
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or 
part of any of the repository collections is not permitted, except that material may be duplicated by you for 
your research use or educational purposes in electronic or print form. You must obtain permission for any 
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not 
an authorised user.

Sievi-Korte, Outi; Fagerholm, Fabian; Systä, Kari; Mikkonen, Tommi
Dimensions of Consistency in GSD: Social Factors, Structures and Interactions

Published in:
Product-Focused Software Process Improvement - 21st International Conference, PROFES 2020, Proceedings

DOI:
10.1007/978-3-030-64148-1_20

Published: 21/11/2020

Document Version
Peer-reviewed accepted author manuscript, also known as Final accepted manuscript or Post-print

Please cite the original version:
Sievi-Korte, O., Fagerholm, F., Systä, K., & Mikkonen, T. (2020). Dimensions of Consistency in GSD: Social
Factors, Structures and Interactions. In M. Morisio, M. Torchiano, & A. Jedlitschka (Eds.), Product-Focused
Software Process Improvement - 21st International Conference, PROFES 2020, Proceedings (pp. 315-330).
(Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics); Vol. 12562). Springer. https://doi.org/10.1007/978-3-030-64148-1_20

https://doi.org/10.1007/978-3-030-64148-1_20
https://doi.org/10.1007/978-3-030-64148-1_20


Dimensions of Consistency in GSD: Social
Factors, Structures and Interactions

Outi Sievi-Korte1, Fabian Fagerholm2, Kari Systä1, and Tommi Mikkonen3

1 Tampere University, Tampere, Finland
2 Aalto University, Espoo, Finland

3 University of Helsinki, Helsinki, Finland
outi.sievi-korte@tuni.fi, fabian.fagerholm@aalto.fi,

tommi.mikkonen@helsinki.fi, kari.systa@tuni.fi

Abstract. Global software development (GSD) implies a distributed
development organization, where coordination is needed to efficiently
achieve development objectives. So far, socio-technical congruence has
examined coordination needs and activities through software code depen-
dencies. However, GSD requires coordination beyond software artifacts.
In this paper, we present an interview-based study of software practition-
ers from companies engaged in GSD. The study examines how different
dimensions of interactions are interrelated, and how they affect software
development. Our study suggests that, in addition to the relationship be-
tween organizational and technical system structure, GSD performance
is affected by consistency in communication, operational procedures, and
social structures. These can only partially be impacted through formal
procedures, and we suggest that distributing coordination work by em-
powering developers could lead to increased performance.

Keywords: Global software development · Human factors · Socio-
technical system · Coordination · Communication

1 Introduction

Global software development (GSD) can be defined as “software work undertaken
at geographically separated locations across national boundaries in a coordinated
fashion involving real time (synchronous) and asynchronous interaction” [25].
GSD is said to have several benefits in terms of productivity, cost savings, skill
pool access, and customer proximity [1], but it accentuates the need to coor-
dinate work tasks among those involved. With group members being separated
geographically, temporally, and culturally, coordination becomes more difficult.

The concept of socio-technical congruence (STC) captures the notion of a
relationship between coordination needs and actual coordination activities: if
there is a match between the two, congruence is high (and vice versa) [8]. STC
can be measured through a family of techniques that are based on extracting task
dependencies from source code repositories [26]. Files that are commonly changed
together are assumed to have a technical dependency [8]. It is thus possible to



2 O. Sievi-Korte et al.

calculate to what extent current coordination activities, as played out through
the communication and collaboration tools used by software developers, match
the dependencies indicated by previous source code change sets.

Several researchers have identified factors that can hamper coordination in
GSD, and ways in which sub-optimal coordination can surface as a worsening
in STC metrics [26]. However, STC does not draw a complete picture of co-
ordination challenges in GSD. STC measurements use after-the-fact data that
describe some of the most detailed-level tasks operating closest to or directly
on the source code. They do not consider the planning and deliberation that
precedes these tasks, the coordination judgments that are made while the tasks
are carried out, or the human relationships that form the basis of coordination.
A study on architectural design in GSD [29] implies that many issues voiced by
practitioners concern social interactions and the organization of communication.

Increasing STC requires additional effort in the form of specific coordination
activities, which run the risk of decreasing developer productivity [26]. STC
techniques do not describe how to avoid such risks. What is often overlooked
in GSD is its effect on developers’ behavior and habits, and a consideration of
the cognitive, affective, motivational, and social processes involved. From that
perspective, coordination in GSD is an active human process unfolding in a
socio-technical system. Its results can be partially observed by measuring STC –
but to understand the process itself, we must look beyond artifact repositories.

In this paper, we aim to uncover more of the social factors, structures, and
interactions that are at play when the coordination process unfolds in GSD. We
utilize the data collected by Sievi-Korte et al. [29] to find instances of social
aspects of coordination in GSD. We describe factors that influence the quality
of the coordination process, describe threats to that process, and discuss means
by which those threats might be mitigated. Through this knowledge, we aim
to assist organizations that wish to utilize GSD to gain more of the potential
benefits while avoiding adverse effects on both internal and external stakeholders.

