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Abstract
The latest news from 3 He Universe are presented together with the extended map of 
the Universe.

Keywords Topological superfluids · Topological defects · Chiral anomaly · Effective 
gravity

1 Introduction

The old information on the 3 He Universe can be found in Refs.  [1–3]. The more 
recent information is in Refs. [4–8].

Here are the latest news from 3 He Universe 2020 (Fig. 1).

2  Topology

Superfluid phases of 3 He opened the new area of the application of topological 
methods to condensed matter systems, see recent reviews in Refs. [5, 7, 8].

2.1  Topological Superfluids

The phases of superfluid 3 He are the best representatives of different families of 
topological materials. In bulk liquid 3He, there are two topologically different super-
fluid phases [1]. One is the chiral superfluid 3He-A with topologically protected 
Weyl points in the quasiparticle spectrum. In the vicinity of the Weyl points, qua-
siparticles behave as Weyl fermions moving in the effective gauge and gravitational 
fields. Another phase is the fully gapped time-reversal invariant superfluid 3He-B. It 
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has topologically protected gapless Majorana fermions living on the surface. In 3 He 
confined in the nematically ordered aerogel, the polar phase of 3 He has been stabi-
lized [12–14]. It is the time-reversal invariant superfluid, which contains Dirac nodal 
ring in the fermionic spectrum and flat band on the surface.

2.1.1  Chiral 3He‑A, Weyl Fermions, Flat Band of Majorana Fermions on Vortices

Chirality of 3He-A has been probed in the torsional oscillator measurements that 
distinguished between states of opposite chiralities [15, 16]. The topological mani-
festation of chirality is the separation of left-handed and right-handed Weyl points 
in momentum space. Due to bulk-vortex correspondence, the separation of the Weyl 
points leads to the flat band of Majorana fermions living in the vortex core [17–19]. 
In topological Weyl semimetals, the similar bulk-surface correspondence produces 
the so-called Fermi arc on the surface of the material [20].

2.1.2  3He‑B, Higher‑Order Topology

The topological superfluid 3He-B is the prototype of topological insulators and pro-
vides an example of the higher-order topology. The boundary of the B-phase con-
tains 2D gapless Majorana fermions, which are supported by topology and symmetry 

Fig. 1  3 He Universe-2020. On the Far East is a connection with the neighboring Abrikosov Universe, 
which was also born in 1971 [9, 10]. The 3 He Universe-1997 is in Fig. 1 of Ref. [11], and the compari-
son demonstrates inflating expansion of the 3 He Universe (Color figure online)
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of the B-phase. When a magnetic field is applied, the time-reversal symmetry of the 
B-phase is violated. The gapless fermions are not protected any more by topology: 
they become massive 2D Dirac fermions. However, the topology is not destroyed 
completely: the boundary states acquire their own topology, where the topological 
charge is determined by the sign of the Dirac mass. The line on the boundary, which 
separates the surface domains with opposite signs of mass term, contains its own 
topologically protected 1D gapless Majorana fermions [21, 22]. The presence of 
such lines on the boundary of 3He-B is seen in NMR experiments [23].

Such composite 3D-2D-1D correspondence characterizes the so-called second-
order topology [24]. In topological insulators and superconductors, the third-order 
topology is also possible, with 3D-2D-1D-0D correspondence [25]. This may lead 
to the zero dimensionless Majorana modes in the corners of a superconductor.

2.1.3  Polar Phase: Dirac Nodal Line and Flat Band

Polar phase is the nodal line superfluid, which is similar to cuprate d-wave super-
conductors and nodal line semimetals. In both systems, the Dirac nodal line in the 
spectrum is supported by topology: the � change of the Berry phase along the loop 
around the nodal line. There are several important consequences of the Dirac line.

One of them is the existence of the flat band (or approximate flat band—drum-
head states) on the surface due to the bulk-surface correspondence. The phenom-
enon of flat band is important for the search of room-T superconductivity because of 
the singular density of states [26–29]. The transition temperature Tc is not exponen-
tially suppressed as in conventional metals, but is the linear function of the coupling 
in the Cooper channel. Tc is proportional to the volume of the flat band, if the flat 
band is formed in the bulk [26], or to the area of the flat band if it is formed on the 
surface of the sample [27–29]. In nodal line semimetals, the area of the flat band 
is determined by the projection of the nodal line to the surface of the sample. The 
largest area is obtained when the nodal lines move to the boundaries of the Brillouin 
zone, where they cancel each other, and the nodal line semimetal is transformed to 
the topological insulator with the surface flat band [30].

