
have access only to the word variables z(i)w,1, . . . , z

(i)
w,N of some

documents i ∈ M ⊆ V . However, for (approximately)
computing the update step (33) we would also need the values
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FIGURE 2. nLasso error for networked linear regression.

of the topic variables z(i)t,1, . . . , z
(i)
t,N but those are not observed

since they are latent (hidden) variables. In this case we
can approximate (33) by some ‘‘Expectation-Maximization’’
(EM) principle (see [50, Sec. 6.2]). An alternative to EM
methods, based on the method of moments, for learning
(latent variable) topic models has been studied in a recent line
of work [2].

VII. NUMERICAL EXPERIMENTS
We report on the numerical results obtained by apply-
ing particular instances of Algorithm 1 to different
datasets. The source code to reproduce these experi-
ments can be found at https://github.com/alexjungaalto/
nLassoExpFamPDSimulations.

A. TWO-CLUSTER DATASET
This experiment constructs an empirical graph G by sparsely
connecting two random graphs C1 and C2, each of sizeN/2 =
40 and with average degree 10. The nodes of G are assigned
feature vectors x(i) ∈ R2 obtained by i.i.d. random vectors
uniformly distributed on the unit sphere {x ∈ R2

: ‖x‖ = 1}.
The labels y(i) of the nodes i ∈ V are generated according to
the linear model (9) with zero noise ε(i) = 0 and piecewise
constant weight vectors w(i)

= a for i ∈ C1 and w(i)
= b

for i ∈ C2 with some two (different) fixed vectors a,b ∈ R2.
We assume that the labels y(i) are known for the nodes in a
small training set M which includes three data points from
each cluster, |M ∩ C1| = |M ∩ C2| = 3.
As shown in [27], the validity of (23) in Assumption 3,

depends on the connectivity of the cluster nodes with the
boundary edges ∂ := {{i, j} ∈ E : i ∈ C1, j ∈ C2} which
connect nodes in different clusters. To quantify the connec-
tivity of the observed nodesMwith the cluster boundary, we
compute, for each cluster Cl , the normalized flow value ρ(l)

from one particular in each cluster Cl and the cluster boundary
∂ . We normalize this flow by the boundary size |∂|.

Fig. 2 depicts the normalized mean squared error (NMSE)
ε := ‖w−ŵ‖22/‖w‖

2
2 incurred by Algorithm 1 (averaged over

10 i.i.d. simulation runs) for varying connectivity, as mea-
sured by the empirical average ρ̄ of ρ(1) and ρ(2) (having same
distribution). According to Fig. 2 there are two regimes of
levels of connectivity. For connectivity ρ̄ >

√
2, Algorithm 1

is able to learn piece-wise constant weights w(i).

FIGURE 3. Weights learnt by Algorithm 1 and RNC [32].

To compare the effect of using TV (7) in Algorithm 1
instead of the graph Laplacian quadratic form (see [32])
as network regularizer, a networked signal in noise model
y(i) = w(i)

+ ε(i) is considered. The noise ε(i) is i.i.d. with
zero mean and known variance σ 2. The signal weights are
piece-wise constant with w̄(i)

= 1 for i ∈ C1 and w̄(i)
=

−1 for i ∈ C2. The labels y(i) are observed for the nodes
M = {1, 2, 3,N − 2,N − 1,N }. Algorithm 1 is then used
to learn weights ŵ(i) using a fixed number of 1000 iterations
and λ = 10. The RNC estimator reduces to to one matrix
inversion (see [32, Eq. 2.4]) and is computed for the choices
λ ∈ {1/100, 1, 100} of the RNC regularization parameter.
The resulting estimates ŵ(i) are shown in Fig. 3.

According to Figure 3, Algorithm 1 accurately learns the
piece-wise constant weights w̄(i) from only two labels y(i), for
i ∈ {1,N }. In contrast, RNC fails to leverage the network
structure in order to learn the weights from a small number
of labels.

B. WEATHER DATA
In this experiment, we consider networked data obtained from
the Finnishmeteorological institute. The empirical graphG of
this data represents Finnish weather stations. which are ini-
tially connected by an edge to their K = 3 nearest neighbors.
The feature vector x(i) ∈ R3 of node i ∈ V contains the local
(daily mean) temperature for the preceding three days. The
label y(i) ∈ R is the current day-average temperature.