2 Background

When practicing GSD, temporal, geographical, and socio-cultural distance has
a direct and immediate effect on developers’ socio-technical environment. For
example, time-zone differences make communication asynchronous. Emails and
even instant messages receive delayed answers, and phone and video calls are
difficult to schedule with no overlapping office hours between sites. Product de-
velopment may be slowed, rather than allowing effective utilization of time zone
differences [7]. Increased coordination needs present another challenge, and can
arise due to delays, integration issues, and mismatches in required skills. Inspired
by Conway’s Law [9], researchers have examined STC, formal communication
structures, and tool support as vehicles for improved coordination (e.g., [2]). To
successfully operate in a GSD setting, developers should thus be able to con-
sider how their own actions influence both the social and technical sides of the
software development activity.



Dimensions of Consistency in GSD 3

Difficulties in distributed software projects can be forecasted by various theo-
ries and empirical findings in the organizational, behavioral, and social sciences.
For example, when groups bring their behaviors under normative control, those
norms begin to regulate team members’ behavior [11]. Norms usually develop
informally from corporate and national cultures, but may be set collectively or
by leaders through rewards and sanctions. Unless their norms are compatible,
different groups may expect different behaviors, causing misinterpretation of ac-
tions and intentions, and resulting in inefficiency and enmity [6]. This provides an
explanation of a social mechanism influencing software projects: norm alignment
requires communication, and hinges on the complexity, richness, and speed of the
real communication networks connecting developers. In other words, addressing
the problem requires entering the social world of developers and agreeing on
behavioral changes. It then becomes necessary to trust developers’ social skills
and adapting formal procedures and structures to support them.

Relying on developers’ social skills requires that the management is more
informed regarding the mechanisms of social behavior among developers. An
understanding of the social aspects of software development and promoting social
awareness and constructive social behavior among developers (see [21]) can begin
to address the deeper issues involved. Those issues are present at the level of
individuals, but they also become built into the processes, working methods, and
artifacts involved in software projects – all part of the socio-technical system in
which software development happens. Failing to take social behavior into account
may lead to accumulating social debt in the organization, which in turn leads to
deterioration of the software itself [32].

Through practitioner workshops, Rothman and Hastie [24] found issues re-
lated to how the socio-technical environment is set up. For example, enforcing
processes does not work if inter-team practices are not considered. Not enabling
meetings ends up costing more than arranging meetings between sites as issues
accumulate due to lack of trust. Teams struggle with handling inequality and
accommodating differences. However, the reasons behind these issues were not
studied further. We attempt to address this gap in the present paper.

Solutions to software engineering problems are often sought in technical
methods and practices, but many problems in GSD require a different approach.
Sievi-Korte et al. [27] used a systematic literature review (SLR) to create a con-
ceptual model of software architecting in GSD. The model encompasses areas
such as ways of working, knowledge management, and task allocation – all sub-
ject to communication and process challenges that could potentially be mitigated
by architecting guidelines and technical solutions. These challenges and poten-
tial solutions were further investigated in an empirical study [29]. The empirical
study revealed an abundance of issues that stemmed from social interactions be-
tween stakeholders and the organization of communication. Mechanisms based
on repository measurement or tools were not able to bring adequate solutions.
Such social and behavioral issues are further investigated in the present paper.



4 O. Sievi-Korte et al.

3 Research Approach

We utilize data from an earlier study by Sievi-Korte et al. [29], that consists of
semi-structured interviews with 13 software developers or architects from seven
companies engaged in GSD. All participants had several years of experience from
globally distributed projects. Five companies had their headquarters in Finland
and two in other countries (Europe and North America). The interview questions
were based on the results obtained in an SLR [27].

The previous study [29] collected challenges and practices that practitioners
faced doing software architecture design in the context of GSD. In this study, we
focus only on material that did not consider architecting challenges or practices.
Instead, we reanalyze the data to examine the social side of software develop-
ment. An initial extraction of data relevant to this theme gave us a working set
of 109 quotes4. As Sievi-Korte et al. [29] only concentrated on findings related
to architectural design, this paper thus complements their findings.

Research Questions. As mentioned above, current methods based on STC
that utilize the structural dependency between technical artifacts and commu-
nication seem insufficient to tackle challenges that have been reported in GSD.
We should thus expand the picture and assume that more flexible structures are
needed in large-scale software development. We should more carefully consider
the social mechanisms that underlie the challenges in GSD also from other per-
spectives than development activities and related artifacts. We pose the following
research questions in the context of software product design in GSD:

RQ1: How does the coordination process in GSD manifest in terms of social
factors, structures, and interactions?

RQ2: What factors influence the quality of the coordination process?
RQ3: How can the threats to the coordination process be mitigated?

Research Process. The research process for this study is depicted in Fig. 1
and described below. During the process we used thematic analysis [5]. First, in
an initial analysis of the interviews, conducted jointly by all authors, there ap-
peared to be repeating patterns in the challenges described by the practitioners.
As an experiment, we divided individual quotes from the interviews equally be-
tween all authors and attempted to extract anti-patterns from them, if possible.
Each found anti-pattern was expected to include context containing a problem,
(wrong) solution to the problem, and (negative) consequences.