2.1.4  Bogoliubov Fermi Surface

The other important consequence of the nodal line takes place in superfluids and 
superconductors in the presence of a supercurrent. The supercurrent violates parity 
and time-reversal symmetries; as a result, the Dirac line in the spectrum of Bogo-
liubov quasiparticles transforms to the Fermi surface of quasiparticles within the 
superconducting state—the so-called Bogoliubov Fermi surface [31–33].

In the moving polar phase of 3He, the Bogoliubov Fermi surface has an exotic 
shape: it consists of two Fermi pockets which touch each other at two pseudo-Weyl 
points [34]. In cuprate superconductors, the local Bogoliubov Fermi surfaces caused 
by supercurrents around Abrikosov vortices lead to the 

√

H field dependence of the 
electronic density of states in the vortex state of the superconductor [35].
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2.2  Quantum Anomalies

The nontrivial topology of the superfluid phases of 3 He leads to different types of 
quantum anomalies: chiral anomaly, gravitational anomaly and mixed anomalies.

2.2.1  Chiral Anomaly, Angular Momentum Paradox

Chiral anomaly is the anomalous production of fermions from the vacuum, which is 
described by the Adler–Bell–Jackiw equation [36–38]. The anomalous non-conser-
vation of the chiral current has been verified in experiments with vortex–skyrmions 
in rotating 3He-A [39]. The anomalous production of Weyl fermions by moving skyr-
mions leads to the anomalous production of the linear momentum, and thus to the 
extra force, which acts on the vortex. This spectral flow or Kopnin force is measured, 
which allows to extract the fundamental prefactor in the Adler–Bell–Jackiw equa-
tion, which depends only on symmetry and fermionic content of the quantum vac-
uum. The measured integer number is in full agreement with the Adler–Bell–Jackiw 
equation applied to Weyl fermions in 3He-A (two left-handed fermions at one Weyl 
point and two right-handed fermions at another Weyl point).

In Weyl semimetals the manifestation of the chiral anomaly in experiments is not 
so spectacular; it leads to negative magnetoresistance, when the magnetic field is 
parallel to the current [40].

Chiral anomaly solves the paradox of the orbital angular momentum in chi-
ral superfluids. The deviation of the orbital momentum from its natural value, 
Lz = ℏ�N∕2 (where N is the number of particles and � is the angular momentum of 
Cooper pair) is fully determined by the spectral flow either in bulk or on the surface 
of the superfluid, see recent papers [41–43]. The similar spectral asymmetry in the 
vortex core leads to the modification of the angular momentum of quantized vortices 
[44].

The paradox of the orbital angular momentum in chiral superfluids may have 
something in common with the proton spin puzzle; however, the present understand-
ing suggests that the chiral anomaly effects are too small to explain the ‘spin crisis’ 
[45].

Another phenomenon related to the orbital angular momentum is the Hall vis-
cosity—the non-dissipative response of stress tensor to the velocity gradients. In 
Eq. (9.81) of the book [1], six Hall viscosity terms in 3He-A with coefficients �

⟂
 , �∥ 

and �R
a

 with a = 1, 2, 3, 4 are presented. The Hall viscosity in the 2D chiral super-
fluids is now under discussion in the literature, see review [46]. The quantization of 
the Hall viscosity in terms of the orbital momentum is suggested. However, one may 
expect that the spectral flow on the boundaries of the 2D system leads to the same 
reduction of the effect as in the paradox of the orbital momentum.

2.2.2  Chiral Magnetic and Chiral Vortical Effects

The interplay of quantum anomalies with magnetic field and vorticity results in 
a variety of non-dissipative transport phenomena in systems with chiral fermions 
[47]. This is popular for consideration of different effects in the quark-gluon plasma 
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created in relativistic heavy ion collisions. The chiral magnetic effect (CME) and the 
chiral vortical effect (CVE) describe the generation of non-dissipative electric cur-
rent along an external magnetic field or along the vortex. They are described by the 
topological quantum numbers, similar to that, which operate in the intrinsic quan-
tum and spin Hall effects.

