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Finite-discrete element modelling of sea ice sheet fracture
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aAalto University, School of Engineering, Department of Mechanical

Engineering, P.O. Box 14300, FI-00076 Aalto, Finland
bRand Simulation Ltd., Vantaa, Finland

Abstract

A rate-independent, de-cohesive damage model for the fracture modelling of
large, cellular, plate-like, quasi-brittle structures is proposed. A hybrid, three-
dimensional finite-discrete element method to investigate sea ice sheet fracture
is then introduced, followed by three applications. The uniaxial tensile fracture
of an ice sheet of varying physical sizes is examined first. The effects of both the
size of an ice sheet and the loading rate applied on the effective tensile strength
are investigated. The vertical penetration fracture of an ice sheet loaded by a
rigid, flat-ended, cylindrical indenter is examined next. The breakthrough loads
and strengths of an ice sheet of varying physical sizes are computed, applicable
scaling rules as regards to the vertical breakthrough strength searched for. To
conclude, the breaking of an ice sheet containing a circular hole by a surfacing,
rigid, truncated cone is studied (an axisymmetric contact problem). The loads
on the cone are computed and then compared with loads that can be obtained
analytically for a case in which a structure is stationary, a sheet moves, and
the contact is unilateral. While computing the tensile and the breakthrough
strengths, a set of self-similar sheet samples with an in-plane size range of 1:16
is examined. The samples are square; have a side length of either L = 10, 20,
40, 80, or 160 m; and a thickness of either h = 0.5, 1.0, or 1.5 m. With the
sheets containing holes, only the largest samples (L = 160 m) are investigated.
The results indicate that i) both the tensile and the breakthrough strengths are
strong functions of both L and h; ii) the tensile strength is a strong function
of the applied loading rate; iii) the failure mode as regards to the vertical pen-
etration fracture changes drastically as a function of L; iv) the model is able
to demonstrate both radial and circumferential cracking; and that v) the pro-
posed (in-direct) approach to compute ice loads on a conical offshore structure
provides realistic results.

Keywords: Dynamic fracture, Plates, Numerical algorithms, Size effect, Ice
and snow
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1. Introduction

1.1. Background and context
The ice cover in the Arctic waters is decreasing. New shipping routes will

thus become operational and the interest in industrial activities shall increase.
A prime example of the latter is the growing interest to construct new wind
farms, the foundations of which must be dimensioned to withstand loads caused
by the, still existing, sea ice. Data on these loads can be obtained both through
experimental campaigns and by using analytical or numerical methods.

To be able to compute ice loads requires a capability to model sea ice fracture.
Modelling sea ice fracture (and failure), reliably, has been an ongoing quest for
decades. A whole series of IUTAM symposia have been devoted to this and
other closely related subjects (Tryde, 1980; Jones et al., 1991; Dempsey and
Shen, 2001)1. A vast number of inelastic constitutive models with various levels
of sophistication – both phenomenological and of an ab initio -type – have been
proposed in the past (Schulson and Duval, 2009).

Figure 1: A snapshot from a simulation in which an originally intact finite-discrete element
ice sheet sample is penetrated by a rigid, flat-ended, cylindrical indenter from below. The
indenter surfaces at the centre. Several radial cracks nucleate at the contact point (on the
upper surface) and start to propagate towards the free edges. A star-shaped pattern of cracks
subsequently appears.

This paper develops a hybrid, three-dimensional finite-discrete element (FE-
DE) method to investigate sea ice sheet fracture and to compute ice loads on

1The last IUTAM symposium on the “Physics and Mechanics of Sea ice” was held in Espoo,
Finland in June 2019 with the proceedings yet to be published.
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an inclined offshore structure. With the method followed here, an ice sheet is
modelled with rigid discrete elements. The mass centroids of the discrete ele-
ments are then connected via an in-plane beam lattice of de-cohesive, viscously
damped, co-rotational Timoshenko beam finite elements, Figures 1 and 2. Frac-
ture is thus modelled with de-cohesive beam finite elements. The paper is a
direct continuation to (Lilja et al., 2019a), where the method was introduced,
but which did not present the technique to describe fracture. This paper ad-
dresses fracture.

After a description of the technique to model fracture, three applications fol-
low. The effective, uniaxial tensile strength of an ice sheet of varying physical
sizes will be computed first, the breakthrough loads and strengths next. The
effect of the loading rate applied on the effective tensile strength will be exam-
ined, applicable scaling rules for both the tensile and the breakthrough strengths
searched for. To conclude, a new “in-direct” approach to study ice-structure in-
teraction is introduced: a truncated, rigid, ascending cone2 is breaking a sea
ice sheet containing a circular hole. The breaking loads are computed and then
compared with known analytical results of a “direct” case.

Traditionally the scheme to study ice-structure interaction has been such
that a moving ice sheet collides unilaterally (one-sidedly) with a stationary off-
shore structure (ship-ice interaction is here excluded). Such an approach is
referred to herein as a “direct” approach. The present study reverses the roles
and somewhat extends the scheme. In the new scheme, a sea ice sheet contain-
ing a circular hole remains stationary, whereas a structure is moving vertically
upwards, surfaces through the hole, and then breaks the sheet. Such a scheme
is referred to herein as an “in-direct” approach. The method is probably best
illustrated by an example: the attached animations, Animation 1 and Anima-
tion 2, depict the scheme but via a generic case; a sheet with a side length of
L = 50 m and a thickness of h = 0.1 m is interacting with a cone having an
upper diameter of five meters and a cone angle of 45 degrees. It can be seen that
with an in-direct approach, a cone is surrounded by ice and the contact zone
extends around the whole circumference (an axisymmetric contact problem). It
will thus be of an interest to explore whether the solution of a seemingly unre-
lated problem with an axisymmetric contact yields results that are comparable
to those of the direct case with a unilateral contact.

The three applications presented above are considered in that order for a
specific purpose. A lattice-based model contains an internal length scale that
affects the mechanical response on the other scales. It is roughly represented
here by the mean size of the discrete elements (that is, the internal hetero-
geneities). The constitutive properties of a lattice on a microscopic scale (i.e.
the properties of individual beams, both elastic and inelastic) are generally dif-
ferent from the “effective” constitutive properties on the meso or macroscopic
scale. The first computed effective tensile strengths of sheets of different sizes
will thus prove to be useful in interpreting the breakthrough strengths, which

2A conical frustum.

3



are then required in interpreting the cone loads.
As to why a conical offshore structure is in this paper examined is motivated

by the following: many offshore structures employ a conical shape near the
waterline because it helps in preventing ice from being crushed. Ice crushing is
known to lead to high local and global loads which must then be transferred to,
e.g., the sea bottom. A conical shape is advantageous as it allows an ice sheet to
fail in bending instead. An ice sheet that fails in bending results in significantly
lower structural loads (Brown and Määttänen, 2009).

1.2. Scope and objectives
The paper is divided in four main “parts.” The first main part, section 3,

presents the development of a new rate-independent, de-cohesive damage model
and then describes its algorithmic implementation. In the second part, subsec-
tion 6.1, the effective, uniaxial tensile strength of an FE-DE ice sheet sample of
varying physical sizes is studied. The dependence of the strength on both the
size of an ice sheet and the loading rate applied is investigated. In the third
part, subsection 6.2, the vertical penetration fracture of an ice sheet loaded by a
rigid, flat-ended, cylindrical indenter is examined. The associated breakthrough
loads and strengths are computed, appropriate scaling rules as regards to the
vertical breakthrough strength searched for. In the fourth part, subsection 6.3,
the breaking of an FE-DE ice sheet sample containing a circular hole by a rigid,
truncated, ascending cone is investigated. The ice loads on the cone associated
with the breaking of the surrounding ice cover are computed and then compared
with loads that can be obtained analytically. These are for the direct case.

The main contents of the paper can be summarized as follows:

1) a new rate-independent, de-cohesive damage model for the fracture mod-
elling of large, cellular, plate-like, quasi-brittle structures is proposed;

2) the effective, uniaxial tensile strength of an FE-DE ice sheet sample of
varying physical sizes is computed;

3) the emerging size and rate dependencies as regards to the effective, uni-
axial tensile strength are investigated;

4) the breakthrough loads and strengths of an FE-DE ice sheet sample of
varying physical sizes are computed;

5) applicable scaling rules as regards to the vertical breakthrough strength
are searched for;

6) the change in the observed failure mode as regards to the vertical pene-
tration fracture is examined; and

7) a new in-direct technique to compute ice loads on an inclined offshore
structure, as well as to investigate the ability of a numerical method to
describe both radial and circumferential cracking, is proposed.

The whole study aims, in essence, to investigate the applicability of the proposed
hybrid FE-DE scheme in modelling sea ice sheet fracture.
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1.3. A brief literature survey and the state-of-the-art

For a brief historical survey of applying an in-plane beam lattice to emulate
plate- or sheet-like behaviour, see (Lilja et al., 2019a). For a fracture-based
overview, see (Bažant and Planas, 1997, Ch. 14.4).

The de-cohesive damage model proposed has its roots in the mid 1970’s. The
kind of an approach was coined, apparently, by (Dougill, 1976). Dougill devel-
oped his theory for a “progressively fracturing solid.” Other exemplary works
of a similar type are, for example, those of Carol et al. (1997); Gálvez et al.
(2002) and Schreyer et al. (2006). In (Carol et al., 1994), such developments
were called as “elastic-degrading” models. What these models have in common
is the fact that the basic machinery of small strain hardening plasticity is readily
applicable (Carol et al., 1994, sec. 3). Softening can be modelled as well; an
adequate element length, however, is required in order to avoid snapback insta-
bility, see (Bažant and Oh, 1983, Eq. 21, p. 164). Note that the “crack band
model” of Bažant and Oh (1983) and the “fictitious crack model” of Hillerborg
et al. (1976), of which the latter will be here partly adopted, are conceptually
equivalent. The main difference is that Bažant and Oh (1983) assume the exis-
tence of a finite width “crack band,” whereas Hillerborg et al. (1976) postulate
the fracture to localize onto a plane.

A concise historical survey on the topic in the second main part (i.e. the
uniaxial tensile strength of a cellular, plate-like structure) is given in (Bažant
et al., 1990), see also (Jirásek and Bažant, 1995). A number of papers, both
analytical and numerical, have been published about the problem in the third
part (i.e. the vertical penetration fracture/failure of a plate) (Bažant and Li,
1994; Bažant and Kim, 1998a,b; Bažant, 2002; Beltaos, 2002; Dempsey et al.,
1995; Dempsey and Vasileva, 2006b,a; Dempsey et al., 2006; Kerr, 1976, 1996; Li
and Bažant, 1994; Lu et al., 2015, 2016; McGilvary et al., 1990; Pushkin et al.,
1991; Slepyan, 1990; Sodhi, 1989, 1995, 1998; Vasileva and Dempsey, 2006). A
hybrid finite-discrete element method has not been, to the authors’ best knowl-
edge, applied before. No papers appear to exist studying a problem similar to
that in the fourth part (i.e. the breaking of a floating plate containing a circular
hole by a surfacing cone). Nevel (1992) gives a clear account of the subject but
with a direct approach. It is believed that the approach here proposed is new.
No historical account is given as regards to the experimental work done on the
problem in the third part. In that matter, see the review papers by Kerr (1976,
1996). Often cited treatises are, however, those of Black (1958); Gold et al.
(1958); Frankenstein (1963, 1966); Meyerhof (1960), and Lichtenberger et al.
(1974).

1.4. Outline of the paper

The rest of the paper is organized in six sections. In section 2, a brief
description of the FE-DE model constructed is given. The de-cohesive damage
model is explained in detail in section 3. In section 4, the simulation setups are
described. A short account of the existing analytical results as regards to the
vertical bearing capacity of an infinite ice sheet and the ice loads on an inclined
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offshore structure are given in section 5. In section 6, the results computed with
the FE-DE approach are presented and discussed. The uniaxial tensile fracture
is studied first. The vertical penetration fracture of a sea ice sheet loaded by
a rigid, flat-ended, cylindrical indenter is examined next. The breaking of a
sea ice sheet containing a circular hole by a rigid, truncated, ascending cone is
investigated last. In section 7, the paper is then drawn to a close.

2. A finite-discrete element model of an ice sheet

This section provides an overview of the model features. A complete descrip-
tion is given in (Lilja et al., 2019a), except of the de-cohesive damage model
that is introduced in this paper.

2.1. Construction of the numerical model

As has been already stated, a sheet is modelled with rigid discrete elements.
The mass centroids of the discrete elements connect then via an in-plane beam
lattice of Timoshenko beam finite elements, Figures 2 and 3. The beam formu-
lation adopted follows mainly (Crisfield, 1997, Ch. 17.1-2): a local, elemental
triad of vectors, Tp,q, associated with a beam finite element p, q, tracks the av-
erage, incremental motions of the discrete elements p and q, and deforms. The
strains in a beam element p, q are given by i) the stretch of the axial vector
component and ii) the changes between the mutual orientations of the axial
and the two in-plane vector components of Tp,q. The curvatures and twist in
a beam element p, q are due to the differing nodal orientations of the discrete
elements p and q. Geometrical non-linearity is taken into account, is due to the
finite displacements and rotations of the discrete elements, yet the deformations
in a beam element are assumed to be small.

The material of the beam finite elements follows Hooke's law. To dissipate
energy, a viscous damping model is used. A rheological equivalent of the ma-
terial model implemented would thus be that of Kelvin-Voigt (a viscoelastic
solid).3 Due to the Timoshenko beam finite elements following a co-rotational
kinematical description (a co-rotational description extracts the rigid body dis-
placement components from the total displacements), the application of a lin-
earised stress-strain relationship – within the co-rotational, elemental frame –
is justified. Once the de-cohesive cracking initiates, the constitutive behaviour,
however, changes. A linearly softening, rate-independent traction-separation
law is subsequently applied.

3There is an unfortunate typo in (Lilja et al., 2019a). The viscous force vector should there
read as (the diagonal matrix had been inadvertently omitted):

~Fmat,c

Tp,q
= c · diag

[

A A A Jx′′x′′ Iy′′y′′ Iz′′z′′
]

Tp,q

{

~̇ε

~̇χ

}

Tp,q

.
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g

x′′
y′′

z′′

x

y

z

~i
~j

~k

local, elemental triad Tp,q

discrete element/node p

discrete element/node q

Gauss/integration point

Timoshenko beam finite element p, q

local, nodal triad beq

local, nodal triad deq

Figure 2: Discrete elements p and q connected with a Timoshenko beam finite element p, q
(adapted from (Lilja et al., 2019a, Fig. 2, p. 2)). The local, nodal triads of a discrete element,
de, and of a beam finite element, be, are depicted in a red and a black colour, respectively.
A global triad of base vectors (with an associated co-ordinate system) in a fixed, inertial
frame of reference is denoted with a symbol g. The symbols x′′, y′′, and z′′ denote the local
co-ordinates of a beam finite element. For a detailed explanation of the nomenclature used,
see (Lilja et al., 2019a).