We then conducted a joint workshop to validate the found anti-patterns.
During the workshop we examined each anti-pattern on completeness and dis-
cussed it in relation to the original quote. At this time we could immediately
see that 1) not all quotes had resulted in anti-patterns, and 2) in many cases
the anti-pattern was incomplete, i.e., either there was not enough context in the
quote, or the solution or consequences was unclear. We decided not to pursue

4 The transcripts were coded in full by the first author. The codes “practice” and
“challenge” were predetermined; other codes were freely generated during the coding
process. The coding process has been reported elsewhere in detail [28]



Dimensions of Consistency in GSD 5

Quotes
(109)

SLR Interview
questions

Interviews Transcripts Coding

Select quotes not coded as architecting practice/challenge

Initial
analysis

Anti-
patterns

(81)

Validation
(workshop)

Initial themes
(11)

Anti-patterns
grouped under
themes

Workshop

Consistency
dimensions

Themes mapped
to consistencies

Previos study

Current study

Validation

Themes (13)

Architecting practices [27]

Fig. 1. Research process

with anti-patterns in the sense that they would be presented as a result of this
study. However, we did continue using the anti-pattern drafts in our analysis, as
they had allowed us to abstract the vast number of often very verbose quotes
into a condensed format, easing their further analysis. Reviewing the set of anti-
patterns, we could identify a number of recurring themes from keywords found
in the patterns. Based on the validation workshop notes, one author created a
set of 11 initial themes, and coded the anti-patterns according to the themes.
Doing so, it appeared that each anti-pattern supported two themes, and thus
was coded with a primary and secondary theme.

The themes and coding were validated by all other authors. Each of them
individually and separately attempted to code the anti-patterns using the initial
themes. When we cross-checked our coding, we could find a number of conflicts.
Upon solving conflicts in the coding, the set of themes was redesigned to contain
13 different themes, which all authors agreed upon. We then conducted a second
joint workshop to resolve the remaining conflicts. As a way to resolve the con-
flicts, we revisited the data in a more holistic manner, going back to the original
quotes and the context surrounding them. We shortly noticed that while STC
could easily be seen as an underlying phenomenon behind many of the themes,
they appeared to touch other dimensions as well that were yet undefined. In
the end we could see that the intertwined dimensions of individual developer
and organization could complement STC. These dimensions are discussed in the
following.

4 Results

Our analysis uncovered two sets of themes that we call consistency dimensions.
Communication between and within teams and sites, in all forms reported by
the participants, were grouped as communication consistency. The relationships
between technical processes, organizational hierarchy and the social interactions
between developers were termed operational consistency. We also saw how the
dimensions of social interactions, communication, and processes were linked to
STC. We see these consistency dimensions as independent of, yet interlinked
with, STC. Whereas STC is grounded in detailed code artifacts, our consistency



6 O. Sievi-Korte et al.

dimensions concern other parts of the socio-technical system where software de-
velopment happens. They currently lack a numerical operationalization like the
STC metrics discussed previously. In this paper, they are instead represented by
the themes that specify concrete problems related to each consistency dimension.

Fig. 2 presents the themes forming our model of social interactions in GSD
organizations. The themes either describe communication (in)consistency or op-
erational (in)consistency. Our two consistency dimensions are linked to STC
both as concerns that individual developers may have to address and as aspects
of the overall socio-technical system (represented by the outermost gear with
its corresponding distances; see, e.g., [13,1]). At the heart of our model is the
developer, who must find means to communicate with others, follow processes,
and produce technical artifacts – and engage in social interactions during such
activities. In the following, we first describe the themes (highlighted in bold) to-
gether with quotes from our interviewees, to illuminate the abstract consistency
dimensions, and then discuss the model as a whole.

Developer

Socio-technical
Congruence

Operational
Consistency

Communica
tion
Consistency

Socio-technical system

Theme Theme description

Organisational
hierarchy

Differences in hierarchies (flat
vs. layered) between sites.

Processes Matching of defined processes
and daily activitites.

Differences
between sites

Differences in equipment,
human resources and access
to knowledge between sites.

Expectations Varying expectations on 
outcomes.

How to write
documentation

Different levels of expected
details between sites.

Commitment Commitment to tasks.

Technical 
learning curve

Differences in learning new
technologies due to varying
backgrounds.

Theme Theme description

Working
culture

Differences in level of detail
required in communication.

Access to 
knowledge

Realization of 
communication methods
between sites.

Verbal
communication

Differences in how different
cultures are addressed.

How to read
documentation

Matching of intended
interpretation and actual
interpretation of document.

Assumptions Assumptions on the status 
or meaning of items.

Social learning
curve

Differences in learning how
to work with different
cultures.

Fig. 2. Social interactions in a GSD organization.

4.1 Communication consistency

Communication consistency concerns the match between ways (technical ar-
rangement of communication), forms (presentation of content) and balance
(amount of interaction) of communication in different parts of the organization
and between individuals. Major issues in communication may arise from dif-
ferences in working cultures between sites. Cultural misunderstandings can
result in severe difficulties, such as avoidant behavior, as in this example: “the is-
sue is that in some cultures you don’t tell the manager something won’t be done,



Dimensions of Consistency in GSD 7

you only tell him when you have no choice and that’s because it is due now, and
it just isn’t there. And that can be a big problem.” This is not necessarily a factor
of any particular culture but rather reflects the lack of a trustful relationship
between people from different cultures. One party may be accustomed to very
direct communication and have a long history with colleagues, whereas another
party is used to a more subtle form or has just joined the development effort. In
general, it is known that developers’ views on productivity varies [19] and that
they communicate with their managers in different ways, so it is not surprising
that issues arise in GSD when the communication bandwidth is limited or trust
has not yet been built.