The experimental signature of the CME in 3He-A is the helical instability of the 
superflow generated by the Chern–Simons term, expressed via effective gauge fields 
acting on Weyl fermions [48–50], S ∼ ∫ �5� ⋅ � . This CME is linear in the chiral 
chemical potential �5 . In 3He-A, the effective chiral chemical potential is formed 
by superflow, see Sect. 2.2.3. The corresponding term in the free energy is linear in 
the superfluid velocity, which leads to instability of flow towards creation of vor-
tex–skyrmions (continuous doubly quantized vortices).

CVE is manifested by the current along the vortex, which is concentrated in the 
core of vortex–skyrmion [51, 52]. It is important that the total current is zero: the 
current along a given vortex in the vortex lattice is compensated either by the coun-
tercurrent in the core of another vortex, or by the countercurrent in the bulk. This 
supports the Bloch theorem (see, e.g., Ref. [53]), which prohibits the total current in 
the equilibrium state.

Experimental observation of CVE in the A-phase is still waiting in the wings. 
The same is with the chiral separation effect (CSE), which is dual to the CME with 
S ∼ ∫ ��5 ⋅ � , see, e.g., [54, 55].

2.2.3  Nieh‑Yan Gravitational Anomaly

The relativistic nature of the Weyl fermions in the A-phase is explicitly manifested 
in the thermal contributions of Weyl fermions to the free energy at low temperature, 
T ≪ Tc . In particular, three different T2 terms in the gradient energy of 3 He at low T 
can be rewritten in the fully relativistic form:

Here, �5 is the chiral chemical potential of Weyl fermions; eia are tetrads, which 
describe the effective spacetime in which Weyl fermions are moving, R is the effec-
tive scalar curvature of this spacetime and Ta

jk
 is the analog of torsion field [56].

The first term in Eq. (1) describes the temperature correction to the inverse New-
ton “constant” 1/G in the effective gravity. The last term in Eq. (1) is the manifesta-
tion of the Nieh-Yan gravitational anomaly, which is expressed in terms of torsion 
field [57, 58]:

As distinct from the unknown ultraviolet parameter Λ2 in the conventional torsional 
Nieh-Yan anomaly [59–61] (the ultraviolet parameter for the Nieh-Yan anomaly in 
3He-A see in Refs.  [62, 63]), the thermal Nieh-Yan term contains T2 and thus is 
well defined. The prefactor in this term is fundamental, being determined by the 
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geometry, topology and number of chiral quantum fields in the system. For the 
effective quantum relativistic fields in 3He-A this parameter is 1/48, while the other 
two parameters in Eq. (1) are 1/6 and 1/144 [64, 65].

In the 3 He language, the chiral chemical potential of Weyl fermions is represented 
by the Doppler shift 𝜇5 = pF �̂ ⋅ �s , where pF is Fermi momentum, �̂ is the unit vector 
along the angular momentum of Cooper pairs, ±pF �̂ are positions of two Weyl points 
and �s is superfluid velocity. The Ricci scalar R and torsion Ta in the effective grav-
ity are expressed in terms of the gradients of the order parameter ( �s and ∇ × �̂ ) [56].

2.3  Composite Topological Objects

Due to the multi-component order parameter which characterizes the broken 
SO(3) × SO(3) × U(1) symmetry in superfluid phases of 3He, there are many inho-
mogeneous objects—textures and defects in the order parameter field—which are 
protected by topology and are characterized by topological quantum numbers. 
Among them there are quantized vortices, skyrmions and merons, solitons and 
vortex sheets, monopoles and boojums, etc. There are also composite topological 
objects, which combine defects of different dimension. Among them there are Alice 
strings with soliton tail and analog of Kibble–Lazarides–Shafi cosmic walls termi-
nated by Alice strings [66, 67], see recent review in Ref. [68, 69].

2.3.1  Alice Strings Terminating Solitons

Half-quantum vortices (analogs of Alice string in cosmology) have been suggested 
more than 40 years ago, but have been observed in superfluid 3 He only recently, first 
in the polar phase [70] and then in the A-phase [71]. Half-quantum vortex (HQV) 
itself represents the combination of the linear objects: it is partly a vortex (the vortex 
with half of circulation quanta) and partly a spin vortex (the vortex with � change 
of spin vector) [72]. As a spin vortex, it is influenced by the spin–orbit interaction. 
As a result in the A-phase, the HQV is always accompanied by the solitonic tail, i.e., 
it becomes the termination line of the topological spin soliton which makes it ener-
getically unfavorable compared to other vortices (singly quantized vortex and vortex 
skyrmion). This was the reason, why it was so difficult to stabilize half-quantum 
vortices in the A-phase. In the polar phase the solitonic tails are absent if the mag-
netic field is along the nafen strands, and the half-quantum vortices become energet-
ically favorable. They can be created either by cooling through Tc under rotation or 
by fast cooling through Tc without rotation, when the topological defects are formed 
by Kibble–Zurek mechanism [73].