2.1.1. Mesh creation via a centroidal Voronoi tessellation procedure
A centroidal Voronoi tessellation procedure with a random generating point

set and Lloyd's algorithm, see (Du et al., 1999), is used to produce an un-
structured mesh, Figure 3. Lloyd's algorithm includes an iteration loop during
which the seeds acting as the generators of a Voronoi diagram are incremen-
tally displaced to merge with the centroids of the contiguous Voronoi cells. The
iteration continues until some termination criterion is met. A criterion based
on the minimisation of an associated energy functional with a cut-off tolerance
of ǫ = 10−5 or 500 iteration cycles is here adopted (Talischi et al., 2012, sec.
3). The meshes that had holes were, in this paper, created by the meshing tool
“Polymesher” presented in (Talischi et al., 2012).

As an “end product,” Lloyd's algorithm produces an in-plane tessellation
that consists of only highly regular polygons (convex hexagons, pentagons, and
quadrilaterals). The polygons are next extruded in the out-of-plane direction to
become prismatic polyhedrons. These polyhedrons denote the discrete elements.

With the aid of a Delaunay triangulation scheme, a triangular lattice mesh
of Timoshenko beam finite elements is finally created. On a large enough rel-
ative size scale Lrel (Lrel = L/l), a CVT-tessellated, unstructured Timoshenko
beam lattice behaves as an (in-plane) isotropic medium. This is because the nu-
clei of the Voronoi cells define the beam end nodes and the beam cross-sectional
areas are equal to the areas of the interfaces separating the adjacent discrete ele-
ments (Bolander and Saito, 1998). For a further discussion on mesh dependence
and other mesh related issues, see (Lilja et al., 2019a).
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Figure 3: A CVT-tessellated FE-DE sheet sample with a side length of L = 160 m, a thickness
of h = 1.5 m, and a discrete element size of l = 3h (adapted from (Lilja et al., 2019b, Fig. 3,
p. 3)). The red lines denote the longitudinal axes of the Timoshenko beam finite elements.
The cross-sectional area of each Timoshenko beam finite element gets determined by the area
of the joint surface separating the adjacent discrete elements (in cyan). Figure 26 shows two
examples of the meshes with holes.

2.1.2. Equations of motion
The equations to be solved, for each discrete element (discretely in time),

are the three translational and the three rotational equations of motion (i.e. the
Newton-Euler equations). The semi-discretised equations of motion of an ice
sheet modelled with a hybrid FE-DE method can be written as (for full details
with the coupling terms explicitly presented, see (Lilja et al., 2019a)):

~F int
g,de(~x(t), ~̇x(t), t) +

~F ext
g,de(~x(t), ~̇x(t), t) = Mg,de~̈x(t), (1)

where ~F int
g,de is an internal force vector containing forces and moments (both

viscous and non-viscous) due to the deforming and fracturing beam finite ele-
ments; ~F ext

g,de an external force vector containing forces and moments due to the
contacts, buoyancy, drag, and gravity; ~x(t) a vector containing the translational
and the angular positions of the discrete elements (t denotes time); ~̇x(t) and
~̈x(t) the first and the second time derivatives of ~x(t), respectively; and Mg,de
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a diagonal matrix containing the translational masses and the mass moments
of inertia of the discrete elements. The subindexes “g” and “de” refer here to
the bases the translational and the rotational equations of motion have been
written with respect to, respectively, see Figure 2.

As was stated above, ~F ext
g,de is an external force vector containing forces and

moments due to the contacts, buoyancy, drag, and gravity. The contact scheme
here adopted is identical to the one presented in (Feng et al., 2005) and is thus
not repeated. A linear-type contact energy function, W (V ) = kcV , is applied in
which the overlap volume V is being penalized by a contact stiffness parameter
kc, Table 1. The contact damping forces as well as the buoyant-, drag-, and
the frictional forces are computed as is presented in (Polojärvi et al., 2012, pp.
22-24).

The translational equations of motion are integrated (in time) with a 2nd

order accurate central difference time integration scheme. The rotational equa-
tions of motion with three-dimensional, finite, non-commutative rotations are
integrated with a (modified) 4th order accurate Runge-Kutta scheme (Munjiza
et al., 2003).

The length of a critical time step, ∆tcr (stability limit), can be estimated via
∆tcr = Le/cs = Le/

√

Eb/ρi. Here, Le denotes the length of a Timoshenko beam
finite element; cs a (material-dependent) dilatational/bar wave speed (with νb =
0 and no damping) (Hughes, 1983, pp. 102-104); Eb and νb the Young’s modulus
and Poisson’s ratio given to the Timoshenko beam finite elements, respectively;
and ρi the density of ice. For the actual numerical values, see Table 1 below.
Because of the added viscous damping and the contact computations, the length
of the time step employed, ∆t, has to be, in practice, manually adjusted.

While computing the internal, nodal force vector of an undamaged Tim-
oshenko beam finite element, a resultant-based beam formulation can be em-
ployed (Lilja et al., 2019a). A total, internal stress resultant vector read there
as (with a slightly different notation though):

~F tot
Tp,q

=

{

~P
~M

}tot

Tp,q

= ~Fmat
Tp,q

+ ~Fmat,c
Tp,q

=

{

~P
~M

}mat

Tp,q

+

{

~P
~M

}mat,c

Tp,q

, (2)

where ~Fmat
Tp,q

is a non-viscous and ~Fmat,c
Tp,q

a viscous, internal stress resultant
vector. Eq. (2) gave then, with the principle of virtual work, as the internal,
nodal force vector:

~F int
g,p,q =

{

~P
~M

}int

g

= Bp,q,g

{

~f
~m

}

g

, (3)

where ~fg = Tp,q,g
~P tot
Tp,q

, ~mg = Tp,q,g
~M tot

Tp,q
, and Bp,q,g a strain-displacement

matrix connecting a vector of varied, generalized strains (strains, curvatures,
and twist) with a vector of varied, global, nodal degrees of freedom. For further
details, explanations, and references, see (Lilja et al., 2019a). Eqs. (2) and (3)
can be utilised for a beam undergoing damage as well, but – now – the internal
stress resultants have to be integrated numerically. This is examined next.
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3. Description of fracture

To model damage, the Timoshenko beam finite elements are able to fracture.
A de-cohesive crack (a fictitious crack of Hillerborg et al. (1976)) is allowed to
propagate along an interface separating the adjacent discrete elements, Fig-
ure 4. The moment the cracking initiates, a rate-independent, linearly softening
traction-separation law is activated in order to allow the discrete elements to
separate. The activation is done independently at each integration point along
the cross-section of a beam finite element. Because of the change of the con-
stitutive behaviour once the damage begins, the model can be categorized as
“extrinsic” (Seagraves and Radovitzky, 2010). No new cohesive finite elements
are introduced, just the constitutive behaviour is changed.

g

x′′
y′′

z′′

x

y

z

~i
~j

~k

traction-free (true) crack front

fictitious crack front

integration point “i, j”

Figure 4: A schematic illustration of an advancing de-cohesive (fictitious) crack (adapted
from (Lilja et al., 2017, Fig. 1)). Note that the deformations are highly exaggerated. The white
crosses denote fully damaged integration points. A traction-free (true) crack tip advances
along the cross-section as the integration points get fully damaged. The other features have
been presented and explained in Figure 2.

What will be given in the next subsections follows mostly (Paavilainen et al.,
2009), but takes into account the three-dimensionality of the present model. In
their model, a crack was able to propagate only vertically due to the modelling
space being two-dimensional. Since the space is here three-dimensional, a crack
is able to propagate both horizontally and vertically. A mixed mode fracture
gets treated with by first reducing, via a change of variables, the original three-
component state of stress at an integration point to a one-dimensional “effective”
state of stress and then representing that state of stress with respect to a loading
surface (a failure surface) which degrades (evolves) as a function of an effective
crack-opening displacement measure. The adjacent discrete elements separate
once a beam has fully eroded.

A note before proceeding further is probably in place: a description of frac-
ture with cohesive finite elements – when the crack path is not known in advance
– fails to exhibit energetic convergence. A convergent result is unobtainable with
any reasonable number of elements used (Seagraves, 2013). In other words, the
amount of dissipated fracture energy grows indefinitely as a function of the
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number of elements employed. Seagraves (2013) utilises a DG-based (Discontin-
uous Galerkin) scheme; modelling fracture with extrinsic cohesive finite elements
yields results equivalent to those by a DG-based method.

If a mesh is structured, crack growth with cohesive elements is, in addition,
prone to preferred directions. This is because the artificial toughness induced
by the mesh varies with direction (Rimoli et al., 2012). If a crack cannot evolve
freely, is bound to the interelement (here, the discrete element) boundaries, a
method is, by its very nature, mesh dependent. Crack growth can be rendered
approximately direction independent, i.e. isotropic (but still mesh dependent),
if a CVT-tessellated, unstructured mesh is used (Leon et al., 2014; Spring et al.,
2014). Such meshes exhibit isotropic crack growth although the mesh induced
toughness is still a bit high. For an overview of the use of cohesive finite elements
to describe dynamic fracture, see (Seagraves and Radovitzky, 2010).

3.1. Internal stress resultant vectors
This subsection states the equations of the internal stress resultant vectors

that are needed in computing the internal, nodal force vector ~F int
g,p,q, Eq. (3). In

place of a resultant-based beam formulation that is applicable for an undamaged
beam,(Lilja et al., 2019a), a component-based formulation is now required.

3.1.1. Viscous and non-viscous traction vectors
In this paper, a Timoshenko beam finite element p, q has three both viscous

and non-viscous stress components. A non-viscous traction vector of an integra-
tion point i, j reads as (with base vectors omitted here and also subsequently):

~σi,j,mat
Tp,q

=















σi,j
x′′x′′

τ i,jx′′y′′

τ i,jx′′z′′















mat

Tp,q

=















Ebǫ
i,j
x′′x′′

Gbγ
i,j
x′′y′′

Gbγ
i,j
x′′z′′















mat

Tp,q

=











Eb

(

ǫbx′′x′′ + i,jy′′χb
x′′y′′ + i,jz′′χb

x′′z′′

)

Gb

(

γb
x′′y′′ − i,jz′′χb

x′′x′′

)

Gb

(

γb
x′′z′′ + i,jy′′χb

x′′x′′

)











mat

Tp,q

,

(4)

whereas a viscous traction vector (a vector of strain rates multiplied by a damp-
ing constant c) is given by:

~σi,j,mat,c
Tp,q

=















σi,j,c
x′′x′′

τ i,j,cx′′y′′

τ i,j,cx′′z′′















mat,c

Tp,q

= c















ǫ̇i,jx′′x′′

γ̇i,j
x′′y′′

γ̇i,j
x′′z′′















mat,c

Tp,q

= c











ǫ̇bx′′x′′ + i,jy′′χ̇b
x′′y′′ + i,jz′′χ̇b

x′′z′′

γ̇b
x′′y′′ − i,jz′′χ̇b

x′′x′′

γ̇b
x′′z′′ + i,jy′′χ̇b

x′′x′′











mat,c

Tp,q

.

(5)
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In above, the symbols ǫbx′′x′′ , γb
x′′y′′ , and γb

x′′z′′ denote the components of a
local strain vector ~εTp,q

; the symbols χb
x′′x′′ , χb

x′′y′′ , and χb
x′′z′′ the components

of a local curvature vector ~χTp,q
; and the lowercase x′′, y′′, and z′′ the local co-

ordinates of a Timoshenko beam finite element, see Figure 2. The superscript
“b” is used to stress that the respective quantities are computed on a beam
level. For a succinct description of the kinematics of a Timoshenko beam finite
element, as well as of the sign convention adopted, see (Luo, 2008).

A remark: the uppercase co-ordinates i,jy′′ and i,jz′′ measure the distances
between the points of interest, i.e. the integration points i, j and the neutral
axis. When a cohesive crack advances from one integration point to another, the
position of the neutral axis should get updated accordingly. The implemented
routine here is such that the neutral axis is made to always pass through the
centroid of the undamaged part of a beam’s cross-section. Notice also that in
what follows, the description of fracture is kinematically consistent because the
cracking strains follow directly from the local strain and the curvature vectors.
The components of the local curvature vector are computed by the nodal orien-
tations of the discrete elements, see (Lilja et al., 2019a), and then summed with
the local strains, see Eq. (4).

3.1.2. Viscous and non-viscous internal stress resultant vectors
With the aid of the non-viscous stress components, Eq. (4), a non-viscous,

internal stress resultant vector is formed and reads as (the rightmost vector
is written in a format directly amenable to a numerical integration with the
symbols αi,j denoting integration weights):

~Fmat
Tp,q

=







































Nx′′x′′

Qx′′y′′

Qx′′z′′

Mx′′x′′

Mx′′y′′

Mx′′z′′







































mat

Tp,q

=































































































∑

i,j

f(µ)i,jσi,j
x′′x′′α

i,j

κy′′

∑

i,j

f(µ)i,jτ i,jx′′y′′α
i,j

κz′′

∑

i,j

f(µ)i,jτ i,jx′′z′′α
i,j

κx′′

∑

i,j

f(µ)i,j
(

τ i,jx′′z′′

i,jy′′ − τ i,jx′′y′′

i,jz′′
)

αi,j

∑

i,j

f(µ)i,jσi,j
x′′x′′

i,jz′′αi,j

∑

i,j

f(µ)i,jσi,j
x′′x′′

i,jy′′αi,j































































































mat

Tp,q

. (6)

In Eq. (6), the symbol f(µ)i,j denotes a switch function yielding an output of
f(µ)i,j = µ if an existing true crack is currently closed, whereas it is equal to one
otherwise. The function operates independently at each integration point. The
symbols κy′′ , κz′′ , and κx′′ denote, then, shear correction factors with respect
to the local xy- and xz-planes and a warping correction factor, respectively.
Note that for a solid, square cross-section, the shear and the warping correction
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factors (applied here for non-square cross-sections as well) are practically equal,
i.e. κx′′ ≈ κy′′ = κz′′ = κ = 10(1 + ν)/(12 + 11v), (Freund and Karakoç, 2015;
Cowper, 1966). Only this one specific value is used for all κx′′ , κy′′ , and κz′′ .