While verbal communication is understandably challenging between dif-
ferent sites, a bigger issue is that when live meetings are not feasible, develop-
ers are forced to settle for reading documentation. Misunderstandings eas-
ily arise, like “when somebody writes [something that] is perfectly clear to the
person who wrote it and their nearby colleagues [but that] can be interpreted
entirely differently at a remote site, and that sometimes comes true in differ-
ences of implementation”. These challenges are linked to operational consistency
through procedures for how documentation is written. The process and practices
for writing documentation should consider that documentation may be used to
substitute verbal communication, and thus it needs to be self-explanatory and
unambiguous.

Above all else, problems arise from actual lack of communication and from
communication that parties are not able to understand. A big issue for prac-
titioners is assumptions about what people at other sites know or how they
view the project’s status and goals. Team mental models – representations of
key elements in the environment shared across team members [20] – are critical
for mutual understanding among individuals. In GSD, mental models must be
shared across geographically separated teams [3]. The salience of key elements
may differ considerably between teams at different sites, and the environment
may even be completely different, with varying understanding of common key
elements. Convergence in mental models does not occur by itself over time even
within the same geographically collocated team. Rather, as team member roles
become more differentiated, interaction can decrease and the shared mental mod-
els decline [16]. These conditions can cause wildly different mental models across
distributed teams, leading to assumptions that stifle communications.

Conflicting views may even result in using incorrect information to question
solutions. As noted in our material, “people quite easily develop their own no-
tion of what’s going on and their own image on what we’re doing, and then all
of the work is filtered through that notion, and then they wonder why we’re do-
ing this, why aren’t we doing that, and they might not realize at any point that
we’re talking about two different things.” Apart from assumptions on the techni-
cal aspects, information may be interpreted incorrectly because of assumptions
arising from cultural differences. Easing the social learning curve would help
communication between developers from different cultures. A concrete example



8 O. Sievi-Korte et al.

from a case company is to arrange multi-cultural parties to celebrate diversity,
instead of treating it as an obstacle.

These issues describe the effects of poor communication consistency. Com-
munication has already been identified as a part of STC as a structural property
of an organization [8] and as a factor that is associated with development speed
[13]. We extend the viewpoint from aspects of communication that are measur-
able on the surface (number of meetings and interactions) to considering ways,
forms, and balance of communication, as well as expectations regarding them.
These are factors that stem directly from individual developers, and how they
are enabled to and actually do communicate with each other.

Our presentation of communication consistency further supports the Media
Synchronicity Theory [10], which states that working communication requires
working processes both for conveyance (i.e., distributing information), and con-
vergence (i.e., reaching a common understanding of the information). Communi-
cation consistency in ways, forms and balance are required to enable good con-
veyance and convergence. The issues we have found are often due to insufficient
means (or will) for distributing particular information, or inadequate processing
of that information between parties, leading to conflicting views.

To increase communication consistency, two core issues must be addressed.
The first is to ensure consistency in how communication is technically arranged.
All sites and teams must be provided with adequate means to communicate with
each other, thus providing consistent access to knowledge. The second is en-
suring consistency in how content is communicated, which is much more difficult.
Teams and individuals should be able to reflect on their communication mech-
anisms and recognize critical differences and similarities that prohibit working
communication. A method to handle issues leading to inconsistent communica-
tion should then be constructed. The method should also promote equality –
communication should be a dialogue, effectively requiring developers to use and
develop their social skills.

4.2 Operational consistency

With operational consistency, we mean the extent to which social structures in
an organization are aligned with operational structures governing how work is
performed. When these are inconsistent, the formal, operational structure pulls
in a different direction than what employees do, creating tension and problems.
Such issues are amplified when there are inconsistencies between sites.

Differences in organizational hierarchy between sites easily create disrup-
tions. Developers working with certain assumptions of organizational hierarchy
may find it difficult to interact with others operating under different assump-
tions, as illustrated in our material: “because in Central Europe [there tends to
be] a steeper hierarchy. You cannot dismiss the rules of conversation. Archi-
tects only talk to architects and software developers to software developers. In
Finland, there’s no need for such hierarchy. We can speak freely with anyone.”
Furthermore, many operational practices include assumptions of organizational
structure, e.g., many agile methods assume cross-disciplinary and self-organized



Dimensions of Consistency in GSD 9

teams. This theme is also linked with communication consistency, particularly
working culture – the norms and guidelines developers from different sites and
cultures are accustomed to, and how they should be communicated to be un-
derstood correctly. Operational consistency focuses on organizational structures;
communication consistency is concerned with how developers talk about them.

Processes are the primary means to organize software development activities
over time, and they contain many assumptions about social work organization.
For instance, how strictly processes are followed, how exactly they are assumed
to specify what to do, and what developers can do beyond what processes say.
Issues related to processes often escalate due to mismatches in expectations
about results, progress, and what others do: ”it might be that in some places
[...] you are told very specifically what you must do and how you must do it, and
initiative is not part of the process. Then again others might think that if you
just say something very broadly, like start doing something like this, [...] people
expect you to be more active [or] you make more independent choices.”

Differences between sites can lead to differences in available resources
(both people and equipment). For example, sites A and C in our material were
both working on a hardware-dependent piece of software, but had different ver-
sions of the hardware. Tests that passed at Site A would fail at Site C. Developers
at Site A would “think that Site C are in the wrong, and then no one knows where
the problem is.” Finding the root cause of a problem in such a situation can take
a long time, particularly when the other site feels like they are being blamed for
problems they have not created. Commitment is closely linked to site differ-
ences. Feeling blamed for problems, experiencing a lack of respect and not being
involved in decision-making will quickly lead to uncommitted developers, par-
ticularly at remote sites. Lack of commitment, in turn, will affect how well work
is carried out, how processes are followed, and how communication is handled,
and thus commitment issues should be carefully handled.