When half-quantum vortices are created, they are pinned by nafen strands, and 
we can do with them whatever we want. If we tilt the magnetic field with respect to 
strands, the solitons appear, which are terminated by half-quantum vortices. Then, 
by measuring the intensity of the satellite peak in the NMR spectrum, which comes 
from soliton, we can find the total length of solitons and thus the total number of 
half-quantum vortices in the cell.
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We can make the phase transition from the polar phase to the 3He-A, and the half 
quantum vortices are still there. Moreover, we can make the phase transition from 
the polar phase to the 3He-B, where half-quantum vortices cannot exist as topologi-
cal objects. But again they remain pinned [71].

2.3.2  Kibble–Lazarides–Shafi Walls Bounded by Strings

The object, which is formed in 3He-B, after the transition from the polar or 
A-phase with the pinned half-quantum vortices, is the domain wall terminated 
by pinned vortices [71, 74]. This composite object is the exact analog of the Kib-
ble–Lazarides–Shafi wall bounded by cosmic strings in cosmology [66, 67].

2.3.3  Nexus

The other composite objects can be constructed and pinned by nafen strands, includ-
ing nexus (monopole or hedgehog, which connects two or more strings [74]), neck-
laces [75] and lattices of composite objects [68, 69]. But at the moment these ana-
logs of Nambu monopoles [76] and their further extensions are still not resolved in 
NMR experiments.

Randomly pinned topological objects can provide different types of topological 
glasses.

2.4  From Topological Classes to Topological Glasses

The quenched random anisotropy provided by the confining material strands pro-
duces several different glass states resolved in NMR experiments in the chiral super-
fluid 3He-A and in the time-reversal invariant polar phase. The smooth textures of 
spin and orbital order parameters in these glasses can be characterized in terms of 
the randomly distributed topological charges, which describe skyrmions, spin vorti-
ces and hopfions. In addition, in these skyrmion glasses the momentum-space topo-
logical invariants are randomly distributed in space. The Chern mosaic [77], Weyl 
glass, torsion glass and other exotic topological states are examples of close con-
nections between the real-space and momentum-space topologies in superfluid 3 He 
phases in aerogel, see review in Ref. [78].

2.4.1  Larkin–Imry–Ma State as Weyl Glass

One of the most spectacular discoveries made in superfluid 3 He confined in a nano-
structured material like aerogel or nafen was the observation of the destruction of the 
long-range orientational order by a weak random anisotropy [79–81], the so-called 
Larkin–Imry–Ma state [82–86]. In the chiral A-phase, it is the orbital vector �̂ , which 
looses the long-range orientational order. According to Mermin–Ho relation, the dis-
ordered texture of the �̂-vector generates the random distribution of superfluid veloc-
ity. This state has random distribution of �2 and �3 topological charges, which describe 
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skyrmions and hopfions correspondingly. Thus, the Larkin–Imry–Ma states can be 
realized in the form of the skyrmion glass [87] or/and hopfion glass.

On the other hand, the orbital vector �̂ determines the position of two Weyl points in 
momentum space. That is why the skyrmion glass also represents the topological Weyl 
glass, which is different from the conventional Weyl disorder with random shifts in the 
position of Weyl nodes [88].

2.4.2  Anderson–Fomin Theorem

According to the Anderson theorem [89], the s-wave superconductors with non-mag-
netic impurities are robust to weak disorder, i.e., the critical temperature Tc is the same 
as in the clean limit.

For a long time it was presumed that the Anderson theorem is not applicable to spin 
triplet superconductors, or to superconductors with nodes in the gap. However, it was 
found by Fomin [90], that if impurities in the polar phase have the form of infinitely 
long non-magnetic strands, which are straight and parallel to each other, the transition 
temperature also coincides with that in the clean limit. The reason is that in the pres-
ence of columnar defects the polar phase can be considered as a set of independent 
2D superfluids. The behavior of each 2D superfluid in the presence of the correspond-
ing 2D defects is similar to that of the s-wave superconductors. This robustness of the 
polar phase to the columnar disorder is the main reason why the polar phase survives 
in nafen even for strong disorder, when all the other phases are removed from the phase 
diagram.