In a likewise manner, the viscous stress components, Eq. (5), yield a viscous,
internal stress resultant vector, which reads as:

~Fmat,c
Tp,q

=











































N c
x′′x′′

Qc
x′′y′′

Qc
x′′z′′

M c
x′′x′′

M c
x′′y′′

M c
x′′z′′











































mat,c

Tp,q

=































































































∑

i,j

f(µ)i,jσi,j,c
x′′x′′α

i,j

∑

i,j

f(µ)i,jτ i,j,cx′′y′′α
i,j

∑

i,j

f(µ)i,jτ i,j,cx′′z′′α
i,j

∑

i,j

f(µ)i,j
(

τ i,j,cx′′z′′

i,jy′′ − τ i,j,cx′′y′′

i,jz′′
)

αi,j

∑

i,j

f(µ)i,jσi,j,c
x′′x′′

i,jz′′αi,j

∑

i,j

f(µ)i,jσi,j,c
x′′x′′

i,jy′′αi,j































































































mat,c

Tp,q

. (7)

The computation of the viscous, internal stress resultant vector ~Fmat,c
Tp,q

pro-
ceeds, in practice, as follows: the viscous (generalized) strain components (strain
rates) ǫ̇i,jx′′x′′ , γ̇i,j

x′′y′′ , and γ̇i,j
x′′z′′ , Eq. (5), are computed at each integration point

as simple time difference quotients through the relations of ǫ̇i,jx′′x′′ = (ǫi,j,t+∆t
x′′x′′ −

ǫi,j,tx′′x′′)/∆t, γ̇i,j
x′′y′′ = (γi,j,t+∆t

x′′y′′ − γi,j,,t
x′′y′′)/∆t, and γ̇i,j

x′′z′′ = (γi,j,t+∆t
x′′z′′ − γi,j,t

x′′z′′)/∆t.
The strains with a superscript (·)

t indicate here strains that are known from
the previous time step, whereas those with a superscript (·)

t+∆t denote strains
at the end of the current time step. The latter will be returned by the de-
cohesive damage algorithm. The strain rates so computed will next yield the
components of the viscous traction vector, ~σi,j,mat,c

Tp,q
, which, when substituted

in Eq. (7), produce the viscous, internal stress resultant vector ~Fmat,c
Tp,q

.
Simpson’s two-dimensional, composite numerical integration rule is used in

integrating the internal stress resultant vectors. The integrations are performed
over the original cross-sectional areas of the beam finite elements. In order to
have a consistent integration scheme, the number of integration points is set to
depend on the thickness of a sheet sample considered. A grid of 7 × 7 evenly
distributed integration points (along the cross-sectional co-ordinate directions
y′′ and z′′) is constructed for the sheets with a thickness of h = 0.5 m,4 a grid
of 15 × 15 points for the sheets with a thickness of h = 1.0 m, and a grid of 21
× 21 points for the sheets with a thickness of h = 1.5 m. Note that Simpson’s

4A grid of 9 × 9 points was tested and observed to produce results with a negligible
difference.
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composite integration rule requires an odd number of integration points (or
even number of integration intervals) to be used. It should, however, be noted
that because the cross-sections of the Timoshenko beam finite elements are
not necessarily square, and vary from one beam to another, the discretisation
densities may not be the same in the local y′′ and z′′ co-ordinate directions. The
discretisation of the cohesive process zone may thus unavoidably vary depending
on the direction a crack is advancing and also from one element to another.

The numerically integrated viscous and non-viscous internal stress resultant
vectors ~Fmat,c

Tp,q
and ~Fmat

Tp,q
, respectively, produce then the total, internal stress

resultant vector, ~F tot
Tp,q

, which, when substituted in Eq. (3), yields the internal,

nodal force vector ~F int
g,p,q. The ingredients of the de-cohesive damage model

implemented are described next.

3.2. De-cohesive damage model

This subsection gives the details of the (effective) de-cohesive damage model.
Described are, first, the conversion from the three-component state of stress to
a one-dimensional “effective” state of stress, next the methodology to deal with
an irreversible damage, and finally the procedure to return back to the three-
component state in order to compute the internal stress resultant vectors ~Fmat

Tp,q

and ~Fmat,c
Tp,q

. The relations that follow are first given in a somewhat general
format. Some simplifications deemed to be appropriate, and the implications
thereof, are discussed last in sub-subsection 3.2.4. Note that all the relations
below hold on an integration point level. This is depicted with a symbol “i, j”.

3.2.1. Effective constitutive model
Box 1 gives the basic constituents of the constitutive model. The made

assumptions are that i) the inelastic deformations are small; ii) the total, ef-
fective strain measure, ǫi,jeff , can be – additively – decomposed into an elastic,
ǫi,je,eff, and an inelastic, ǫi,jc.s.,eff (c.s. ∼ “cracking strain”), part, Eq. (8a); and that
iii) an elastic stress-strain relationship holds, Eq. (8b). Eqs. (8c)-(8g) state
relations that are needed in order to deal with an irreversible damage (a se-
cant unloading/reloading relationship is given as well) and are treated later in
sub-subsections 3.2.2 and 3.2.3.

Figure 5 gives a schematic illustration of the effective stress-strain relation-
ship an integration point i, j follows. The figure has been divided in two parts.
The right hand side gives the full, effective stress-strain relationship, whereas the
left hand side depicts only the softening part. The scheme follows, in essence,
that of Hillerborg et al. (1976). While in position “O,” a state of zero effec-
tive stress prevails. On the ascending branch “O-A,” Hooke’s law is active and
a point is virginal. The stress of an integration point evolves there linearly –
either increases or decreases – but the point experiences no damage. Damage
takes place only after point “A” and gets triggered the moment a critical, ef-
fective stress limit, σi,j

cr,eff, is reached. This critical stress limit is an effective
quantity because both axial and shear stresses can initiate damage and because
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the limit evolves (decreases) as damage progresses. A reduced, critical stress
limit is then denoted by a symbol σ̃i,j

cr,eff. On the descending branch “A-C,” a
point undergoes irreversible damage (softens linearly) such that at “C,” a point
is considered to be fully damaged. If, while on the descending branch “A-C,” a
point unloads, a secant unloading/reloading branch “O-B” is followed instead.

Box 1. An effective (one-dimensional), rate-independent, elastic-de-co-
hesive constitutive model with a linear softening law.

1) Additive decomposition of elastic and inelastic (cracking) strains:

ǫi,jeff = ǫi,je,eff + ǫi,jc.s.,eff =
σi,j

eff

Ei,j
eff

+
δi,jeff

L0,p,q
.

2) Elastic stress-strain relationship:

σi,j
eff = Ei,j

eff

(

ǫi,jeff −
δi,jeff

L0,p,q

)

.

3) Flow rules, (linear) softening law, and secant unloading/reloading

relation:

ǫ̇i,jc.s.,eff =
∆δi,jeff

L0,p,q
, δ̇i,jeff ≃ ∆δi,jeff (cracking strain and separation),

σi,j
eff =























σi,j
cr,eff

(

1−
δi,jeff

δi,jcr,eff

)

(linear softening),

σi,j
cr,eff

(

1−
δi,jmax,eff

δi,jcr,eff

)

δi,jeff

δi,jmax,eff

(unloading/reloading).

4) Loading function:

F (σeff, δeff)
i,j

= σi,j
eff − σi,j

cr,eff(δ
i,j
eff ) ≤ 0.

5) Karush-Kuhn-Tucker complementarity conditions:

δ̇i,jeff ≥ 0, F (σeff, δeff)
i,j

≤ 0, and δ̇i,jeffF (σeff, δeff)
i,j

= 0.

6) Consistency (persistency) condition:

δ̇i,jeff Ḟ (σeff, δeff)
i,j

= 0 if F (σeff, δeff)
i,j

= 0.

(8a)

(8b)

(8c)

(8d)

(8e)

(8f)

(8g)

After an integration point has damaged fully, a true crack advances and
frictional contact takes place. Frictional contact continues as long as there are
other integration points along the same cross-section that have not yet damaged
fully. After a beam has fully degraded, the discrete elements joined by the
beam separate and a DEM contact scheme is activated. In practice, a beam is
considered to be fully degraded as soon as a critical number of fully damaged
integration points is reached. A criterion of a form a2 − b = a is applied, where
a is equal to the square root of the total number of integration points along a
cross-section and b denotes the number of fully damaged integration points. For
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example, for the sheets with a thickness of h = 0.5 m, a quadrature of 7 × 7
points was constructed. When the total number of fully damaged integration
points reaches 42 (72−42 = 7), a beam is considered to be fully degraded. Such
a simplification is necessary in order to avoid a situation where, for instance, a
beam in pure bending does not degrade fully unless a large shear or tensile stress
acts that causes the last integration points along the outermost section of a beam
to fully damage. Pure bending alone cannot damage the last integration points
because the position of the neutral axis is updated when a crack is propagating.

Before proceeding further, it is noted that the model, in fact, closely resem-
bles a one-dimensional, rate-independent plasticity model that includes a linear,
isotropic hardening law (a strain-driven problem in an effective stress space).
See, for example, (Simo and Hughes, 1998, Box 1.2, p. 11). A few differences,
however, exist. In the present model, the material does not harden but softens;
no purely compressive failure is modelled; no permanent strains remain if an
integration point unloads completely (a fictitious crack closes); and upon full
damage, a true crack forms with frictional contact taking place afterwards.

Box 2 states the relationships the constitutive parameters shown in Figure 5
and given in Box 1 follow. The parameter Ei,j,⋆

eff is an effective secant modu-
lus (in terms of effective stresses and strains), Di,j

eff a damage index, Ei,j
T,eff a

tangent modulus, Ki,j
S,eff a softening modulus, Ki,j

eff an effective secant modulus
(in terms of effective stresses and separations), and Gi,j

eff an effective, specific
fracture energy parameter. The symbols δi,jeff , δi,jmax,eff, δi,jcr,eff, σcr, τcr, and L0,p,q

denote, in addition, an effective crack-opening displacement measure (COD); an
effective, maximum crack-opening displacement measure; an effective, critical
crack-opening displacement measure; a critical axial stress parameter; a critical
shear stress parameter; and the length of a Timoshenko beam finite element
p, q in the initial, strain-free configuration; respectively. Note that δi,jmax,eff is,
in essence, an internal state variable keeping record of the maximum damage
an integration point i, j has suffered thus far. It is, in this respect, perfectly
analogous to, for example, the effective plastic strain in small strain hardening
plasticity. Notice also that the effective, specific fracture energy parameter Gi,j

eff

corresponds to the total amount of energy dissipated during de-cohesive soft-
ening and is equal to the area highlighted in red in Figure 5. It is, as well, an
effective quantity because of its association with a mixed mode fracture (viz., a
fracture does not necessarily occur in mode I only).

Box 3 gives the relationships the effective stress measure, the effective (elas-
tic) strain measure, and the effective Young’s modulus depicted in Box 1 and
shown in Figure 5 follow. The expression of the effective stress measure fol-
lows from a manipulation of the loading function given in Eq. (11a) below.
By adopting an expression of the form given in Eq. (9a), a particularly sim-
ple one-dimensional representation for the loading function results, Eq. (11b).
The expression of the effective, elastic strain measure, Eq. (9d), follows then
simply by assuming a form similar to that of the effective stress measure. The
relationships σi,j

x′′x′′ = Ebǫ
i,j
x′′x′′ , τ i,jx′′y′′ = Gbγ

i,j
x′′y′′ , and τ i,jx′′z′′ = Gbγ

i,j
x′′z′′ have

been utilised in the manipulations, see Eq. (4). The expression of the effective
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Young’s modulus, Ei,j
eff , follows finally by taking a quotient of the effective stress

and strain measures, Eq. (9e). It has been here given as a function of the local
strains and the critical stresses. Note that Ei,j

eff relates the effective stress, σi,j
eff ,

to the effective, elastic strain, ǫi,je,eff, on the ascending branch “O-A,” see Figure 5.

σi,j
cr,eff

σ̃i,j
cr,eff

Gi,j
effσi,j

eff = σi,j
eff (δ

i,j
eff ) σi,j

eff = σi,j
eff (ǫ

i,j
eff)

δi,jcr,effδi,jmax,eff

δi,jeff ǫi,jeff

δi,jeff = 0

O O

A A

B B

C C

ǫi,jc.s.,eff = 0
ǫi,jc.s.,cr,eff

ǫi,jc.s.,max,eff = δi,jmax,eff/L0,p,q

ǫi,je,eff = σi,j
eff/E

i,j
eff

ǫi,jc.s.,max,effǫi,jeff = 0

Ei,j
eff

-Ei,j
T,eff

-Ki,j
S,eff

Ki,j
eff Ei,j,⋆

eff

1 1

11

1

unloading
unloading

frictional contact

frictional contact

reloading

reloading

damage loading damage loading

σi,j
eff , δi,jeff σi,j

eff , ǫi,jeff

Box 2. The relationships the constitutive parameters shown in the figure follow.

Ei,j,⋆
eff = Ei,j

effD
i,j
eff , Di,j

eff =

(

1−
δi,jmax,eff

δi,jcr,eff

)

, Ei,j
T,eff =

Ei,j
effK

i,j
S,eff

Ei,j
eff −Ki,j

S,eff

,

Ki,j
S,eff =

(σi,j
cr,eff)

2L0,p,q

2Gi,j
eff

, Ki,j
eff =

σ̃i,j
cr,eff

δi,jmax,eff

, Gi,j
eff =

∫ δi,j
cr,eff

0

σi,j
effdδ

i,j
eff =

σi,j
cr,effδ

i,j
cr,eff

2
.

Figure 5: A schematic illustration of an effective, rate-independent, elastic-de-cohesive consti-
tutive model with a linear softening law. On the left: an effective, linearly softening traction-
separation law in terms of σi,j

eff
and δi,j

eff
; on the right: an effective stress-strain law in terms

of σi,j
eff

and ǫi,j
eff

. Box 2 gives the relationships the different constitutive parameters shown in

the figure follow. The expressions of the effective stress measure, σi,j
eff

; effective, elastic strain

measure, ǫi,j
e,eff

; and the effective Young’s modulus, Ei,j
eff

, on the ascending branch “O-A,” have

been given in Box 3. The expressions of the effective stress measures on the descending, “A-C,”
and on the unloading/reloading, “O-B,” branches have been given in Box 1.
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Box 3. Effective stress, strain, and Young’s modulus.

Effective stress in terms of local stresses:

σi,j
eff = σi,j

x′′x′′ +
σcr

(

(τ i,jx′′y′′)2 + (τ i,jx′′z′′)2
)

τ2cr
.

Effective stress in terms of local strains:

σi,j,†
eff = Ebǫ

i,j
x′′x′′ +

G2
bσcr

(

(γi,j
x′′y′′)2 + (γi,j

x′′z′′)2
)

τ2cr
.

Effective, elastic strain in terms of local strains:

ǫi,je,eff = ǫi,jx′′x′′ +
ǫi,jx′′x′′,cr

(

(γi,j
x′′y′′)2 + (γi,j

x′′z′′)2
)

(γi,j
x′′y′′,cr)

2 + (γi,j
x′′z′′,cr)

2
.

Effective, elastic strain in terms of local strains and critical stresses:

ǫi,j,†e,eff = ǫi,jx′′x′′ +
G2

bσcr

(

(γi,j
x′′y′′)2 + (γi,j

x′′z′′)2
)

2Ebτ2cr
.