We apply Algorithm 1 to learn the weight vectors w(i)

for a localized linear model (9). For the sake of illustra-
tion we focus on the weather stations in the capital region
around Helsinki. These stations are represented by nodes C =
{23, 18, 22, 15, 12, 13, 9, 7, 5} and we assume that labels y(i)

are available for all nodes outside C and for the nodes i ∈
{12, 13, 15} ⊆ C. Thus, for more than half of the nodes
in C we do not know the labels y(i) but predict them via
ŷ =

(
ŵ(i)

)T x(i) with the weight vectors ŵ(i) obtained from
Algorithm 1 (using λ = 1/7 and a fixed number of 104

iterations). The normalized average squared prediction error
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FIGURE 4. Left: Original image. Middle: Grabcut. Right: Algorithm 1.

is ≈ 10−1 and only slightly larger than the prediction error
incurred by fitting a single linear model to the cluster C.

C. IMAGE SEGMENTATION
We now discuss an experiment which show-cases Algo-
rithm 1 for image segmentation [19], [44]. An image can
be represented by an empirical graph whose nodes i ∈ V
are image pixels at coordinates

(
p(i), q(i)

)
∈ {1, . . . ,P} ×

{1, . . . ,Q} (see Figure 4). Two nodes i, j ∈ V are connected
by an edge {i, j} ∈ E if p(i) − p(j) = 1 or q(i) − q(j) = 1.
We assign all edges {i, j} ∈ E the same weight Wi,j = 1.

Pixels i ∈ V are characterized by feature vectors x(i) obtained
by normalizing (zero mean and unit variance) the red, green
and blue components of each pixel.

We then constructed a training setM of labeled data points
by combining a background set B ⊆ V (y(i) = 0) and a
foreground set F ⊆ V (y(i) = 1). These sets are determined
based on the normalized redness r (i) := x(i)1 /maxj∈V x

(j)
1 ,

B := {i ∈ V : r (i) < 1/2}, and F := {i ∈ V : r (i) > 9/10}.

(44)

We apply Algorithm 1, with λ = 100 and fixed number of
10 iterations, to learn the weightsw(i) for a networked logistic
regression model (see Section III-B). For the update (33) in
Algorithm 1 we used a single Newton step. The resulting
predictions

(
ŵ(i)

)T x(i) are shown on the right of Figure 4. The
middle of Figure 4 depicts the hard segmentation obtained by
the ‘‘GrabCut’’ method [44]. Using MATLAB version 19 on
a standard laptop, Algorithm 1 is almost ten times faster than
GrabCut.

VIII. CONCLUSION
We have introduced networked exponential families as a flex-
ible statistical modeling paradigm for networked data. The
error of nLasso applied to learning networked exponential
families has been analyzed. An efficient implementation of
nLasso has been proposed using a primal-dual method for
convex optimization. Directions for future research include a
more detailed analysis of the convergence of nLasso for typ-
ical network structures as well as data-driven learning of the
network structure (graphical model selection). The analysis
of nLasso presented in Section V might guide the design of
network structure by relating Assumption 3 to network flow
problems (see [29]).

IX. PROOFS
We first collect some helper results in Sec. IX-A that will
be used in Section IX-B to obtain a detailed derivation of
Theorem 1.

A. HELPER RESULTS
Lemma 2: For any two vector signals u, v ∈ H (see (3))

defined on an empirical graph G,∑
i∈V

(
u(i)
)T v(i)
≤ (1/|V|)

(∑
i∈V

v(i)
)T ∑

j∈V
u(j) +

∥∥(D†)T v∥∥2,∞‖u‖TV .
(45)

Here, D ∈ R(d |E |)×(d |V |) denotes the block-wise incidence
matrix (14) of the empirical graph G.