Unusual properties of the polar phase in nafen have been discussed in Refs. [34, 91].

3  Gravity and Cosmology

3.1  Tetrad Gravity, Pregeometry and Dimensionless Physics

In 3 He Universe, gravity emerges together with the gauge fields in the vicinity of the 
topologically stable Weyl point. In 3He-A, gravity emerges in the form of tetrads, which 
are obtained as the spacetime dependent parameters of expansion of the Green’s func-
tion of Bogoliubov quasiparticles in the vicinity of Weyl points. This suggests that in 
our Universe, gravity and gauge fields are also the emergent phenomena, which come 
from the topology of the quantum vacuum.

The 3 He Universe suggests also the alternative scenario of the origin of grav-
ity: in 3He-B the tetrad field emerges as a composite field. Such origin of geometry 
of spacetime (the pregeometry), has been first discussed by Akama [92] and more 
recently by Diakonov [93–95], where the tetrad field emerges as bilinear combina-
tion of the fermionic fields:

where �a are Dirac matrices.

(3)ea
�
= i

⟨

�†�a∇�� − ∇��
†�a�

⟩

,



1 3

Journal of Low Temperature Physics 

This mechanism was discussed in Ref.  [96] in terms of the symmetry breaking 
scenario, when two separate Lorentz groups of coordinate and spin rotations are 
spontaneously broken to the combined Lorentz symmetry group, LL × LS → LJ , and 
the tetrad field ea

�
 serves as the order parameter of the transition. This is the analog 

of the broken spin–orbit symmetry SO(3)L × SO(3)S → SO(3)J introduced by Leg-
gett for 3He-B [97]. The order parameter in the B-phase, A�i = ΔBR�ie

iΦ , contains 
the matrix of rotation R�i , which connects spin and orbital degrees of freedom of the 
liquid. The order parameter ea

�
 connects the spin and orbital degrees of the quantum 

vacuum, thus realizing the extension of the B-phase condensed matter vacuum to the 
3 + 1 vacuum of our Universe.

According to Eq. (3), the tetrad field ea
�
 transforms as a derivative and thus has 

the dimension of inverse length. This gives the unexpected consequence for gravity 
and actually for any other fields living in such geometry. All the physical quantities, 
which obey diffeomorphism invariance, such as the Newton constant, the scalar cur-
vature, the cosmological constant, particle masses and fermionic and scalar bosonic 
fields, are dimensionless (see details in Refs. [98–100]).

3.2  Type‑II Weyl, Black and White Hole Horizons

In the moving 3He-A, the Weyl cone is tilted. When the flow velocity exceeds the 
effective speed of light, the Weyl cone is overtilted and the Fermi surface is formed 
[101]. In the modern language, this corresponds to the Lifshitz topological transition 
between the type-I Weyl system with isolated Weyl points to the type-II Weyl sys-
tem, where Weyl points connect the Fermi pockets [102–104].

The type-II Weyl fermions also emerge behind the event horizon of black holes. 
That is why the black hole horizon serves as the boundary between type-I and type-
II quantum vacua. In Weyl semimetals and Weyl superfluids, the analog of event 
horizon is formed at the interface, which separates the regions of type-I and type-II 
Weyl points. This allows us on one hand to probe the Hawking radiation using Weyl 
superfluids and semimetals [102–104]. On the other hand, one can study the interior 
of the black hole using the experience of condensed matter, where the ultraviolet 
physics is known [105, 106]. The effective (acoustic) metric which describes the 
black hole analog in condensed matter is known in general relativity as the Pain-
leve–Gullstrand metric [107, 108].

Using the junction of type-I and type II Weyl semimetals, one may probe the 
more exotic horizon of the white hole [109]. On the other hand using the acoustic 
(Painleve–Gullstrand) metric in general relativity, one can study the transformation 
of the black hole to white hole in the process of quantum tunneling [110].

3.3  Routes to Antispacetime and to Euclidean Spacetime

Using different types of the Weyl points, one can model exotic spacetimes and the 
routes between them. For example, two roads to antispacetime exist in the presence 
of the Kibble–Lazarides–Shafi wall bounded by strings in the B-phase [111]: the 
safe route is around the Alice string (half-quantum vortex)). The dangerous route 
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is across the domain wall. This dangerous route through the Alice looking glass is 
similar to the route of our Universe from spacetime to antispacetime via Big Bang. 
In the A-phase, the route to antispacetime takes place across the polar phase, where 
the metric of general relativity is degenerate [112].