Effective Young’s modulus in terms of local strains/critical stresses:

Ei,j
eff =

σi,j,†
eff

ǫi,j,†e,eff

=
2Eb

(

τ2crEbǫ
i,j
x′′x′′ +G2

bσcr

(

(γi,j
x′′y′′)2 + (γi,j

x′′z′′)2
))

2Ebτ2crǫ
i,j
x′′x′′ +G2

bσcr

(

(γi,j
x′′y′′)2 + (γi,j

x′′z′′)2
) .

(9a)

(9b)

(9c)

(9d)

(9e)

3.2.2. Loading function
A de-cohesive loading function introduced by Schreyer et al. (2006) is here

adopted. Schreyer’s loading function is advantageous as it enables both the axial
and the shear stresses to be taken into account. Box 4 gives the equations of the
loading function, the effective loading function, as well as an interpretation of the
effective loading function in terms of a flow stress. A schematic representation
of an evolving loading surface (a failure surface) is then given in Figure 6.

The modelling of the ice sheet failure is, in the present model, limited to
the modelling of failure either in tension, shear, their combination, or the com-
bination of compression and shear. No purely compressive failure (i.e. ice
crushing with σx′′x′′ < 0 while τx′′y′′ = τx′′z′′ = 0 simultaneously holds) is
modelled. Some compressive inelasticity is heuristically modelled through the
contact damping, but it becomes effective only after a beam has fully eroded
(i.e. during the DEM-phase). Notice that the fictitious crack model of Hiller-
borg et al. (1976) is not meant for modelling purely compressive failure. Ice
crushing is an important topic, see (Schulson and Duval, 2009), but ought not
to play a significant role in the present context.

The constitutive status of an integration point can be monitored by following
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the value the loading function attains. The following three values are possible:

F i,j =











< 0 , if a virgin or in a secant unloading/reloading/“stationary” state,
0 , if in a damage loading, secant unloading, or a neutral state,
> 0 , if the state of stress is inadmissible.

(10)

In above, and also below, F i,j ∼ F (σeff, δmax,eff)
i,j . About how is it in practice

determined, in which state a point is, is explained in the next sub-subsection.

Box 4. Schreyer’s loading function.

Loading function:

F (~σmat
Tp,q

, δmax,eff)
i,j =

σi,j
x′′x′′

σcr
+

(τ i,jx′′y′′)2 + (τ i,jx′′z′′)2

τ2cr
+

δi,jmax,eff

δi,jcr,eff

− 1.

Effective loading function:

F (σeff, δmax,eff)
i,j

= σi,j
eff − σi,j

cr,eff

(

1−
δi,jmax,eff

δi,jcr,eff

)

≤ 0.

Interpretation in terms of a flow stress:

F (σeff, δmax,eff)
i,j

= σi,j
eff − σi,j

cr,eff(δ
i,j
max,eff) ≤ 0.

(11a)

(11b)

(11c)

In addition to the loading function, relations describing restrictions that
must be satisfied, whether the material is suffering damage or not, are required.
Such restrictions are provided by the Karush-Kuhn-Tucker (KKT) complemen-
tarity (optimality) conditions, Eq. (8f), and the persistency condition, Eq. (8g).
The first two KKT conditions assert that dissipation (i.e. damage growth)
should occur only when the loading function F (σeff, δmax,eff)

i,j
= 0. The last

condition declares that the current stress point must lie on or below the cur-
rent loading surface. The consistency (persistency) condition demands finally
that the relaxed stress point must be consistent with, and therefore lie, on the
reduced, final loading surface. The condition yields, analogously to plasticity, a
crack opening displacement increment (∼ a consistency parameter/plastic mul-
tiplier), Eq. (15a). Most of the different constitutive states an integration point
can be in have been illustrated in Eq. (12) (no rates of F i,j have been here
considered). Those that have not, have been described in the next paragraph.


























































F i,j > 0 ⇔ inadmissible state of stress,

F i,j = 0 and











δ̇i,jeff < 0 ⇔ secant unloading,
δ̇i,jeff = 0 ⇔ neutral loading,
δ̇i,jeff > 0 ⇔ damage loading,

F i,j < 0 and



















δ̇i,jeff < 0 ⇔ secant unloading,

δ̇i,jeff = 0 and

{

δi,jmax,eff = 0 ⇔ virginal state,
0 < δi,jmax,eff < δi,jcr,eff ⇔ “stationary” loading,

δ̇i,jeff > 0 ⇔ secant reloading.

(12)
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Note that existing damage is required for an integration point to be in a
secant unloading, secant reloading, or a “stationary” loading state if F i,j < 0.
A further detail to be noticed (not stated in Eq. (12)) is that if F i,j < 0 and
σi,j
x′′x′′ < 0, the assumption of a virginal material is made regardless the previous

state (either a virgin or partly damaged). If in a partly damaged state, the
material is thus able to heal. For a point to be in a frictional loading state
(frictional contact in Figure 5, also not stated in Eq. (12)) requires that a true
crack exists, is currently closed, and is under a compressive state of stress. The
frictional contact forces are then computed through Eqs. (6) and (7) by setting
f(µ)i,j = µ. For a virginal material – as well as for a fully unloaded, partly
damaged material – f(µ)i,j = 1.

3.2.3. Evolving damage – stress state computation
In order to determine whether a stress state is within an elastic domain,

F (σeff, δmax,eff)
i,j

< 0, on the loading surface, F (σeff, δmax,eff)
i,j

= 0, or inad-
missible, F (σeff, δmax,eff)

i,j
> 0, a trial, elastic stress predictor is computed via

an “elastic predictor step,” Box 5. If it holds that F (σeff, δmax,eff)
i,j,trial
t+∆t < 0, a

point is either a virgin or in a secant unloading, secant reloading, or a station-
ary loading state. In the simplest case of a virginal material, the stress state is
accepted as it is, no updates or transformations are necessary. If on the secant
unloading/reloading branch, an existing effective, fictitious crack either closes
or opens. The effective crack opening displacement, δi,jeff , can in this case be
computed directly by Eq. (8a) because the total, effective strain, ǫi,jeff , is known
and requires no corrections. The effective stress follows then from Eq. (8d) and
is next transformed back to the local stress and strain components following a
transformation similar to that explained below, see Box 7. Note that on the
unloading/reloading branch, an effective crack opening displacement increment
does not lead to an increased damage. The maximum, effective crack opening
displacement, δi,jmax,eff, increases only on the descending branch “A-C,” Figure 5.

If, on the contrary, it holds that F (σeff, δmax,eff)
i,j,trial
t+∆t > 0, damage pro-

gresses. The state of stress is such that a relaxation (return) onto a new, re-
duced loading surface (to be simultaneously determined) is required. This is
accomplished via a “damage corrector step,” Box 6. Note that in the two(three)-
dimensional, local stress space, Figure 6, the return direction will not be per-
pendicular to the loading surface. The flow rule is non-associative, the existence
of a spherical damage potential function Qi,j , Qi,j 6= F i,j , is thus postulated. In
an effective stress space, the return direction will, on the contrary, be perpendic-
ular to the loading “surface,” see Figure 7. With the aid of the damage corrector
step, a new i) (true) crack opening displacement increment; ii) relaxed, effec-
tive stress; and iii) a (true) maximum, effective crack opening displacement can
then be computed. A new, reduced loading surface, F (σeff, δmax,eff)

i,j
t+∆t = 0, is

simultaneously determined.
A remark: the denominator in Eq. (15a), Box 6, yields an upper limit for

the element length. The condition must be satisfied in order to avoid snapback
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σi,j,trial

x′′x′′,t+∆t
, τ i,j,trial

x′′y′′,t+∆t

σi,j,trial

x′′x′′,t+2∆t
, τ i,j,trial

x′′y′′,t+2∆t

σi,j,⋆

x′′x′′,t+∆t
, τ i,j,⋆

x′′y′′,t+∆t

σi,j,⋆

x′′x′′,t+2∆t
, τ i,j,⋆

x′′y′′,t+2∆t

I , VII , VI

III , VII IV , VIII

Figure 6: A schematic representation of evolving de-cohesive loading and damage potential
surfaces in a two-dimensional, local stress space. A three-dimensional representation follows
from a simple rotation around the “τ i,j

x′′y′′
/τcr = 0” axis. Note that no purely compressive

failure (i.e. ice crushing with σx′′x′′ < 0 while τx′′y′′ = τx′′z′′ = 0 simultaneously holds) is
modelled. The stress components with a superscript “⋆” denote stresses that have been relaxed

to the new, reduced loading surface F
(

σeff, δmax,eff

)i,j

t+n∆t
= 0. Note also that the flow rule

is non-associative in a two(three)-dimensional, local stress space, but can be interpreted to be
associative in an effective (one-dimensional) stress space, see Figure 7.

instability. Written out full, the condition reads as:

L0,p,q <
2Gi,j

effE
i,j
eff

(σi,j
cr,eff)

2
= 2Ich. (13)
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The limiting case, i.e. L0,p,q = 2Gi,j
effE

i,j
eff /(σ

i,j
cr,eff)

2, corresponds to a sudden
vertical stress drop because the tangential modulus Ei,j

T,eff 7→ −∞ (since Ki,j
S,eff 7→

−Ei,j
eff ), (Bažant and Oh, 1983). Note that the parameter Ich is, in fact, Irwin’s

(or Hillerborg’s) characteristic length, see subsection 6.1 below.

Box 5. Elastic predictor step.

Compute:

1) trial crack-opening displacement (t denotes previous time step):

δi,j,trialmax,eff,t+∆t = δi,jmax,eff,t,

2) trial stress:

σi,j,trial
eff,t+∆t = Ei,j

eff

(

ǫi,jeff,t+∆t −
δi,j,trialmax,eff,t+∆t

L0,p,q

)

, and

3) test the loading function:

F (σeff, δmax,eff)
i,j,trial
t+∆t = σi,j,trial

eff,t+∆t − σi,j
cr,eff

(

1−
δi,j,trialmax,eff,t+∆t

δi,jcr,eff

)

.

(14a)

(14b)

(14c)

Box 6. Damage corrector step.

Find the new:

1) crack opening displacement increment (consistency parameter):

∆δi,jmax,eff =
F (σeff, δmax,eff)

i,j,trial
t+∆t L0,p,q

Ei,j
eff −Ki,j

S,eff

> 0,

2) relaxed, effective stress:

σi,j
eff,t+∆t =

[

1−
∆δi,jmax,effE

i,j
eff

L0,p,q|σ
i,j,trial
eff,t+∆t|

]

σi,j,trial
eff,t+∆t,

3) maximum, effective crack opening displacement:

δi,jmax,eff,t+∆t = δi,jmax,eff,t +∆δi,jmax,eff, and

4) the reduced loading surface F (σeff, δmax,eff)
i,j
t+∆t = 0.

(15a)

(15b)

(15c)

(15d)

After a “damage corrector step” has been taken, the value of the relaxed,
effective stress (a scalar) is known, Eq. (15b). The values of the relaxed strain
components are, however, not known. In order to be able to compute the internal
stress resultant vectors, Eqs. (6) and (7), these must be determined. Their
values can be found via a requirement that the return mapping satisfies the
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conditions given in Eqs. (16) below (the function sgn (·) denotes there a signum
function, i.e. sgn (·) = (·) /| (·) |). The conditions state, in essence, that the two
traction vectors (trial and relaxed) must be coaxial and that their components
shall have equal signs. Note that these requirements are enforced in the three-
dimensional, local stress space, Figure 6. In terms of analytic geometry, the
problem reduces to finding the intersection point of the new, reduced loading
surface, F (σeff, δmax,eff)

i,j
t+∆t = 0, and the trial traction vector. The end result is

a set of three quadratic equations whose solutions are given in Box 7. Note that
these solutions are for the stress and strain components in the octants I, IV , V ,
and V III, Figure 6. Similar relations hold in the other four octants as well. The
strains in Box 7 are subsequently substituted in Eqs. (6) and (7) for a numerical
integration of the internal stress resultant vectors ~Fmat

Tp,q
and ~Fmat,c

Tp,q
. These, and

Eq. (2), produce then the internal, nodal force vector ~F int
g,p,q,t+∆t, Eq. (3). To

conclude, ~F int
g,p,q,t+∆t is substituted in the equations of motion, Eq. (1), to evolve

the system in time. This accomplishes the formulation.

F trial = 0

F trial < 0

during an “elastic predictor step”

after a “damage corrector step”

F trial > 0

F trial > 0F red. = 0

σi,j
eff

σi,j
eff

σi,j
eff = 0

σi,j
eff = 0

σ̃i,j
cr,eff,t

σ̃i,j
cr,eff,t+∆t

σi,j,trial
eff,t+∆t

σi,j,trial
eff,t+∆t

∆σi,j
eff , ∆δi,jmax,eff

|
∂F i,j

t

∂σi,j

eff,t

|

| ∂F red.

∂σi,j

eff,t+∆t

|

w

w

w

w

�

Figure 7: A schematic illustration of an evolving de-cohesive loading “surface” in an effec-

tive stress space. Presented are the trial, F trial = F
(

σeff, δmax,eff

)i,j,trial

t+∆t
, and the reduced,

F red. = F
(

σeff, δmax,eff

)i,j

t+∆t
= 0, loading surfaces. A return mapping is “radial” in an effec-

tive stress space (the relaxed stress point is on a plane tangent to the reduced loading surface,

the normal of which is given by the gradient | ∂F red.

∂σ
i,j

eff,t+∆t

|).
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Algorithm 1 below gives a simplified pseudo-code of the constitutive algo-
rithm. On a beam level, the loop runs as long as the number of fully damaged
integration points is below the criterion given in sub-subsection 3.2.1 above. Af-
ter a beam has fully eroded (the criterion has been satisfied), the hybrid FE-DE
scheme turns into a pure DEM scheme – adjacent discrete elements separate
and start to interact through contacts. On a mesh level, the loop runs as long
as there are beams that have not yet degraded fully.


























τ i,j,⋆x′′y′′

σi,j,⋆
x′′x′′

=
τ i,j,trialx′′y′′

σi,j,trial
x′′x′′

,
τ i,j,⋆x′′z′′

σi,j,⋆
x′′x′′

=
τ i,j,trialx′′z′′

σi,j,trial
x′′x′′

,
τ i,j,⋆x′′z′′

τ i,j,⋆x′′y′′

=
τ i,j,trialx′′z′′

τ i,j,trialx′′y′′

,

sgn(σi,j,⋆
x′′x′′) = sgn(σi,j,trial

x′′x′′ ), sgn(τ i,j,⋆x′′y′′) = sgn(τ i,j,trialx′′y′′ ), and

sgn(τ i,j,⋆x′′z′′) = sgn(τ i,j,trialx′′z′′ ).