Proof: Any graph signal u can be decomposed as

u = Pu+ (I− P)u, (46)

with P denoting the orthogonal projection matrix on
the nullspace of the block-wise graph Laplacian matrix
L (17).
For a connected graph, the nullspaceK(L) is spanned by d

graph signals (see [49])

v(j) = 1⊗ e(j) ∈ H, for j ∈ {1, . . . , d}. (47)

Here, we used the constant graph signal 1 ∈ RV assigning
all nodes the same signal value 1. The projection matrix
associated with the nullspace K(L) is

P = (1/(1T 1))︸ ︷︷ ︸
=1/|V |

d∑
j=1

1
(
1
)T
⊗M(j). (48)

Here, M(j)
:= e(j)

(
e(j)
)T . Therefore,

Pu
(48)
= (1/|V|)

d∑
j=1

∑
i∈V

u(i)j 1⊗ e(j). (49)

The projection matrix on the orthogonal complement of
K(L) ⊆ H is I− P. Then (see [24]),

I− P = D†D. (50)

with the block-wise incidence matrixD (14). Combining (49)
and (50) with (46),∑

i∈V

(
u(i)
)T v(i) = (1/|V|)

∑
i,i′∈V

(
u(i)
)T v(i′) + vTD†Du.

(51)

To further develop (51), we define the norms

‖u‖2,∞ := max
e∈E

∥∥u(e)∥∥2, and ‖u‖2,1 :=∑
e∈E
‖u(e)‖2 (52)

on the spaceD of vector-valued edge signals (see (4)). By the
Cauchy-Schwarz inequality aTb ≤ ‖a‖2‖b‖2,

uT v ≤ ‖u‖2,∞‖v‖2,1 for any u, v ∈ D. (53)

Combining (51) with the inequality aTb ≤ ‖a‖2‖b‖2,∑
i∈V

(
u(i)
)T v(i)
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≤ (1/|V|)
∑
i,j∈V

(
u(i)
)T v(j) + ∥∥(D†)T v∥∥2,∞‖Du‖2,1. (54)

The result (45) follows from (54) by using (15). �
Applying Lemma 2 to the subgraphs induced by a partition

P = {C1, . . . , C|P |}, yields the following result.
Corollary 3: Consider an empirical graph G = (V, E,A)

and partition P = {C1, . . . , C|P |}. Let Cl also denote the
induced subgraph of a cluster and assume they are connected.
For any two graph signals u, v ∈ H,∑
i∈M

(
v(i)
)Tu(i) ≤ max

l=1,...,|P |
(1/|Cl |)

∥∥∑
i∈Cl

v(i)
∥∥
2

∑
j∈M
‖u(j)‖2

+ max
l=1,...,|P |

∥∥(D†
Cl
)T vCj∥∥2,∞‖u‖TV . (55)

Here, DCl denotes the block-wise incidence matrix of the
induced subgraph Cl (see (14)).

The proof of Theorem 1 (see Section IX-B) will require
a large deviation bound for weighted sums of independent
random vectors z(i) distributed according to (2).
Lemma 4: Consider M independent random vectors z(i),

for i ∈M, distributed according to (2). For fixed unit-norm
vectors ‖m(i)

‖ = 1, denote y(i) :=
(
m(i)

)T t(i)(z(i)) andµ(i)
:=

E
{
y(i)
}
. If ∇28(i)

� UI for all i ∈M, then

P
{∣∣(1/M )

∑
i∈M

(
y(i) − µ(i))∣∣ ≥ η} ≤ 2 exp

(
−Mη2/(2U )

)
.

(56)

Proof: Set

y :=
∑
i∈M

y(i), and µ :=
∑
i∈M

µ(i). (57)

By Markov’s inequality, for any θ > 0,

P
{
(1/M )

∑
i∈M

(
y(i) − µ(i))

≥ η
}

= P{y− µ ≥ Mη}

= P{exp(θy) ≥ exp(θ (Mη + µ))}

≤ exp(−θ (Mη + µ))E{exp(θy)}

= exp(−θ (Mη + µ))
∏
i∈M

E{exp(θy(i))}. (58)

The last equality in (58) is due to the independence of the
random variables y(i).
Combining (58) with

E{exp(θy(i))}
(5)
= exp(8(i)(w(i)

+ θm(i))−8(i)(w(i)))

(59)

yields

P{y− µ ≥ η}

≤ exp(−θ (Mη + µ)+
∑
i∈M

8(i)(w(i)
+ θm(i))−8(i)(w(i))).

(60)

Similarly,

P{y− µ ≤ −η}

≤ exp(−θ (Mη+µ)+
∑
i∈M

8(i)(w(i)
+ θm(i))−8(i)(w(i))).

(61)

A union bound allows to sum up (60) and (62) to obtain

P{|y− µ| ≥ η}

≤ 2 exp(−θ (Mη+µ)+
∑
i∈M

8(i)(w(i)
+θm(i))−8(i)(w(i))).