The transition from Minkowski spacetime to Euclidean space time, in which the 
signature of the metric changes, is also possible to probe in superfluids, using the 
collective modes of Bose–Einstein condensation (BEC) of magnons in the polar 
phase [113, 114]. Let us also mention that the magnon BEC—the spontaneously 
formed coherent precession of spins—provides the experimental realization of time 
crystal and time quasicrystal [115, 116] following the Wilczek idea [117].

3.4  Dark Matter

Magnon BEC also provides the realization of the condensed matter analog of 
Q-balls [118]. In relativistic quantum field theories, Q-ball is the nontopological 
soliton, which is stabilized by conservation of an additive quantum number. In our 
case, it is the number of self-trapped magnons. In cosmology, Q-balls could have 
participated in baryogenesis, formation of bosonic stars and the dark matter.

3.5  Dark Energy, Cosmological Constant

According to standard physics, the vacuum has an enormous energy density �vac . 
A positive contribution comes from the zero-point energy of bosonic fields, such 
as electromagnetic field, and a negative contribution comes from the fermionic 
fields—from the so-called Dirac vacuum, and there is no reason why they should 
cancel [119]. Again according to standard physics, �vac should act as a gravitational 
source—effectively an enormous cosmological constant Λvac . With the Planck scale 
providing a natural cutoff, it is roughly 120 orders of magnitude larger than is com-
patible with observations. According to Bjorken, this is the oft-repeated mantra that 
“no one has any idea as to why the cosmological constant is so small” [120].

However, anyone who is familiar with superfluid 3 He at zero temperature and at 
zero pressure can immediately find a simple solution of the problem. The ground 
state of this superfluid is described by the thermodynamic potential �(n) − �n , 
where �(n) is the energy density, n is particle density and � the chemical potential. 
According to the Gibbs-Duhem identity, at zero temperature one has � − �n = −P , 
where P is pressure. That is why this thermodynamic potential is equivalent to �vac , 
which obeys the equation of states characterizing the dark energy, �vac = −Pvac.

The low-energy modes of superfluid 3 He are described in terms of bosonic 
and fermionic quantum fields (Higgs fields, Nambu–Goldstone fields and Bogoli-
ubov fermions). One may think that zero-point energies of these modes contribute 
to �(n) . However, this is not so, since the energy �(n) fully comes from the ultra-
violet physics, in our case from physics of the 3 He atoms. The collective excita-
tions of the liquid 3 He contribute only to such effects, which depend on the low-
energy (infrared) physics, such as the Casimir effect. In the absence of environment, 
i.e., at zero pressure, the thermodynamic potential of the system is exactly zero, 
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�(n) − �n = −P = 0 . That is why in the full equilibrium, the microscopic (Planck 
scale) energy �(n) is cancelled by the counter-term �n without any fine-tuning. This 
comes purely from thermodynamics and does not depend on the phases of super-
fluid 3 He (A-phase, B-phase, polar phase, etc.) and on the quantum fields living in 
these 3 He vacua.

The same situation takes place for the relativistic quantum vacuum. This can 
be seen using the nonlinear extension of the Hawking description of the quantum 
vacuum phenomenology in terms of the 4-form field. In this description, the cos-
mological constant in Einstein equations is equivalent to the thermodynamic poten-
tial, Λvac = �(q) − �q = −Pvac [121, 122], where q is the 4-form field. While �(q) 
is determined by the microscopic trans-Planckian physics of the “atoms of the vac-
uum” and is very large, the pressure belongs to the infrared physics. That is why 
Λvac = 0 if our Universe is isolated from the environment, as it happens for the 3 He 
Universe isolated from the environment. The Gibbs–Duhem thermodynamic iden-
tity ensures the cancellation of large vacuum energy in an equilibrium vacuum, 
regardless of the microscopic structure of the vacuum.

4  Standard Model of Particle Physics

4.1  Higgs Bosons

In the spin-triplet p-wave superfluid 3 He with 3 × 3 = 9 complex components of the 
order parameter, the symmetry breaking gives rise to 18 collective bosonic modes. 
In 3He-B, they are separated into 4 Nambu–Goldstone modes and 14 Higgs ampli-
tude modes.