(16)

Box 7. Relaxed, local stress and strain components.

Compute new:

1) relaxed, local stress components:

σi,j,⋆
x′′x′′ = σi,j,◦

x′′x′′τcrA, τ i,j,⋆x′′y′′ = τ i,j,◦x′′y′′τcrA, and τ i,j,⋆x′′z′′ = τ i,j,◦x′′z′′τcrA,

2) relaxed, local strain components:

ǫi,j,⋆x′′x′′ = σi,j,⋆
x′′x′′/Eb, γi,j,⋆

x′′y′′ = τ i,j,⋆x′′y′′/Gb, and γi,j,⋆
x′′z′′ = τ i,j,⋆x′′z′′/Gb,

where

A =

−σi,j,◦
x′′x′′τcr +

√

(σi,j,◦
x′′x′′τcr)2 + 4σcrσ

i,j,⋆
eff

(

(τ i,j,◦x′′y′′)2 + (τ i,j,◦x′′z′′)2
)

2σcr

(

(τ i,j,◦x′′y′′)2 + (τ i,j,◦x′′z′′)2
) ,

and (·)
i,j,◦

= (·)
i,j,trial

.

(17a)

(17b)

(17c)

3.2.4. Some simplifications and observations
It is, in practice, computationally heavy – and perhaps even unnecessary

– to update the values of the effective Young’s moduli Ei,j
eff at each integration

point and at each time step taken separately. A look in Eq. (9e) reveals that in a
state of uniaxial tension (i.e. when γi,j

x′′y′′ = γi,j
x′′z′′ = 0) Ei,j

eff = Eb. The effective
Young’s moduli were thus not computed and updated as was just discussed, but
were, bluntly, set to equal the Young’s modulus Eb given to the Timoshenko
beam finite elements. The scheme should work well in tension – which ought to
be the dominant fracture mode – but to result in an artificially brittle response
in shear. This is because Eb/Gb ≈ 2.6 and so smaller strains lead to a damage.
The ratio Eeff/Gb would be, in fact, twice as large (if not scaled to yield a unity).
It is to be noticed, however, that because the stiffness of an ice sheet modelled
with a lattice-based approach is a relative quantity, (Lilja et al., 2019a), it is a
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rather complicated task (and possibly impossible if a lattice is unstructured) to
predict the “true” onset of damage. The effective stiffnesses (the values of which
depend on the relative sheet size parameter L/l) affect the computed strains,
which are, then, driving the damage. In other words, damage will generally not
initiate on strain levels one would expect. The problem belongs, therefore, to
the realm of multiscale problems.

Another question is that of the secant modulus Ei,j,⋆
eff . Notice that the elas-

tic stiffness applied in computing the stresses does not evolve as the damage
progresses, Eqs. (8a) and (8b). A damaged, effective secant modulus Ei,j,⋆

eff is
employed (effectively) only on the secant unloading/reloading branch “O-B,”
Figure 5. Once back on the effective stress-strain curve (point “B” in Figure 5),
the virginal stiffness, i.e. Eb, is fully recovered. In terms of different “types”
of uniaxial softening models, see (Bažant and Planas, 1997, sec. 8.4, p. 228),
the model thus falls into the category of “mixed” models. For such models, it is
typical that both the strength limit and the elastic moduli suffer damage. In the
current model, a decreased stiffness is applied (effectively), however, only on the
secant unloading/reloading branch and not otherwise. Note that in plasticity,
from where most of the formulation has been adopted from, the elastic stiffness
does not change.

It is interesting to note what would happen if the elastic stiffness would be
decreased. In order for the softening process to remain stable (i.e. no snapback
instability), Eq. (13) must be satisfied. A look into the equation reveals that
the upper limit for the element length is, in fact, a monotonically decreasing
function of Ei,j

eff . In case the stiffness would be decreased, the element length
should thus get (adaptively) decreased as well. In the limit, the element length
L0,p,q 7→ 0 because Ei,j

eff 7→ 0. Such a requirement is obviously not acceptable.
It would thus be necessary to either stop updating the modulus well before the
stability limit is reached or choose not to update it at all. This last option is,
in a sense, what was done also here.

A final remark: if the effective Young’s modulus Ei,j
eff of an integration point

would be computed by Eq. (9e), it would necessarily be a function of the distance
from the neutral axis because the local strains ǫi,jx′′x′′ , γi,j

x′′y′′ , and γi,j
x′′z′′ are linear

functions of the distance parameters i,jy′′ and i,jz′′, see Eqs. (4). The flexural
rigidity of an ice sheet could thus be made to vary across the thickness, an aspect
that was discussed in (Kerr and Palmer, 1972). Note, however, that the Young’s
modulus of an ice sheet varies usually linearly across the thickness because of
the temperature difference between the bottom and the top surfaces.
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Algorithm 1: A simplified pseudocode of the constitutive algorithm.

Input: δ
i,j
cr,eff, δi,jmax,eff,t, ~εTp,q ,t+∆t, and the parameters in Box 1-Box 7.

Output: assembled internal, nodal force vector ~F int
g,t+∆t.

1 while t < tend do

2 for each Timoshenko beam finite element p, q do

3 if not fully degraded then

4 for each integration point i, j do

5 Local stresses and strains, Eq. (4).

6 if δ
i,j
max,eff,t < δ

i,j
cr,eff then

7 Elastic predictor step, Box 5.

8 if F (σeff , δmax,eff)
i,j,trial
t+∆t < 0 then

9 if δ
i,j,trial
max,eff,t+∆t

= 0 then

10 Virginal state. Set f (µ)i,j = 1.

11 else if δ
i,j,trial
max,eff,t+∆t

> 0 and σ
i,j

x′′x′′ ≥ 0 then

12 Secant unloading/reloading state, Box 1.
13 else

14 Virginal state. Set f (µ)i,j = 1.
15 end

16 else

17 Damage loading state.
18 Damage corrector step, Box 6.
19 Relaxed stresses and strains, Box 7.

20 end

21 else

22 Frictional state. Set f (µ)i,j = µ.
23 end

24 end

25 else

26 Internal, nodal force vector ~F int
g,p,q,t+∆t = ~0, continue.

27 end

28 if new fully damaged integration points then

29 A crack advances.
30 Update the position of the neutral axis.

31 end

32 Stress resultant vectors ~Fmat
Tp,q ,t+∆t and ~F

mat,c
Tp,q ,t+∆t, Eqs. (6)-(7).

33 Internal, nodal force vector ~F int
g,p,q,t+∆t, Eq. (3).

34 end

35 Assembled internal, nodal force vector ~F int
g,de,t+∆t.

36 Evolve the system in time, Eq. (1).

37 end
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4. The sheet samples examined and the simulation setups

This section gives the simulation setups of the load cases analysed. The
main features are presented and the boundary conditions applied discussed. The
section begins, however, with a description of the sheet samples investigated,
after which the simulation setups follow.

4.1. The sheet samples examined

Figure 8 presents the sheet samples examined. The samples are square;
have a side length of either L = 10, 20, 40, 80, or 160 m; a thickness of either
h = 0.5, 1.0, or 1.5 m; a discrete element size of either l = 2h or 3h (defined as an
average diameter of the circumscribed circles of the polygonal discrete elements
in each mesh); and float on a buoyant foundation. Due to CVT, the beam finite
elements are of approximately the same “sizes” as the discrete elements (i.e.
Le ≈ l). In the case of a fracture, each broken fragment should thus have, at
the minimum, a size comparable with actual block sizes measured from ridge
sails (Kankaanpää, 1988; Høyland, 2007; Kulyakhtin, 2014). Ten randomized
CVT meshes were created for each case (∼ a sheet “type”), excluding the case
with L = 160 m, h = 0.5 m, and l = 2h in Load cases A1 and A2 (to be defined
below) for which only six meshes were produced.

L

L
A

B

Figure 8: The FE-DE sheet samples examined. The sheets have an in-plane size range of 1:16
and are shown here in scale (reproduced from (Lilja et al., 2019a, Fig. 4, p. 6)). From left
to right: L = 10, 20, 40, 80, and 160 m. The three thin horizontal lines atop each sample
denote the thicknesses studied. From top to bottom: h = 1.5, 1.0, and 0.5 m. The largest
sample on the right shows, as an example, sections of the two meshes that have the most and
the least amount of discrete elements for that particular sheet “type.” Mesh “A” has 29561
discrete elements (L = 160 m, h = 0.5 m, and l = 2h), whereas mesh “B” has 1460 discrete
elements (L = 160 m, h = 1.5 m, and l = 3h). In Load cases A1, A2, and B1 all the sheets
shown are examined. In Load cases B2, C1, and C2 only the largest sheets (L = 160 m) are
studied. In Load cases C1 and C2, the sheets have, in addition, circular holes, see Figure 26.
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4.2. Uniaxial tensile fracture
The effective, uniaxial tensile strength of an FE-DE sheet sample was com-

puted by conducting a tensile test, Figure 9. All the sheets in Figure 8 were
examined. The nodes on the right and left boundaries of a specimen were pulled
into the positive and negative global x co-ordinate directions, respectively, until
a sheet was completely fractured. Each sheet was loaded in displacement con-
trol. In order to prevent early fracture near the boundaries (and to start the
simulations with an approximately constant rate of initial longitudinal strain),
a linearly changing initial velocity field, ~vx(x, y, 0) = 2|vx|x~i/L, was established
in each specimen. A similar procedure was followed in (Miller et al., 1999).
In order to examine the effect of the applied loading rate, the computations
were repeated at two different displacement rates. The rates had the magni-
tudes of |vx| = 0.1 (Load case A1) and 0.01 m/s (Load case A2). As L was
varied, the strain rates varied then as ǫ̇ = 2|vx|/L. Post-fracture contacts were
not computed, nor were the buoyant-, drag, or the gravitational forces consid-
ered. The Timoshenko beam finite elements were, however, allowed to fracture.
For an explanation as to why post-fracture contacts were not considered, see
sub-subsection 6.1.2.

Load case A

L

L

-vx~i

-vx L/2

L/2 vx
vx~i

x

y

~i

~j

Figure 9: A schematic illustration of a simulation setup in Load case A (adapted from (Lilja
et al., 2019a, Fig. 5, p. 8)).

The strength of an FE-DE sheet sample was next evaluated through σcr,eff =
Fmax
x /A0, where Fmax

x denotes the scalar component of a computed resultant re-
action force vector in the global x co-ordinate direction (the recorded maximum
value) and A0 the initial cross-sectional area of the sheet sample (A0 = Lh).
The force component Fmax

x was computed for each sheet sample by summing up
the global x co-ordinate direction components of the internal, nodal force vec-
tors of the beams having nodes either on the right or left boundary. The choice,
in practice, proved to be immaterial, see Figure 10. Figure 10 depicts, as an
example, typical resultant force time histories recorded. The force Fx (recorded
every 0.001 s) evolved, in each case, approximately linearly up until the onset

28



(a) |vx| = 0.1 m/s, tend = 0.1 s (Load case A1).

(b) |vx| = 0.01 m/s, tend = 0.35 s (Load case A2).

Figure 10: Example resultant force time histories recorded in Load case A, Figure 9. There
are 20 results in both figures (10 sheets with results from both ends; L = 160 m, h = 1.5 m,
and l = 3h). Note that the force components Fx have been plotted here with equal signs and
that the recorded values do not start from zero because of the applied initial conditions, see
Figure 9.
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of damage. Afterwards, it dropped sharply. Before the onset of damage, the
responses thus appeared quasi-static.

4.3. Vertical penetration fracture

Two load cases were studied, denoted as B1 and B2. In Load case B1, the
samples were let to float freely, whereas in Load case B2, the outer boundaries of
an FE-DE sheet sample were constrained with pinned boundary conditions (i.e.
it was set that the displacements ux = uy = uz = 0 along the outer boundaries).
In Load case B1, all the sheets shown in Figure 8 were studied. In Load case
B2, only the largest sheets (L = 160 m) were examined. The purpose of Load
case B2 was to examine whether the largest sheets are large enough to mimic
an “infinite” ice sheet. If so, the boundary conditions should have no significant
effects. Notice that a pinned boundary condition prevents in-plane Poisson’s
effect in contrast to, for example, a simply supported boundary condition.

In each simulation, a sheet sample examined was in an initial equilibrium; the
gravitational-, buoyant-, drag-, and the contact forces were taken into account;
and the Timoshenko beam finite elements were allowed to fracture.

Load case B
g

L

h

D

vz~k

x

z

~i

~k

Indenter

Ice sheet
Initial clearance δ0 = 0

Figure 11: A schematic illustration of a simulation setup in Load case B. A rigid, flat-ended,
cylindrical indenter penetrates an FE-DE ice sheet sample from below.

At the beginning of each simulation, a rigid, flat-ended, cylindrical inden-
ter was positioned directly underneath the geometrical midpoint of a specimen.
No initial gap between the bottom surface of the FE-DE sheet sample and the
upper, horizontal face of the indenter was set, Figure 11. Once a simulation
got started, the indenter was accelerated (linearly) up to a constant speed of
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|vz| = 0.025 m/s. The speed was ramped up within the first second of a sim-
ulation. As a result, the indenter displaced vertically upwards and penetrated
through the sheet. Each simulation was then continued until a smooth, hori-
zontal post-fracture loading plateau was reached (either a zero or a significantly
lower recorded resultant contact force, see below). Depending somewhat on the
size of a specimen, the simulation times varied between 30 to 55 seconds.

The indenter dimensions were chosen as follows: if the diameter D of a
cylindrical indenter is greater than 2h, a bending failure is likely to result (Sodhi,
1995). Because the maximum discrete element size l equals here 3h, a diameter
of D = 3h was chosen. Note that with D = 3h, the ratio L/D is about 2.2
for the samples with a side length of L = 10 m and a thickness of h = 1.5 m.
Such a low ratio yields results that are probably highly approximate (as regards
to the fracture) – a finite rigid body displacement component results. Note
also that shear may dominate with the sheets with l = 3h because for those
sheets D/l = 1. The ratio should – ideally – give D/l ≫ 1, which was thus not
achievable.

The vertical breakthrough load, Fcr, of an FE-DE sheet sample was then
computed as a maximum resultant force of the vertical contact forces experi-
enced by the indenter during a simulation. The force was recorded as a moving
average for each successive 0.025 seconds. It was observed, in practice, that the
force evolved approximately linearly up until the onset of damage, and the re-
sponse thus to exhibit a quasi-static behaviour, see Figure 12. After the onset of
damage, the load dropped sharply to either zero, see for example Figure 12e, or
to a value approximately equal to the buoyancy-reduced weight of those discrete
elements that had not fallen off from atop the rising indenter, Figure 12f. Note
that no hydrodynamic effects were (or could have been with the current model)
considered, except some through drag.5 The penetration speed was maintained,
in addition, as low as possible in trying to exclude all dynamic effects related
to cracking. After fracture, the discrete elements – of course – accelerated.
The reported breakthrough strengths were, in subsection 6.2, computed then
as σF = Fcr/h

2, see (Bažant, 2002). Note that σF is not a true stress, but a
nominal stress with a correct dimension.