(62)

Using Taylor’s theorem and ∇8(i)(w(i)) = E{t(i)} [50],

8(i)(w(i)
+ θm(i))−8(i)(w(i))

= θµ(i)
+ (θ2/2)

(
m(i))T

∇
28(i)(w(i)

+ θ (i)m(i))m(i) (63)

with some θ (i) ∈ [0, θ]. Inserting ∇28(i)
� UI into (63),

8(i)(w(i)
+ θm(i))−8(i)(w(i)) ≥ θµ(i)

+ θ2U/2,

and, in turn via (62),

P{|y− µ| ≥ η} ≤ exp(−θMη +Mθ2U/2). (64)

Optimizing (64) by choosing θ suitably yields (56).
Applying Lemma 4 using m = e(l) and using ‖x‖2 ≤√
d‖x‖∞, for any x ∈ Rd yields the following result.
Corollary 5: Consider independent z(i), for i ∈ M, dis-

tributed according to (2). If ∇28(i)
� UI for all i ∈M, then

P
{∥∥(1/M )

∑
i∈M

(
z(i) − E{z(i)}

)∥∥ ≥ η}
≤ 2 exp

(
−Mη2/(2dU )

)
. (65)

B. PROOF OF THEOREM 1
The high-level outline of the proof is as follows: First, we ver-
ify that the nLasso error is approximately clustered in the
sense that the TV of the nLasso error over the inter-cluster
edges can be bounded via the TV of the nLasso error over the
intra-cluster edges. Using this fact, we can invoke Assump-
tion 3 to upper bound the size of the nLasso error.

Any solution ŵ of the nLasso problem (13) satisfies∑
i∈M

[
8(i)(ŵ(i))− (ŵ(i))T t(i)

]
+Mλ‖ŵ‖TV

≤

∑
i∈M

[
8(i)(w(i))− (w(i))T t(i)

]
+Mλ‖w‖TV . (66)

We can rewrite (66) as∑
i∈M

(
ε(i)
)T ŵ(i)

−
(
t̄(i)
)T ŵ(i)

+8(i)(ŵ(i))+ λ‖ŵ‖TV

≤

∑
i∈M

(
ε(i)
)Tw(i)

−
(
t̄(i)
)Tw(i)

+8(i)(w(i))+ λ‖w‖TV

(67)
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with t̄(i) := E
{
t(i)
}
and ‘‘observation noise’’ ε(i) := t̄(i)− t(i).

To further develop (67), we make use of

arg min
w∈Rd

−wT t̄(i) +8(i)(w) = w(i), (68)

with the true weight vector w(i) underlying (2). The identity
(68) can be verified by the zero-gradient condition and eval-
uating the gradient of 8(i)(w) (see [50, Proposition 3.1.]).
Combining (67) with (68),∑
i∈M

(
ε(i)
)T ŵ(i)

−
(
t̄(i)
)T ŵ(i)

+8(i)(ŵ(i))+ λ‖ŵ‖TV

(67)
≤

∑
i∈M

(
ε(i)
)Tw(i)

−
(
t̄(i)
)Tw(i)

+8(i)(w(i))+ λ‖w‖TV

(68)
≤

∑
i∈M

(
ε(i)
)Tw(i)

−
(
t̄(i)
)T ŵ(i)

+8(i)(ŵ(i))+ λ‖w‖TV ,

and, in turn,∑
i∈M

(
ε(i)
)T w̃(i)

+ λ‖ŵ‖TV ≤ λ‖w‖TV (69)

with the nLasso (estimation) error w̃ := ŵ− w.
Let us assume for the moment that the observation noise

ε(i) is sufficiently small such that∣∣(1/M )
∑
i∈M

(
ε(i)
)T w̃(i)∣∣ ≤ λκ‖w̃‖M + (λ/2)‖w̃‖TV

(70)

for every w̃ ∈ H. Here, we used the condition number κ =
K+3
L−3 as defined in Theorem 1.
Inserting (70) into (69),