4.1.1  Nambu Sum Rule and Hidden Supersymmetry

Nambu [123, 124] noticed that in 3He-B these 18 modes, which are distributed into 
families with different angular momentum J = 0, 1, 2 , obey the rule valid for each 
family. In the relativistic form, this Nambu sum rule reads:

Here M+ and M− are the gaps in the spectrum of modes, in which correspondingly 
the real and imaginary parts of the order parameter are oscillating; MF is the fermi-
onic mass, which in 3He-B is the gap in fermionic spectrum of Bogoliubov quasi-
particles. This rule has been further extended to the thin film of the A-phase [125, 
126]. The connection between the fermion and boson masses can be attributed to the 
manifestation of hidden supersymmetry in superfluid 3 He [123, 124].

The Nambu sum rule is valid for the BCS weak coupling regime [127, 128]. 
However, this rule can be applied to the extensions of the Standard Model, assum-
ing that they are also in the weak coupling regime. In the simplest cases, this 
assumption suggests the existence of the second Higgs particle, with the mass 

(4)M2

J+
+M2

J−
= 4M2

F
.
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325 GeV in the 3He-B scenario or with the mass 245 GeV in the 3He-A scenario, 
in which M+ = M− [125, 126].

4.1.2  Little Higgs

In 3He-B, due to the tiny spin–orbit interaction one of the four Nambu–Gold-
stone modes becomes the Higgs boson with small mass, which is determined 
by spin–orbit coupling. This is the mode measured in experiments with the lon-
gitudinal NMR. The formation of the Higgs mass is the result of the violation 
of the 3He-B symmetry by spin–orbit interaction. In the modern language, the 
enhanced symmetry which takes place when some terms in energy are small and 
are neglected is called the hidden symmetry, and the corresponding Higgs with 
small mass is called pseudo Nambu–Goldstone boson.

The presently known Higgs boson has mass 125 GeV, which looks rather 
small compared to the typical electroweak energy scale of 1 TeV. That is why 
the natural guess from the 3 He physics is that this boson is actually the pseudo 
Nambu–Goldstone mode [129–131], and one should search for the real Higgs, 
which could be as heavy as 1 TeV.

It is interesting that the hints of the Higgs bosons with 245 GeV, 325 GeV and 
with the TeV scale have been reported (see, e.g., [132–134]), but not confirmed.

4.2  Nuclear Physics

Connection between the chiral phenomena in the quark-gluon plasma and in the 
chiral superfluid 3He-A in relation to chiral magnetic and chiral vortical effects 
has been discussed in Sect. 2.2.2. Here we consider another connection which is 
related to the models of hadrons and quark confinement.

4.2.1  MIT Bag Model and Magnon Condensate

In 3He-B, we can imitate the MIT bag model for hadrons [135–137]. In this 
model [138, 139], the hadron is considered as macroscopic box (bag) with the 
deconfinement phase inside, where the massless quarks are free, and with the 
vacuum in the confinement phase outside, where free quarks cannot exist. This 
model is similar to the electron bubble in a helium liquid, where the zero-point 
energy of electron in the ground state in the box potential compensates the exter-
nal pressure and surface tension. In the MIT bag, the compensation also comes 
from the ground state energy of free quarks in the box.

In 3He-B, we constructed the bosonic analog of the bag model: instead of the 
quarks in the ground state in a box potential, there are magnons which also fill the 
ground state forming the magnon Bose condensate [135–137].
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5  Quantum Mechanics

At the moment, 3 He cannot say anything reasonable on the origin of quantum 
mechanics and quantum field theory. However, the possible origin of 

√

−1 in quan-
tum mechanics is suggested [101, 140, 141]. The microscopic physics of the quan-
tum vacuum is fully described in terms of the real numbers, while the imaginary 
unit emerges in the low-energy corner together with Weyl fermions. The reason for 
that is the same topology, which protects Weyl points in the chiral superfluid 3He-A.

6  Conclusion

The Helium can answer most of the questions presented in the paper by Allen and 
Lidström “Life, the Universe, and everything-42 fundamental questions” [142]. At 
least Helium has opinion on these problems. However, at the moment Helium can-
not say anything physical on such questions as: What is quantum mechanics? What 
is life? What is consciousness? These topics still remain supernatural for Helium, 
and this is the reason why they are not on the physical map in Fig. 1. The main task 
of Helium is to push forward the border line between the natural and supernatural 
parts of the Universe.
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