4.4. Ice-structure interaction

Two load cases were studied, denoted as C1 and C2. In both load cases, only
the largest sheets with a side length of L = 160 m were examined, Figure 8. Note
that Figure 8 does not display any holes. In that matter, see Figure 13. The
holes had “effective” diameters of five meters. The word “effective” is here used
in order to emphasize that the holes were not perfectly circular but angular and
that the diameters actually changed during the simulations. For the samples
with a side length of L = 160 m, a thickness of h = 1.5 m, and a discrete element

5For an analytic treatment of hydrodynamic effects as regards to the forced sub-surface
uplift of a floating ice sheet (with no failure though), see (Dempsey and Zhao, 1993).
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(a) L = 10 m, h = 0.5 m, l = 2h. (b) L = 160 m, h = 0.5 m, l = 2h.

(c) L = 10 m, h = 1.0 m, l = 2h. (d) L = 160 m, h = 1.0 m, l = 2h.

(e) L = 10 m, h = 1.5 m, l = 2h. (f) L = 160 m, h = 1.5 m, l = 2h.

Figure 12: Example resultant contact force time histories recorded in Load case B1, Figure 11.
Note that both tend and Fcr are generally different in each case.

size of l = 3h, the holes were, in fact, very angular. Subsection 5.2 below gives
an explanation as to why the diameters changed during the simulations.
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The boundary conditions applied were similar to those in Load case B. In
Load case C1, the sheets were let to float freely, whereas in Load case C2, the
outer boundaries of an FE-DE sheet sample were pinned.

Load case C
g

L

h

D

vz~k

α

δ0

x

z

~i

~k

Cone

Ice sheet

Figure 13: A schematic illustration of a simulation setup in Load case C. A surfacing, rigid,
truncated cone is breaking an FE-DE ice sheet sample containing a circular hole. Note that
although a dotted line is drawn to indicate axisymmetry, the FE-DE sheet samples were not
axisymmetric but square. Only the cone is axisymmetric.

In the beginning of each simulation, a rigid, truncated cone was positioned
directly underneath the geometrical midpoint of a specimen. An initial vertical
gap of 20 mm between the bottom surface of the sheet sample and the upper,
horizontal face of the cone was set. Once a simulation got started, the cone was
displaced with a constant speed, |vz| = 0.1 m/s, directly upwards and through
the hole. In contrast to Load case B, no initial accelerations were applied. The
cone had an upper diameter of five meters and a cone angle of 45 degrees. With
the chosen parametrisation, horizontal velocity components with the magnitudes
of |vx| = |vy| = 0.05 m/s thus result. These velocities are “effective” velocities
with which an ice sheet is being pushed in the plane because of the contacts
with the cone. Each simulation was then continued until a clear drop in the
recorded load was observed, see Figure 14. In each simulation (in both load
cases considered), a sheet sample examined was in an initial equilibrium; the
gravitational-, buoyant-, drag-, and the contact forces were taken into account;
and the Timoshenko beam finite elements were allowed to fracture.

The maximum, vertical ice load on the cone, FV,FE-DE, was then computed
as a maximum resultant force of the vertical contact forces experienced by the
cone during a simulation. The force was recorded as a moving average for each
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successive 0.025 seconds, as in Load case B. In practice, the recorded vertical
force was observed to evolve approximately linearly up until the onset of damage
and then to suddenly drop to a significantly lower value, see Figure 14. The
computed maximum force was then divided with the effective circumference of
the cone, πDw, in order to get a load per unit circumference. The diameter Dw

corresponded to the time instant the maximum load occurred at, see Figure 25
and the equations in Box 8.

It is good to note that the frictional contact forces act here mostly in di-
rections opposite to those with a direct approach. As regards to the inertial
forces, the discrete elements tend here to accelerate, whereas with a direct ap-
proach, they decelerate in the horizontal and accelerate in the vertical directions.
Further notice that the problems depicted in Figures 11 and 13 are, in fact, ill-
posed (Dempsey and Vasileva, 2006b). In their paper, a sensitivity to the data
was found. This possible sensitivity was not here investigated.

To conclude the current section, Table 1 gives the values of the main simu-
lation parameters in each of the load cases studied.

Table 1: Main simulation parameters in Load cases A, B, and C.

Parameter Symbol Unit Value or range

General Gravitational acceleration g m/s2 9.81
Drag coefficienta cd 1.0
Damping coefficientb c critical
Coefficient of frictionc µi,s 0.05
Coefficient of frictiond µi,i 0.05
Contact stiffness kc GPa 4
Contact damping dc 0.95
Cone angle α 45◦

Cone top width D m 5
Time step ∆t s 1. . . 5.0×10−5

Ice sheet Side length L m 10, 20, 40, 80, 160
Thickness h m 0.5, 1.0, 1.5
Young’s moduluse Eb GPa 4
Poisson’s ratio νb 0.3
Density ρi kg/m3 920
Critical axial stress σcr kPa 125
Critical shear stress τcr kPa 125
Specific fracture energy Geff J/m2 15

Water Density ρw kg/m3 1010
aBoth in translation and rotation. bc = 2

√
meffEb, where the “effective” mass, meff, is taken

to be the average of the translational masses of the two discrete elements a beam finite element
connects. cCoefficient of friction between ice and structure. dCoefficient of friction between
two pieces of ice. e“Apparent” or “effective” elastic modulus (Timco and Weeks, 2010, sec.
13).
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(a) L = 160 m, h = 0.5 m, l = 2h, Load case C1. (b) L = 160 m, h = 0.5 m, l = 2h, Load case C2.

(c) L = 160 m, h = 1.0 m, l = 2h, Load case C1. (d) L = 160 m, h = 1.0 m, l = 2h, Load case C2.

(e) L = 160 m, h = 1.5 m, l = 2h, Load case C1. (f) L = 160 m, h = 1.5 m, l = 2h, Load case C2.

Figure 14: Example resultant contact force time histories recorded in Load case C, Figure 13.
Note that both tend and FV,FE-DE are generally different in each case.

35



5. Analytical reference results

This section gives analytical relations for i) the vertical breakthrough load of
an infinite ice sheet loaded by a uniform load distributed over a circular area and
ii) the breaking load a level ice sheet imposes on an inclined offshore structure.
The first result was derived by Wyman (1950), the second by Croasdale and
Cammaert (1994). This section repeats their results because the numerical FE-
DE results are compared with them in subsections 6.2 and 6.3.

5.1. Vertical breakthrough load of an infinite ice sheet
In (Wyman, 1950), an analytical relation was derived giving the vertical

breakthrough load of an infinite ice sheet loaded by a uniform load distributed
over a circular area. The solution is based on the theory of elasticity and thus
on an assumption that the maximum load is reached as soon as the stresses are
equal to the proportionality (elastic) limit. The solution reads as:

Fcr,Wyman =
πσcrbh

2

3 (1 + ν) kei′ (b)
, (18)

where σcr denotes a critical stress (the strength), b = D/2lch, lch a characteristic
length (defined below), ν the Poisson’s ratio of the plate material, kei′ (b) =
(0.6159− ln (b)) (b/2)+ πb3/64+ . . . , and kei a Kelvin function. The truncated
expansion for the derivative (as denoted by the prime) as shown is used. Note
that Eq. (18) describes, in fact, the “bearing capacity” of an infinite ice sheet
because the loading direction was opposite to that used in this paper.

Notice that in (Wyman, 1950) a sheet was loaded in a load control, whereas in
the FE-DE simulations in a displacement control. The contact pressures experi-
enced by the FE-DE sheet samples thus differ from those assumed in (Wyman,
1950). High contact pressure zones exist near the indenter edges, the resul-
tant forces are, however, assumed to be comparable. Notice finally that many
alternatives to Eq. 18 exist, see (Kerr, 1976) and (Kerr, 1996).

5.2. Ice loads on an inclined offshore structure
Following (Croasdale and Cammaert, 1994), the horizontal load a level ice

sheet imposes on an inclined offshore structure is given by:

FH,Croasdale =
HB

1−
HB

σcrlchh

, (19)

where HB denotes a breaking load component, lch = (K/k)
1/4 a characteristic

length (decay length of flexural waves), K = Eh3/12(1 − ν2) the cylindrical
flexural rigidity of a Kirchhoff-Love plate, k the foundation modulus (specific
weight of water – k = ρwg), and E the Young’s modulus of the plate material.
The breaking load component HB reads as:

HB = 0.68ξσcr

(

ρwgh5

E

)1/4 (

πDw +
π2lch
4

)

, (20)
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where ξ =
tan (α) + µi,s

1− µi,s tan (α)
. The vertical breaking load component (per unit

circumference) follows then from Eq. (20) through:

FV,Croasdale =
FH,Croasdale

πDwξ
. (21)

Note that only the breaking load component has been here considered. Rub-
bling and other subsequent effects have been ignored. The exclusion is justified
because of the termination of the simulations right after the occurrence of the
first flexural failure. Notice also that in place of σcr, lch, and E, “effective” values
(specific to the lattices considered) will be used below because their values are
all known, see sub-subsection 6.3.1. While computing the vertical breakthrough
load above, Eq. (18), such a procedure was not possible because the values of the
characteristic lengths of the smallest sheets (L = 10 m) were not available. The
symbols σcr and E thus refer there to the critical axial stress parameter and the
Young’s modulus given to the Timoshenko beam finite elements, respectively,
whereas the symbol lch denotes the characteristic length of a Kirchhoff-Love
plate computed using the relations given above.

A remark: the symbol Dw in Eqs. (20) and (21) denotes the waterline di-
ameter (or the “effective width”) of an inclined offshore structure. It is here
multiplied with π to give the circumference. Normally, a contact between an
ice sheet and a structure is unilateral: an ice sheet advances and collides with
a structure only one-sidedly. Here, the contact zone extends over the entire
circumference and so the “effective width” becomes equal to πDw. Note further
that the width Dw is not a constant but, in fact, an unknown variable. While a
simulation is in progress, the “effective width” changes due to the conical shape
of the surfacing structure and the fact that the peak load may not occur right
after the occurrence of the first contact. A schematic illustration of the interac-
tion between an initially stationary ice sheet and an ascending, upward breaking
cone is given in Figure 25. Equations to compute the “effective width” Dw are
given there in Box 8.

Notice finally that other results regarding the breaking load component exist
as well, see, for example, (Ralston, 1977) and (Nevel, 1992). Ralston (1977)
gives an upper bound plastic limit analysis of an elastic-perfectly plastic plate
interacting with a cone on an elastic-perfectly plastic foundation while Nevel
(1992) treats the failure of a point-loaded, elastic wedge on a Winkler-type
foundation. The analysis in (Ralston, 1977) was suggested, in fact, by J.R.
Rice.

6. Results

In this section, the computed uniaxial tensile strengths, breakthrough loads
and strengths, as well as the ice-structure interaction loads by the FE-DE ap-
proach are reported and discussed. Subsection 6.1 discusses the tensile strengths,
subsection 6.2 the breakthrough loads and strengths while subsection 6.3 gives
an account on the computed ice-structure interaction loads.
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6.1. Effective tensile strengths

6.1.1. Rate and size effects
Figure 15 shows the computed strengths, σcr,eff, as well as their standard

deviations. Each strength has been normalised with respect to the critical axial
stress parameter, σcr, Table 1. Figure 15a depicts the strengths at the higher
displacement rate (|vx| = 0.1 m/s, Load case A1), whereas Figure 15b gives the
strengths at the lower displacement rate (|vx| = 0.01 m/s, Load case A2). The
results have been given in an order of ascending sheet size L. For each L, the
results have been arranged in an order of ascending sheet thickness h. For each
h, the strengths are averages over 20 simulation results (10 randomized CVT
meshes with both l), except the case with L = 160 m, h = 0.5 m, and l = 2h
for which only 16 meshes were produced (10 with l = 3h and six with l = 2h).

It is observed that the effective tensile strength grows as a function of sheet
thickness h and decreases as a function of sheet side length L, Figure 15a. The
sheets that are smaller or thicker have, in general, a higher effective tensile
strength than those that are thinner or larger. At the largest sheet size, the
strength, however, appears to saturate. Somewhat similar conclusions can be
drawn from the results in Figure 15b as well, except that – now – i) for the two
largest sheet sizes (L = 80 and 160 m), the strength appears to decrease as a
function of h and that ii) the sheets with L = 40 m produce practically equal
results. For the two smallest sheet sizes, the differences between the results,
whether a sheet thickness of either h = 0.5, 1.0, or 1.5 m is considered, are in
both load cases rather large. Except of the smallest sheets (L = 10 m), the
standard deviations are close to null.

Figure 16 presents the results in a slightly different, now in a fully non-
dimensional, format. The logarithms of the ratios σcr,eff/σcr have been plotted
as functions of the logarithms of L/Ich. The parameter Ich denotes here Irwin’s
(or Hillerborg’s) characteristic length. Irwin’s characteristic length approxi-
mates the “length” of a fracture process zone ahead of a crack tip and reads
as Ich = EeffGeff/σ

2
cr. Note that the Young’s modulus Eeff is not here equal

to the Young’s modulus Eb given to the Timoshenko beam finite elements, but
denotes the effective Young’s modulus of a particular sheet “type” (i.e. a sheet
with specific L, h, and l). These were computed in (Lilja et al., 2019a). Note
also that the effective, specific fracture energy parameter Geff is an effective
quantity only in a sense that it represents the energy dissipated under a mixed
mode fracture. It does not represent a fracture energy specific to a particular
sheet type. Such values are not known. Strengths so computed have then been
given separately for each sheet thickness h considered.

It is found that the non-dimensional effective strength decreases as the non-
dimensional sheet size increases, whereas the thickness h has an opposite effect.
These observations apply at the higher displacement rate, |vx| = 0.1 m/s (Load
case A1), Figure 16a. At the lower displacement rate (Load case A2), Figure 16b,
the non-dimensional strength appears to be a similar decreasing function of
the non-dimensional sheet size, but as regards to the effect of the thickness h,
the situation is more complex. It appears that an inflection point is located
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somewhere near the point L/Ich = 1, and that for L/Ich > 1, the thicker
sheets give lower strengths. This last “branch” yields results that are intuitively
“correct:” thicker sheets exhibit a lower strength.

(a) |vx| = 0.1 m/s (Load case A1).

(b) |vx| = 0.01 m/s (Load case A2).

Figure 15: Averaged, normalised, effective tensile strengths of the FE-DE sheet samples ex-
amined. Each result (except those with L = 160 m and h = 0.5 m for which the results
are averages over 16 simulation results – six meshes were created with a discrete element size
of l = 2h) is an average over 20 simulation results (10 with both l), each with a different,
randomized CVT mesh.
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(a) |vx| = 0.1 m/s (Load case A1).