Participants reported issues arising from assumptions that everyone has un-
derstood things the same way. Integrating documentation instructions into
the operational procedures is one way of combating this problem, as in this ex-
ample from a case company: ”we aim to say every obvious thing out loud ... and
then we also write these so-called self-evident truths down in the design docu-
ments.”. Here, developers had noted how mismatches in assumptions could lead
to serious problems, and had created a consensus to help each other via docu-
mentation. However, inconsistency may arise if sites differ in how they approach
the documentation activity: “I have seen some examples [where expectations],
particularly in Site B, for documentation was to be extremely detailed. It’s al-
most instructions [for] ‘how to write code’, and that’s not how we work here.”.
We can see how both parties can quickly become equally frustrated – Site A
from feeling the need to document items they feel are self-evident, and Site B
from feeling they are not being given all the information they need. Flexibility
from developers on both sites is required to find a working process.

Operational inconsistency may appear as differences in technical learning
curve. Developers working at different sites often have different educational



10 O. Sievi-Korte et al.

backgrounds. Thus, learning new tools and technologies is easier for some than
others. If an organization does not give sufficient support via training to bridge
this gap, differences in the skill base may result in conflicts.

The aforementioned issues describe poor operational consistency. Develop-
ment processes, practices, ways of working, and other operational methods may
be implemented or understood differently at different organizational sites due to
differences in organizational structure, local organizational or national culture
and norms, or other social factors. Low operational consistency leads to clashes
between planned work practices and people’s natural social interactions and dy-
namics around work organization. Operational consistency can be improved if
the organization, operational practices, and social interaction between individ-
uals match. Thus, to enforce operational consistency, managers should allow
teams of developers (in effect, the organization structure) to flexibly restructure
itself around tasks. An organizational structure or mode of working should not
be imposed on teams as a matter of standard policy, but such decisions should be
based on situational evidence and followed by attention to the social interactions
that emerge, leaving room for individuals to take initiative. A key prerequisite
of operational consistency is trust. The less trust people at different sites have,
the heavier and less flexible processes need to be used. Thus, establishing trust
between developers should be a high priority for GSD managers [22].

4.3 Wheels in motion

To aid the aforementioned challenges in people management and soft issues,
we need to explore the GSD organization beyond STC. Our analysis reveals
two dimensions affecting GSD – operational and communication consistency –
that complement the existing and widely recognized STC. The new consistency
dimensions are distinct from STC as they do not directly concern the software
artifacts under development. Rather, they reflect the fit between work imagined
on the drawing board and how developers are actually able to carry it out.

The different consistencies in our model are interlinked, and if one wheel
breaks, the whole system comes to a halt. Problems in one organizational dimen-
sion will reflect on and spread to other dimensions (see Fig. 2). Poor operational
consistency is often caused, e.g., by processes that do not support daily activi-
ties, such as those with hierarchies and actions that do not fit agile development
within teams. Lack of support for daily activities will easily lead to develop-
ers not knowing what they should be doing and with whom. This will soon be
visible as erratic communication between developers – a decrease in communica-
tion consistency. Vice versa, developers who are unable to properly communicate
(inconsistent communication) will likely be unable to follow desired processes.
Thus, inadequate support for operational consistency (poor match between daily
work and process) will manifest as poor communication, and poor communica-
tion consistency will reflect back on operational consistency. The two will impact
STC, as they either disrupt coordination activities or deteriorate the software
architecture in such a way that coordination no longer matches what the organi-
zation is capable of handling. Improvement and maintenance actions that strive



Dimensions of Consistency in GSD 11

to make GSD work better must focus on the root causes within the consistency
dimensions. Similarly – if communication between developers is fluent, hick-ups
in processes are easier to solve, and when processes support daily tasks, there
is both less need for communication and better grounds for fruitful, two-way
conversations.

Finally, distances affect the consistency dimensions. We saw social distance
particularly in issues related to organizational hierarchies, inequality, commit-
ment, working culture, assumptions and social learning curve. Temporal and
geographical distance were visible particularly in processes and communication
mechanisms – how to handle development tasks and communication when face-
to-face meetings are not possible. Distances also often create distrust, and un-
clear reasoning (often due to poor communication) can also easily create fear.
Fear and distrust can cause inconsistency, and that inconsistency can feed dis-
trust in a vicious cycle. Similar findings, stressing the need to agree about the
norms of work and build discipline toward the process are reported by Piri [22].

5 Discussion

Our empirical material suggests that social factors in GSD can be viewed as a
multi-dimensional system, having two consistency dimensions interacting with
STC, all affecting one another and being influenced by distances. In the following
we will discuss our research questions and the limitations of our study.

5.1 The Socio-Technical System

Based on our study, we propose reconsidering how we view GSD. We set out to
study social interactions in GSD, starting with RQ1: How does the coordination
process in GSD manifest in terms of social factors, structures, and interactions?.
The coordination process in GSD manifests in terms of social factors, structures,
and interactions as a model with two consistency dimensions. With STC, these
form a system (as given in Fig. 2) that can explain why coordination works or
breaks down in the interactions between individual developers and the overall
socio-technical system that is active in GSD.