‖ŵ‖TV ≤ (1/2)‖w̃‖TV + ‖w‖TV + κ‖w̃‖M, (71)

and, in turn, via the decomposition property ‖w‖TV =

‖w‖∂P + ‖w‖E\∂P (see (8)),

‖ŵ‖E\∂P

≤ (1/2)‖w̃‖TV + ‖w‖TV − ‖ŵ‖∂P + κ‖w̃‖M

(a)
≤ (1/2)‖w̃‖TV + ‖w‖∂P − ‖ŵ‖∂P + κ‖w̃‖M

(b)
≤ (1/2)‖w̃‖TV + ‖w− ŵ‖∂P + κ‖w̃‖M. (72)

Here, step (a) is valid since we assume the true underlying
weight vectors w(i) to be clustered according to (19). Step (b)
uses the triangle inequality for the semi-norm ‖·‖∂P (see (8)).
Since ‖ŵ‖E\∂P = ‖w̃‖E\∂P , we can rewrite (72) as

(1/2)‖w̃‖E\∂P ≤ (3/2)‖w̃‖∂P + κ‖w̃‖M
κ<1
< (3/2)‖w̃‖∂P + ‖w̃‖M. (73)

Thus, for sufficiently small observation noise (such that
(70) is valid), the nLasso error w̃ = ŵ− w is approximately
clustered according to (19).

So far, we verified the nLasso error w̃ to be clustered. For
some edge {i, j} ∈ E , the error difference w̃(i)

− w̃(j), with
i, j ∈ Cl belonging to the same cluster within the partition P
underlying (19), tends to be small.

The next step is to verify that the nLasso error w̃ = ŵ−w
(see (13)) cannot be too large. Applying the triangle inequal-
ity for the TV semi-norm to (67),∑
i∈M

(
ε(i)
)T w̃(i)

−
(
x̄(i)
)T ŵ(i)

+8(i)(ŵ(i))

≤

∑
i∈M
−
(
x̄(i)
)Tw(i)

+8(i)(w(i))+Mλ‖w̃‖TV . (74)

Using Taylor’s theorem and Assumption 2,

8(i)(ŵ(i))−8(i)(w(i))−
(
x̄(i)
)T (ŵ(i)

− w(i))
≥ L‖w̃(i)

‖
2
2.

(75)

Inserting (75) into (74),

(1/M )
∑
i∈M

[
−
(
ε(i)
)T w̃(i)

+ L‖w̃(i)
‖
2
2
]
≤ λ‖w̃‖∂P . (76)

Combining (70) with (76),

L‖w̃‖2M ≤ λ‖w̃‖∂P + κλ‖w̃‖M. (77)

Combining (73) with (23) yields

‖w̃‖∂P ≤ κ‖w̃‖M (78)

and, in turn via (77),

‖w̃‖M ≤ 2λκ/L. (79)

Inserting (79) into (78) and (73),

‖w̃‖TV = ‖w̃‖∂P + ‖w̃‖E\∂P

(73)
≤ ‖w̃‖∂P + 3‖w̃‖∂P + κ‖w̃‖M

(78)
≤ 5κ‖w̃‖M

(79)
≤ 10λκ2/L. (80)

According to (80), we can ensure a prescribed error level
‖w̃‖TV ≤ η by setting (L > 1)

λ := η/(5κ2). (81)

The final step of the proof is to control the probability of
(70) to hold. By Corollary 3, (70) holds if

max
Cl∈P

(1/|Cl |)
∥∥∑
i∈Cl

εi
∥∥
2 ≤ (λ/2)κ, (82)

and simultaneously

max
Cl∈P

∥∥(D†
Cl
)T
εCl
∥∥
2,∞ ≤ Mλ/4. (83)
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We first bound the probability that (82) fails to hold. For a
particular cluster Cl , (65) yields

P{(1/|Cl |)
∥∥∑
i∈Cl

εi
∥∥
2 ≤ (λ/2)κ} ≤ 2 exp

(
−
|Cl |λ2κ2

8dU

)
.

(84)

Combining this with a union bound over all Cl ∈ P yields

P{‘‘(82) invalid’’} ≤ 2|P| max
l=1,...,|P |

exp
(
−
|Cl |λ2κ2

8dU

)
.

(85)

For controlling the probability of (83) failing to hold,
we combine (18) with Lemma 4. This yields, using a union
bound over all edges e ∈ E ,

P{‘‘(83) invalid’’} ≤ 2|E | exp
(
−

Mρ2Pλ
2

64Ud‖A‖2∞

)
. (86)

A union bound yields (24) by summing the bounds (85) and
(86) for the choice (81).
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