(b) |vx| = 0.01 m/s (Load case A2).

Figure 16: Non-dimensional effective tensile strengths (log-log values on a linear chart).
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Figure 16 gives also linear regression lines (with slopes m and coefficients of
determination, i.e. goodness of fits, R2) fitted to the data.6 The fits correlate
reasonably well, given the parabolic appearance of the data curves. This is
especially so in Figure 16a. A “truly” linear response is found only for the red
data points in Figure 16b. It is observed that |m| is a monotonically increasing
function of h and that the trend continues – uninterruptedly – from Figure 16b
to Figure 16a. Rate effects dominate. The slope of the blue regression line in
Figure 16a gives eventually a scaling law approximately equal to the LEFM-
type scaling law of (·)−1/2. In other words, for a thick enough sheet and with
a large enough displacement rate applied, the response appears to emulate a
LEFM-type response. Notice, however, that the strain rates were not kept here
as constants and that at higher rates the slopes may have got even steeper. It
also seems, as was noted above, that the data curves tend to curve up as L
is getting smaller because the strain rates are getting there higher. For more
accurate results, a larger simulation set with several different displacement rates
applied – so that the strain rates could have been made equal for sheets having
different side lengths L – would have been required. In any case, the effective
tensile strength appears to be a strong function of both L and h.

A usual assumption for quasi-brittle materials is that a larger sample is
less strong than a smaller sample. If it is thus taken as a “rule” that thicker
sheets must produce lower strengths, the strain rate has to be as low as around
0.25 × 10−3/s, see the results for the sheets with the side lengths of L = 80
and 160 m in Figure 15b. For those sheets, the responses appear to be most
closely quasi-static and the thicker sheets exhibit lower strengths. For the sheets
with a side length of L = 160 m, a regression gives an exponent of about -0.05
(∼ h−0.05) – far from LEFM.

Figure 17 portrays, as an example, a completely fractured ice sheet with a
side length of L = 160 m, a thickness of h = 0.5 m, and a discrete element
size of l = 2h. The mesh has, in total, 29561 discrete elements. Broad areas
are softening and are highlighted in purple. Several fully grown cracks appear
and are highlighted in grey. Their orientation appears to be, for the most part,
approximately perpendicular to the loading direction. A usual assumption is
that cracks grow in a direction perpendicular to the maximum principal stress
trajectory. Areas remaining still undamaged are, then, highlighted in blue. It
appears that the cracks tend to branch, bridge, and have, in general, a rather
tortuous pattern. The cracks, in short, bifurcate. Figure 18 shows, as a further
example, a sequence of snapshots illustrating how damage evolves as a function
of time. Damage initiates quickly and fully developed cracks emerge, which then
start to propagate towards the free edges.

6Recall that the slope of a linear function (a straight line) on a linear chart with log-log
values gives the exponent of a power-law function (a curve following a power-law) on the same
chart with lin-lin values.
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6.1.2. Discussion
A lucid a priori assumption would have been that all rate-related effects are

of a minor importance: the de-cohesive damage model implemented was rate-
independent and the displacement rates applied rather low. Such an assumption,
however, would have proved to be false – a significant rate effect emerged. The
ratio between the effective tensile strengths of the smallest thickest sheets, for
the two displacement rates considered, is, for example, approximately four. It
then reduces to an average of around 1.3 for the largest thickest sheets, Fig-
ure 15. For the thinner sheets, and so with more elements, the effect somewhat
attenuates, but is still present. A possible explanation for the observed increase
in the effective strength at the higher loading rates is that of diffuse cracking.
Instead of a single dominant crack, several smaller cracks (microcracks) appear,
which then produces an increase in the effective strength. This is not only be-
cause of an increase in the dissipated fracture energy, but due to inertia as well.
A plausible assumption would have been that inertia plays no role because of the
initial (linearly changing) velocity field established in each specimen, see subsec-
tion 4.2. It may, however, be that as a result of elastic restoring forces, viscous
damping forces, and microcracking, the “microinertia” on the micro-scale (i.e.
the inertia of individual discrete elements) becomes significant. The microcrack
nucleation, growth, interaction, and coalescence inevitably either accelerates or
decelerates individual discrete elements, not just those with beams undergo-
ing damage, but the nearby elements as well. Inertia, in conjunction with an
intrinsic time scale, leads then to an apparent strength increase.

It has been shown that a cohesive finite element with a rate-independent
traction-separation law exhibits not only a characteristic length scale but a
characteristic time scale, tch, as well (Camacho and Ortiz, 1996). The expression
of the characteristic (relaxation) time tch is a linear function of both the density
(here, the inertia of a discrete element) and the longitudinal wave speed, cs, in an
element, see (Camacho and Ortiz, 1996, Eq. 69, p. 2916). The effective stress
amplitude to cause fracture, on the other hand, is an exponentially decaying
function of τ/tch, where τ denotes pulse duration. An increase in the loading rate
(so that the pulse duration decreases) results then in an increase in the apparent
strength. The observed effective strength increase is thus interpreted to result
from both the increased fracture energy dissipation and the microinertia.

Diffuse cracking per se may be best explained by following lines similar to
those set forth by Mott (1947). Mott analysed detonation-driven wave prop-
agation and fracture in a ring-shaped specimen made out of a ductile metal
(a one-dimensional problem). At a sufficiently low strain rate, a stress release
wave from a single crack is able to unload the rest of the specimen and so no
further damage ensues. Conversely, at a sufficiently high strain rate, the wave
is too slow, which then leads to further damage. Whether Mott’s theory holds
also for a lattice, especially because the strain rates were here rather low (i.e.
cs/L > ǫ̇ should have held), is questionable, but the principle is plausible. An-
other explanation could be that of bifurcation instability. Schardin (1959) found
experimentally that at higher loading rates, the cracks in a brittle solid tend to
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bifurcate and the limit speed to be far less than cs. Such an observation ap-
pears to support the current results. Instead of a single dominant crack, rather
distributed damage occurs while cs/L > ǫ̇ simultaneously holds, see Figure 17.

Note that the omission of computation of the post-fracture contacts (as well
as not considering drag forces) gave probably lower estimates for the effective
tensile strengths by not taking into account effects due to friction (say inter-
locking). Not considering contacts was due to computational reasons. A look
in Figure 17 reveals that softening, fracturing, and thus contacts occur not only
locally but globally. Running all the simulations on a Fujitsu Celsius W530
Power workstation (with an Intel Xeon E3-1245V3 processor) took about eight
months.

x[m]

y[m]

Figure 17: A fractured ice sheet with a side length of L = 160 m, a thickness of h = 0.5
m, and a discrete element size of l = 2h (adapted from (Lilja et al., 2017, Fig. 6)). The
completely fractured beams are highlighted in grey, damaged (softening) beams in purple,
and the beams that are still virginal in blue. There are, in total, 29561 discrete elements in
the mesh. The sheet was loaded in uniaxial tension in the horizontal direction by applying a
forced displacement depicted in Figure 9 (|vx| = 0.1 m/s, Load case A1).
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(a) t = 0
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(b) t = 0.2tend
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(c) t = 0.4tend (d) t = 0.6tend
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(e) t = 0.8tend (f) t = tend

Figure 18: Evolving damage as a function of time (L = 160 m, h = 0.5 m, and l = 2h),
tend = 0.3 s, Load case A1. For an explanation of the colouring scheme, see Figure 17.
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6.2. Breakthrough loads and strengths

This subsection presents and discusses the computed breakthrough loads
and strengths. In Load case B1, an FE-DE sheet sample penetrated by a rigid,
flat-ended, cylindrical indenter was examined. All the sheets shown in Figure 8
were studied. In Load case B2, only the largest sheets (L = 160 m), and with
pinned boundary conditions applied, were considered.

6.2.1. Breakthrough loads
Figure 19 presents the loads, Fcr, as well as their standard deviations, for

each side length L and thickness h considered. For each L, the results have
been arranged in an order of ascending sheet thickness h, like before. The
results shown are averaged breakthrough loads computed with the aid of 20
randomized CVT meshes (10 for both l). Each load has finally been normalised
with respect to the vertical breakthrough load of an infinite ice sheet, Eq. (18),
with a corresponding thickness h.

Before proceeding, recall that the Wyman’s formula, Eq. (18), includes a
critical axial stress parameter in the nominator and a characteristic length pa-
rameter (including E as well) both in the nominator and the denominator.
The values of the effective characteristic lengths of the smallest sheets are not
known. Those that are, are given in (Lilja et al., 2019b). The breakthrough
loads in Figure 19 were, therefore, normalised with respect to reference loads
computed with the aid of σcr, Eb, and lch of which the first two are the critical
axial stress parameter and the Young’s modulus given to the Timoshenko beam
finite elements, respectively, whereas lch denotes the characteristic length of a
Kirchhoff-Love plate computed using the relations given after Eq. (19). In other
words, no effective values (tensile strengths, Young’s moduli, or characteristic
lengths) were here employed. The concave appearance, to be shortly discussed,
may have “straightened” had all the effective values been available. Note, how-
ever, that this comment applies only to the visual appearance of the results in
Figure 19. The fracture characteristics per se remain, of course, unchanged.

It transpires that the breakthrough load is a “concave up” function of L for
each sheet thickness h considered and that the location of the relative minimum
depends on h. For the thinnest sheets, a minimum appears to be located at
about L = 20 m, whereas for the thicker sheets, at around L = 40 m. Note
that for the smallest sheets (L = 10 m), the response is strongly affected by the
dimensions of the indenter. The thickest sheets tend to rise as rigid bodies and
then suddenly fail when the buoyant (supporting) forces have nearly vanished.
See, for example, Figure 12e. The rising trend there (as regards to the thickness
h) is explained by the increased mass due to the thicker sheets. For the larger
sheets, the trend appears, on the contrary, to be reversed – thinner sheets exhibit
higher (relative) loads. These two observations (the reversed effect of h and the
concavity as L = Lmin 7→ Lmax) can be interpreted to be due to two reasons: i)
a change in the mode of failure and ii) inertia. The sheets with a side length
of L ≤ 20 m exhibit mostly radial cracking (the thinnest sheets show also some
circumferential cracking, see Figure 20), whereas for L ≥ 40 m, the failure is
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Figure 19: Averaged, normalised breakthrough loads of the FE-DE sheet samples examined.
Each result is an average over 20 simulation results (10 with both l), each with a different,
randomized CVT mesh. The three rightmost columns – “160 (pinned)” – are for Load case
B2, the rest for Load case B1.

nearly always accompanied by circumferential cracking as well. Circumferential
cracking necessarily means higher loads, which explains the rising trend. The
other contributor to the higher observed loads (as L increases) is the fact that
the larger sheets have a higher inertia. While a simulation is in progress, an
indenter is trying to get through the sheet, an effort which is made much more
difficult if the broken pieces of ice tend not to give way. This is an aspect that
is discussed more below, see sub-subsection 6.2.3. An interesting additional
observation is that the load appears to saturate for the thinnest largest sheets.
The pinned boundary conditions have no effects on their effective breakthrough
strengths. A simple explanation could be that a sheet with a side length of
L = 160 m and a thickness of h = 0.5 m resembles an infinite ice sheet. For the
thicker sheets, the boundary conditions still have a noticeable effect.

6.2.2. Breakthrough strengths
Figure 21 presents the averaged breakthrough strengths, σF, as well as their

standard deviations, for each side length L and thickness h considered. The
strengths have been computed as σF = Fcr/h

2, see subsection 4.3. Each result
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(a) t = 0. (b) t = 1.73 s.

(c) t = 1.76 s. (d) t = 1.81 s.

(e) t = 2 s. (f) t = 8 s.

Figure 20: A sequence of snapshots from a simulation in Load case B1. An originally intact
FE-DE ice sheet sample (L = 20 m, h = 0.5 m, and l = 2h) is penetrated by a rigid, flat-ended,
cylindrical indenter from below. The indenter surfaces at the centre.
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is an average over 20 simulation results (10 for each l), as before. Unlike above,
the results have been here, however, normalised with respect to the effective
tensile strength, σcr,eff, of a sheet sample having the corresponding L and h.
These were computed in subsection 6.1 above and correspond to Load case A1
(|vx| = 0.1 m/s), Figure 15a. The chosen normalisation, of course, affects the
results. Had the strengths been normalised with respect to the data produced
by Load case A2, the results would have looked as in Figure 19. An appreciable
change would have occurred in only the smallest sheets (the absolute values, of
course, change in each case). Similar conclusions hold if the data is normalized
with respect to the critical axial stress parameter σcr. A line σF/σcr,eff = 1
is plotted, in addition, to indicate that the breakthrough strengths are not
equal to the effective tensile strengths, and because for most of the samples
σcr,eff/σcr ' 1, not necessarily equal to the critical axial stress either.

Figure 21: Averaged, normalised breakthrough strengths of the FE-DE sheet samples exam-
ined. Each result has been computed as an average over 20 simulation results (10 with both l),
each with a different, randomized CVT mesh. The three rightmost columns – “160 (pinned)”
– are for the Load case B2, the others for the Load case B1.

There appears to be a clear trend of thicker sheets exhibiting a lower (rel-
ative) breakthrough strength. A strong dependence on the side length L is
found as well. The larger and thinner the sheet, the higher the (relative) break-
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through strength. An interesting observation is that the strength appears to
saturate if L = 160 m and h = 0.5 m. The boundary conditions have no effect.
For the thicker sheets, the strength, on the contrary, keeps on increasing from
Load case B1 to B2. Recall that a similar observation was done already for the
breakthrough loads above. The sheets with a side length of L = 160 m and a
thickness of h = 0.5 m thus appear to resemble an infinite ice sheet. An alter-
native interpretation could be that the thinnest sheets are thin enough for the
breakthrough strengths to settle on the small size asymptotic tail of Bažant’s
generalized size effect law on which the failure is governed by a strength- or a
yield-type criterion. The data points in Figure 23 for the largest sheets (L = 160
m), in fact, resemble a typical size effect plot, cf. (Bažant, 2002, Figure 3g, p.
16). Note that the experimental data of Frankenstein (1963, 1966), and Licht-
enberger et al. (1974) clearly suggest that a size effect exists also in nature,
see Bažant and Kim (1998b) and Bažant (2002).

Before turning to Figure 23 more closely, the data in Figure 21 is interpreted
again but from a slightly different perspective. Figure 22 presents the normalised
breakthrough strengths but now on a linear chart and with regression lines
included. The results of Load case B2 have been here omitted. It transpires
that the data settles on nearly straight lines but with slopes m close to zero and
approximately equal. Weak or no scaling is thereby implied. Notice that plotting
the data in the same manner as in Figure 16a would have been redundant (would
not have shown a meaningful size effect) because the data points in Figures 15a
and 21 do not show much symmetry. The data in Figure 15a increases as
a function of h and decreases as a function of L, whereas in Figure 21, the
situation is vice versa. Had the breakthrough strengths been normalised with
respect to the critical axial stress parameter σcr (or, in that matter, to the data
produced by Load Case A2), an appreciable change would have occurred in only
the smallest sheets, as was stated already above.