We wanted to probe deeper in to the coordination process with RQ2: ”What
factors influence the quality of the coordination process?”. The quality of the
coordination process is influenced by the degree of consistency in the communi-
cation and operational dimensions. Our interview material highlights the diffi-
culties practitioners face when there are inconsistencies between processes and
practices. A lack of consistency commonly caused increased dissatisfaction, lack
of motivation, and frustration among the practitioners. These co-occur with de-
lays in schedule and with sub-optimal quality of the resulting software.

Finally, our attempt was to elicit a way of correcting found issues in addition
to just identifying them, as we posed RQ3: ”How can the threats to the coordi-
nation process be mitigated?”. The first step is to identify how inconsistencies in
communication and operations can threaten effective coordination of software



12 O. Sievi-Korte et al.

development. These threats can then be mitigated by distributing coordination
work and empowering developers to coordinate their parts of the socio-technical
system. Distributing coordination work requires workforce training and a high
degree of trust. It also requires improving ways, forms, and balance in communi-
cation and aligning the formal, operational structure in the organization with the
natural social interaction structures that exist on an interpersonal level. These
activities could be built into the software development process by including dis-
tributed coordination activities on all levels of the organization.

Accepting that the development of any large piece of software requires social
interaction, the stereotypical image of a programmer as technology-oriented and
socially inept is challenged in GSD. A developer should be capable of adapting to
different communication styles to increase communication consistency as well as
to different ways of coordinating work to increase operational consistency. Several
of the comments by participants in our study shows that some developers are
already tacitly aware of such issues.

Achieving wide improvement in GSD escapes formal definitions of organi-
zation, processes, and procedures, and relies on organizations’ ability to foster
social developers and their cooperative skills. Furthermore, relying on develop-
ers’ social skills requires that the management is more informed regarding the
mechanisms of social behavior among software developers.

5.2 Related Work

Mariani [17] presents recent advances in coordinating socio-technical systems,
and stresses the need to include socio-cognitive aspects in technical solutions
from the very beginning of design. While current work in GSD mostly relates to
the technical-to-social mindset as defined by Mariani, we could utilize the princi-
ples and theories of social-to-technical mindset to improve coordination. Similar
relationships between social protocols, coordination mechanisms (operations)
and communication, as presented here, have also been given as a framework by
Giuffrida and Dittrich [12]. They base the framework on theories of coordination
mechanisms and communicative genres, and support the rather abstract frame-
work with ample examples from their empirical study. However, this framework
concentrates heavily on communication alone, while we present a more balanced
view of the different social aspects in GSD projects.

Furthermore, Jolak et al. [15] discuss communication aspects of GSD in the
light of geographical and social distance. They analyzed the categories of collabo-
rative discussions in joint design tasks and noted that collocated and distributed
teams differed in the quality of the communication – the amount of creative de-
bate was smaller in distributed cases. This can be seen as lack of communication
consistency and is assumed to lead poorer design since creative thinking and
constructive criticism are reduced. Robinson [23], in turn, reports findings how
team members spread across sites do not feel that they belong into the same
team, even though week-long face-to-face meetups are arranged twice a year.
This highlights the need for continuously upholding communication consistency.
Similar problems in communication consistency, and particularly the form and



Dimensions of Consistency in GSD 13

balance of communication have been identified by Stray et al. [31], who studied
the use of Slack in virtual agile teams. They noted that even when using such
direct messaging, there are significant differences in levels of activity, stemming
mainly from language skills and knowledge level. Further, using too much per-
sonal mode was found a barrier - supporting our identification of social learning
curve as an essential theme in communication consistency.

Problems similar to what we found with regard to operational consistency
have also been reported by Hussain et al. [14] in the context of requirements
management and informal change requests. Informal requirement changes are
a direct product of deviating from defined processes, and contain elements of
challenges related to organizational hierarchy, varying expectations and inequal-
ity between sites – all elements of operational consistency. Furthermore, Björn
et al. [4] also report issues around similar themes in their empirical study on
how agile methods were adopted in a global setup – severe challenges were dis-
covered as a direct result of inadequate matching of operations (development
methodology) and social interactions.

Finally, Sigfridsson [30] reports empirical findings from an organization where
consistency was well supported. Teams would actively work on and adjust their
practices to allow for better collaboration across sites, and the organization
had several actions alleviating, e.g., inequality between sites, such as worldwide
seminars to learn new technologies. In the organization in question, teams did
not think of distribution as a problem, but just as a mundane thing. This work
shows how truly important it is to support and achieve a balance of consistencies.

5.3 Limitations and Validity

There are some limitations to be addressed regarding our study, namely com-
pleteness, potential bias and limits to data synthesis. In addition to limitations,
as with any study, we must consider the potential threats to the validity of our
results. We address threats to validity following Maxwell’s categorization [18].

Limitations We first consider potential bias. While the first author was in-
volved in a previous study utilizing the same interview material as here, none of
the other three authors were involved in the previous study in any way. There
were thus three researchers, who had a neutral and objective stance to the mate-
rial, validating all the findings. As all steps in the research process were defined
jointly and included validation with all authors involved, we are confident that
there are no substantial risks related to bias.

Second, we consider the completeness and coverage of our interview material.
While one could always wish for a larger set of interviewees, thirteen interviewees
already gives us a credible sample when we consider the variance in companies.
Our interview material was gained from seven different companies, covering to-
gether almost 20 different sites, with headquarters in three different countries.
The companies also varied in sizes and domain.

Finally, we need to consider the limits of our data synthesis. We used a form
of thematic analysis [5], which potentially lacks in transparency. To avoid this
potential drawback, all steps leading to creation of the consistency model have



14 O. Sievi-Korte et al.

been validated - anti-patterns derived from the quotes, coding of anti-patterns
under themes, and arranging of themes in the consistency model. Thus, we have
traceability from our model back to raw data (quotes) as well as validated out-
comes. However, the actual creation of our consistency model did not follow a
strict procedure, but is a product of joint interpretative synthesis conducted in
a workshop setting, and we acknowledge the weakness of its repeatability.

Threats to validity Descriptive validity concerns accurate recording and
presentation of the data, based on which conclusions are made. All the interviews
were recorded, and the recordings were transcribed by an independent profes-
sional. Transcriptions were copied verbatim into an analysis tools (NVivo), from
which individual quotes have been extracted. In case a single quote was difficult
to interpret, using the tool it was easy to find the context surrounding the quote.

Threats related to theoretical validity are ultimately concerned with whether
we captured what we intend to in relation to our hypothesis. Our study was
exploratory. As we had no hypothesis, but an open research question, there were
no risks that interview subjects, questions or the process would be biased towards
confirming our hypothesis. However, there are validity threats regarding how well
our material is suited to answer our research questions. The interview protocol
was not designed to uncover issues or practices related to social interactions.
Thus, issues discovered in the interviews may lack sufficient context or details.

Interpretive validity threats concern correct interpretations of the material.
As discussed above, we consider researcher bias not to be a real risk in this study,
as we did not have a clear hypothesis or a pre-determined vision of how the
material would answer our research question. The results were derived purely
based on the research process and combined analyses of the researchers. To
strengthen the validity of our joint analyses, we always referred back to the
original interview quotes and checked that the quotes supported our findings.

Regarding generalizability, we are confident that internal generalizability
(within the field of software engineering) is fairly well satisfied due to variance
in the represented companies in terms of size, involved sites and domains. There
is no reason to believe that the results would not in general apply to companies
in the field of software engineering involved in GSD.

6 Conclusion

We explored social factors affecting GSD beyond those defined as a part of STC.
We specifically wanted to answer questions related to the coordination process in
GSD, it’s quality and how can threats to the process be mitigated. Our research
has led to a new model of the GSD organization, composed of two consistency
dimensions, STC, the developer at the center, and distances affecting all actions.

Solving the problems of GSD requires continuous attention to multiple, com-
plex and interlinked phenomena with organizational, architectural, operational,
cultural, and communication factors. Given the complexity of this challenge, it
is unlikely that a formal, top-down approach alone will be successful. The role
of management shifts towards incentivizing, coaching and mentoring, and pro-



Dimensions of Consistency in GSD 15

viding developers with resources they need to accomplish organizational goals.
By identifying threats related to inconsistencies and carefully considering the
interlinked nature of organizational dimensions as revealed in our study, GSD
organizations can increase consistency in all dimensions and make their software
development engine run more smoothly.

References

1. Ågerfalk, P.J., Fitzgerald, B., Olsson, H.H., Conchuir, E.Ó.: Benefits of global
software development: the known and unknown. In: Proceedings of International
Conference on Software Process (ICSP’08). vol. 5007, pp. 1–9. Springer (2008)

2. Bano, M., Zowghi, D., Sarkissian, N.: Empirical study of communication structures
and barriers in geographically distributed teams. IET Software 10(5), 147–153
(2016)

3. Bass, M.: Monitoring gsd projects via shared mental models: A suggested ap-
proach. In: Proceedings of the 2006 International Workshop on Global Software
Development for the Practitioner. pp. 34–37. GSD ’06, ACM, New York, NY, USA
(2006)

4. Bjørn, P., Søderberg, A.M., Krishna, S.: Translocality in global software develop-
ment: The dark side of global agile. Human–Computer Interaction 34, 174–203
(2019)

5. Braun, V., Clarke, V.: Using thematic analysis in psychology. Qualitative Research
in Psychology 3(2), 77–101 (2006)

6. Carmel, E., Agarwal, R.: Tactical approaches for alleviating distance in global
software development. IEEE Software 18(2), 22–29 (2001)

7. Casey, C., Richardson, I.: Implementation of global software development: A struc-
tured approach. Journal of Software Evolution and Process 14(5), 247–262 (2009)

8. Cataldo, M., Herbsleb, J.D., Carley, K.M.: Socio-technical congruence: a frame-
work for assessing the impact of technical and work dependencies on software
development productivity. In: Proceedings of the Second ACM-IEEE international
symposium on Empirical software engineering and measurement. pp. 2–11. ACM
(2008)

9. Conway, M.E.: How do committees invent? Datamation 14(4), 28–31 (1968)
10. Dennis, A.R., Fuller, R.M., Valacich, J.S.: Media, tasks, and communication pro-

cesses: A theory of media synchronicity. MIS Q. 32(3), 575–600 (Sep 2008),
http://dl.acm.org/citation.cfm?id=2017388.2017395

11. Feldman, D.C.: The development and enforcement of group norms. The Academy
of Management Review 9(1), 47–53 (1984)

12. Giuffrida, R., Dittrich, Y.: A conceptual framework to study the role
of communication through social software for coordination in globally-
distributed software teams. Information and Software Technology 63, 11–30
(2015). https://doi.org/10.1016/j.infsof.2015.02.013, http://www.sciencedirect.
com/science/article/pii/S095058491500049X

13. Herbsleb, J.D., Mockus, A.: An empirical study of speed and communication in
globally distributed software development. IEEE Transactions on Software Engi-
neering 29, 481–494 (2003)

14. Hussain, W., Zowghi, D., Clear, T., MacDonell, S., Blincoe, K.: Managing require-
ments change the informal way: When saying ‘no’ is not an option. In: 2016 IEEE
24th International Requirements Engineering Conference (RE). pp. 126–135 (Sep
2016). https://doi.org/10.1109/RE.2016.64

http://dl.acm.org/citation.cfm?id=2017388.2017395
https://doi.org/10.1016/j.infsof.2015.02.013
http://www.sciencedirect.com/science/article/pii/S095058491500049X
http://www.sciencedirect.com/science/article/pii/S095058491500049X
https://doi.org/10.1109/RE.2016.64


16 O. Sievi-Korte et al.

15. Jolak, R., Wortmann, A., Chaudron, M., Rumpe, B.: Does distance still matter?
revisiting collaborative distributed software design. IEEE Software 35 (2018)

16. Levesque, L.L., Wilson, J.M., Wholey, D.R.: Cognitive divergence and shared men-
tal models in software development project teams. Journal of Organizational Be-
havior 22(2), 135–144 (2001)

17. Mariani, S.: Coordination in socio-technical systems: Where are we now?
where do we go next? Science of Computer Programming 184, 102317
(2019). https://doi.org/10.1016/j.scico.2019.102317, http://www.sciencedirect.
com/science/article/pii/S0167642319301157

18. Maxwell, J.A.: Understanding and validity in qualitative research. Harvard educa-
tional review 62, 279–301 (1992)

19. Meyer, A., Fritz, T., Murphy, G., Zimmermann, T.: Software developers’ percep-
tions of productivity. In: In Proceedings of the 22nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering. pp. 19–29. ACM (2014)

20. Mohammed, S., Ferzandi, L., Hamilton, K.: Metaphor no more: A 15-year review of
the team mental model construct. Journal of Management 36(4), 876–910 (2010)

21. Oshri, I., Kotlarsky, J., Willcocks, L.P.: Global software development: Exploring
socialization and face-to-face meetings in distributed strategic projects. The Jour-
nal of Strategic Information Systems 16(1), 25–49 (2007)

22. Piri, A., Niinimäki, T., Lassenius, C.: Fear and distrust in global software engi-
neering projects. Journal of Software: Evolution and Process 24, 185–205 (2012)

23. Robinson, P.: Communication network in an agile distributed software development
team. In: Proceedings of the ACM/IEEE 14th International Conference on Global
Software Development (ICGSE). pp. 90–94 (2019)

24. Rothman, J., Hastie, S.: Lessons learned from leading workshops about geograph-
ically distributed agile teams. IEEE Software 30 (2013)

25. Sahay, S., Nicholson, B., Krishna, S.: Global IT Outsourcing: Software Develop-
ment Across Borders. Cambridge University Press (2003)

26. Sierra, J.M., Vizcáıno, A., Genero, M., Piattini, M.: A systematic mapping study
about socio-technical congruence. Information and Software Technology 94, 111–
129 (2018)

27. Sievi-Korte, O., Beecham, S., Richardson, I.: Challenges and recommended prac-
tices for software architecting in global software development. Information and
Software Technology 106, 234–253 (2019)

28. Sievi-Korte, O., Richardson, I., Beecham, S.: Protocol for an Empirical Study on
Software Architecture Design in Global Software Development, Lero Technical Re-
port No. TR 2019 01. https://www.lero.ie/sites/default/files/TR_2019_01_
Protocol_for_GSD_Arch_Design_Framework.pdf (2019)

29. Sievi-Korte, O., Richardson, I., Beecham, S.: Software architecture design in global
software development - an empirical study. The Journal of Systems and Software
p. in press (2019)

30. Sigfridsson, A.: A conceptual framework to study the role of communication
through social software for coordination in globally distributed software teams.
Ph.D. thesis, University of Limerick, Department of Computer Science and Infor-
mation Systems (2010)

31. Stray, V., Moe, N.B., Noroozi, M.: Slack me if you can! using enterprise social
networking tools in virtual agile teams. In: Proceedings of the ACM/IEEE 14th
International Conference on Global Software Development (ICGSE). pp. 101–111
(2019)

32. Tamburri, D.A., Kruchten, P., Lago, P., van Vliet, H.: Social debt in software
engineering: insights from industry. J Internet Serv Appl 5 (2015)

https://doi.org/10.1016/j.scico.2019.102317
http://www.sciencedirect.com/science/article/pii/S0167642319301157
http://www.sciencedirect.com/science/article/pii/S0167642319301157
https://www.lero.ie/sites/default/files/TR_2019_01_Protocol_for_GSD_Arch_Design_Framework.pdf
https://www.lero.ie/sites/default/files/TR_2019_01_Protocol_for_GSD_Arch_Design_Framework.pdf