It is stated in (Bažant and Kim, 1998b) and (Bažant, 2002) that the break-
through strength of a floating, point-loaded, infinite ice sheet scales as h−1/2 if
the cracks are partially through and as h−3/8 if they are fully through. The latter
rule was first found, in fact, by Slepyan (1990).7 These results are, more specif-
ically, for a notched Kirchhoff-Love plate resting on a Winkler-type foundation.
Following (Bažant and Guo, 2002), a statically indeterminate in-plane frame
with inelastic softening hinges and which rests on a Winkler-type foundation
exhibits a similar strong, monotonic size effect of a type h−1/2. A sea ice sheet
modelled with a hybrid finite-discrete element method, with which the fracture
is modelled with de-cohesive Timoshenko beam finite elements, ought to exhibit
a similar response as the model of Bažant and Guo (2002). It thus seems justi-
fied to assume that the relationship between the breakthrough strength, σF, and
the thickness, h, of a finite FE-DE ice sheet sample follows a power-law as well,

7The result by Slepyan, i.e. the exponent of -3/8, is apparently because of not considering
crack closure. In the Slepyan’s model, the crack faces can interpenetrate in contrast to the
present simulations.
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Figure 22: Averaged, normalised breakthrough strengths of the FE-DE sheet samples exam-
ined. The results have been here plotted as functions of L. Each result has been computed
as an average over 20 simulation results (10 with both l), each with a different, randomized
CVT mesh.

i.e. σF(h) = bhm, and that the strength scales (asymptotically) as h−1/2. This
is examined next. Before proceeding, it is good to note that the breakthrough
strength scales also as l

−3/8
ch , but this is for the case of an infinite, notched

Kirchhoff-Love plate resting on a Winkler-type foundation (Bažant, 2002). It
has not been studied, to the authors’ best knowledge, whether the breakthrough
strength scales as a function of L for a finite, unnotched, free-edged ice sheet.

Figure 23 shows, in a fully non-dimensional format, the logarithms of the
averaged, normalised breakthrough strengths, σF/σcr,eff, as functions of the loga-
rithms of h/Ich. Note that both σcr,eff and Eeff (recall that Ich = EeffGeff/σ

2
cr,eff)

refer here to the case with the higher displacement rate (|vx| = 0.1 m/s, Load
case A1), Figure 15a and (Lilja et al., 2019a), respectively.

It is clearly visible that the data settles on nearly straight lines. It appears
thus evident that the breakthrough strength of a finite, free-edged ice sheet
does scale according to a power-law. It is found, in addition, that the slope m
changes from one L to the other. As the side length L increases, the slope m (and
thereby the scaling rule with an exponent m) visibly asymptotes to the known
analytical result of Bažant and Guo (2002), i.e. σF ∝ h−1/2. Notice, however,
that the result holds true only for the two thickest sheet sizes considered and
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was obtained by reading the slope of the line joining the two points. The
observed saturation for the thinnest sheets causes the fit of the regression over
the full data set to deteriorate. For more accurate results, a larger simulation
set with both thinner and thicker, as well as larger, ice sheets would have been
required. The model, nevertheless, appears to have an ability to demonstrate
size effects. Such a result is typical for models that fail only after stable crack
growth associated with the development of a fracture process zone (i.e. quasi-
brittle fracture via softening damage). Notice that the results of Load case B2
were not here plotted because of the found saturation, see Figures 19 and 21.
The end result would have been a line with a positive slope, which would have
resulted in an inverted scaling rule.

A remark: if the data would have been normalized with respect to the data
produced by Load case A2 (and the corresponding Eeff), the results would have
looked otherwise similar to those in Figure 23, except that the scaling rule of
the smallest sheets would have inverted (a line with a positive slope, m = 0.09,
results). The other slopes, from L = 20, 40, 80, and 160, read as m = −0.18,
−0.31, −0.36, and −0.08, respectively. The slope of the line connecting the data
points of the two thickest sheet sizes (for L = 160 m) equals −0.44 and is thus
approximately equal to that computed with the data from Load case A1.

Figure 23: Logarithms of the averaged, normalised breakthrough strengths of the FE-DE sheet
samples examined. The results have been plotted as functions of the logarithms of normalised
h. Each result has been computed as an average over 20 simulation results (10 with both l),
each with a different, randomized CVT mesh.
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Note finally that it was not possible to include a theoretical size effect curve
in Figure 23 because of the fact that not only is the breakthrough strength σF

dependent on size (on both L and h) but the critical axial stress σcr,eff and the
Young’s modulus Eeff as well. There is a size effect not only with respect to the
fracture (both in the in-plane and the out-of-plane directions) but to the elastic
properties as well. In other words, different σF, σcr,eff, and Eeff exist for each
L and h studied. In order to have been able to plot such a curve would have
required that only the breakthrough strength shows a size dependence and only
with respect to h so that a unique critical axial stress parameter would have
existed on the vertical axis and a unique “characteristic length” parameter on
the horizontal axis. Further notice that the data of the largest samples could
not be used for fitting purposes because the data had not fully converged yet.
A set of larger sheets would have been required.

6.2.3. Discussion
There has been much discussion in the pertinent literature as to whether

the radial cracks are, at maximum load, fully through or not (Dempsey et al.,
1995; Bažant and Kim, 1998a,b; Bažant, 2002). The last three results are for
an infinite ice sheet, whereas the first one is for a finite, clamped plate (not
on an elastic foundation). Here, in Load case B1 (for a finite, freely-floating
ice sheet), the cracks appeared to be fully through. The observation is based
solely on visual inspection of animated crack growth, but appeared evident for
the sheets with the side lengths of L = 10, 20, and 40 m. For the larger sheets,
and especially for the sheets with the pinned boundary conditions in Load case
B2, the situation was much more complex. A closer look was obscured by the
fact that a beam was judged to be fully degraded as soon as a critical number
of fully damaged integration points was reached, see sub-subsection 3.2.1. The
bottommost row of integration points (i.e. those closest to the indenter) got
thus probably destroyed when reached by the crack front.

Another interesting question is that of crack closure. Some crack closure
may have occurred in Load case B1, but only instantly, and is because of the
boundary conditions. The outer boundaries of a sheet sample were free in Load
case B1. To be more precise, no “Dirichlet” -type boundary conditions were
applied. Because of the free boundary conditions, the radial cracks tend to
propagate all the way to the free boundaries. This is especially so in thick
sheets, see Figure 26a. Due to the momentum imparted by the penetrating
indenter to the sheet, the broken pieces tend then to drift apart. There is
nothing holding them back, which is necessary for the dome (or the arching)
effect – and thus the crack closure – to take place. The dome effect ought to
dominate when the boundaries are not free and with samples that have a large
enough inertia. For an infinite ice sheet (and the sheets in Load case B2) this,
indeed, is the case. The attached animations, Animation 3 and Animation 4,
illustrate these phenomena quite clearly. In the first animation, a sheet with
a side length of L = 40 m and a thickness of h = 1.0 m is penetrated by an
indenter from below (Load case B1). In the latter animation, a surfacing cone
is breaking a sheet with a side length of L = 160 m and a thickness of h = 1.5 m
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(Load case C1). Similar conclusions can be drawn from both simulations: the
broken pieces start to drift apart and crack closure takes place only instantly. It
can be argued, of course, that at least partly the observed movement is because
of force transmit through crack closure.

A final remark: one may assume – based on intuition – that the vertical
load a semi-infinite ice sheet with a free edge imposes on an inclined offshore
structure is about one half of the breakthrough load of an infinite ice sheet if
the loading “widths” are equal. For a narrow structure this, indeed, has been
shown to be the case (Gold et al., 1958; Black, 1958; Meyerhof, 1960). The
breakthrough loads of the largest sheets with a thickness of h = 0.5 m should
thus be applicable in approximating the vertical load imposed on an inclined
offshore structure (of a width similar to that of the indenter) by a semi-infinite
ice sheet with a free edge and of the same thickness.

6.3. Ice-structure interaction loads
This subsection presents and discusses the computed cone ice loads. The

typical cracking characteristics observed are described as well. In Load case C1,
the breaking of a freely-floating FE-DE ice sheet sample containing a circular
hole by a rigid, truncated, ascending cone was examined. Only the largest sheets
(with a side length of L = 160 m), Figure 8, were studied. In Load case C2, the
same sheets, but with pinned boundary conditions applied, were investigated.

6.3.1. Breaking loads
Figure 24 presents the loads (with their standard deviations) for both of the

load cases. As before, the results are averages over 20 simulation results (10
with both l). The left-hand side is for Load case C1, whereas the right-hand
side is for Load case C2.

In both load cases, the computed breaking loads are (if taken as an average
over all h) approximately equal to those by Eq. (21). In Load case C1, a
slight increasing trend is found, but the standard deviations overlap. At a
rough estimate, the presented loads occurred at time instants the circumferential
cracks started to form. The observation is, however, based on visual inspection
of animated crack growth and was not systematically studied.

Based on the foregoing, it thus appears that an ice-structure interaction
scheme in which a stationary ice sheet containing a circular hole is interacting
with a surfacing cone yields loads that are approximately equal to the case in
which an ice sheet is moving, a structure is held stationary, and the contacts
occur only unilaterally. Recall that the loading widths were, however, assumed
to be equal. The found result ought to hold, at least, at moderately low penetra-
tion speeds. At higher speeds, adverse effects due to inertia may occur (Pushkin
et al., 1991).

A remark: while computing the vertical breaking load component FV,Croasdale,
it was assumed that:

i) the flexural strength of an ice sheet, σcr, corresponds to the breakthrough
strength (∼ modulus of rupture ∼ flexural strength), σF, computed for
each sheet in sub-subsection 6.2.2 (Load case B1);
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Figure 24: Averaged, normalised, vertical cone loads. Each result has been computed as an
average over 20 simulation results (10 with both l), each with a different, randomized CVT
mesh. The bars on the left denote Load case C1, whereas those on the right Load case C2.

ii) the Young’s modulus of an ice sheet, E, corresponds to the effective
Young’s modulus, Eeff, computed for each sheet in (Lilja et al., 2019a)
(Load case I, |vx| = 0.1 m/s); and that

iii) the characteristic length of an ice sheet, lch, corresponds to the effective
characteristic length, lch,eff, computed for each sheet in (Lilja et al., 2019b).

These facts are here emphasized because a direct usage of the data given in
Table 1 (as applied on the “microscopic” scale of a lattice, i.e. with the beams)
would have yielded loads with magnitudes of about FV,FE-DE/FV,Croasdale ≈
4 . . . 5. This would have held for each h in both load cases. A situation of not
knowing the values of the “real” constitutive parameters one (implicitly) applies
while computing the loads may thus occur and is likely to lead to erratic inter-
pretations. If, on the other hand, the model has been tested and the (effective)
constitutive properties are known, the computed ice-structure interaction loads
appear consistent. What data sets one uses with the items above affects, of
course, the results. It was here estimated that because the vertical cone speed
was 0.1 m/s and the effective in-plane speeds 0.05 m/s (see sub-subsection 4.4),
the made selections ought to provide the best approximation.
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An interesting feature of the results is that the boundary conditions appear
to have no effect. This is interpreted to indicate that the sheets studied are
large enough (for the current load cases) to resemble an infinite ice sheet. The
outer boundaries are far enough from the process zones as regards to the com-
putation of the breaking loads. Note that an opposite observation was done
in subsection 6.2 above. There the boundary conditions had an effect. The
breakthrough loads and strengths were significantly higher in Load case B2 for
the two thickest sheet sizes considered.g
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Figure 25: A schematic illustration of an ice-structure interaction process in Load case C –
computation of the effective waterline diameter Dw. A surfacing, rigid, truncated cone is
breaking an ice sheet containing a circular hole. Note that although a dotted line is drawn to
indicate axisymmetry, the FE-DE sheet samples were not axisymmetric but square. Only the
cone is axisymmetric.
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6.3.2. Cracking characteristics
Figure 26 displays, as an example, two fractured ice sheets studied in Load

case C1. Several radial cracks propagate outwards from the contact zones ap-
proximately perpendicular to the cone surfaces. Circumferential cracks joining
the radial cracks emerge and complete the failure mechanisms. Notice (in both
examples) that the first one or two layers of the discrete elements immediately
adjacent to the holes provide paths for the cracks to advance nearly radially
outwards. This is a byproduct of the meshing scheme. An alternative technique
to create a hole would have been, for example, to first create a regular mesh (i.e.
without a hole) and then to remove from it all those discrete elements whose
centres of mass lie within a certain radial distance, say D/2, from the centre.
Such an approach would have, however, created holes with extremely irregular
boundaries and was thus not considered.

An interesting observation is that in a thick sheet, the cracks tend to prop-
agate all the way to the free boundaries, Figure 26a, whereas in a thin sheet,
Figure 26b, they tend to arrest. This looks like a clear size effect (the size and
number of elements may have an effect though). In a thick sheet, cracks tend to
grow longer due to the greater amount of stored potential energy being released
from the water-ice sheet system (i.e. the crack driving force is larger). Oth-
erwise, the responses appear actually quite similar. The effective “sizes” of the
broken off wedges, for example, are in both cases approximately equal – about
3l . . . 5l – and the failure patterns near the cones seem to be similar. Cracking
characteristics should be similar for geometrically similar structures.

6.3.3. Discussion
It is clear that with the proposed in-direct approach no downdrift (wake)

region forms. The applicability of the approach may thus be limited to the
first occurrence of a flexural failure. Even so, the approach should provide a
reasonable approximation of the breaking loads as well as a means to investigate
the failure as regards to the ability of a numerical method to produce both radial
and circumferential cracking. It is not limited to the hybrid FE-DE method
applied in this paper, but is generally applicable to examine the ability of a
numerical method to describe the typical cracking characteristics observed in
nature.

Since it was found that a scheme in which a stationary ice sheet containing a
circular hole is interacting with a surfacing cone produces loads approximately
equal to the conventional case of a moving ice sheet interacting with a one-sided,
stationary structure, it may be possible to devise an experimental setting (for
measuring ice loads imposed on a model structure by a model ice sheet – for
instance) that is more easily controllable: a sheet may remain stationary while
a model structure (a cone) is driven through a hole in it.

One special feature of the proposed approach deserves a final mention: it
should provide a device to compute bifurcation-type buckling loads. It is evident
that a sheet is under an approximately axisymmetric, compressive, membrane
state of stress (with other than free boundary conditions) through the contacts
with the cone, see Figure 25.
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(a) L = 160 m, h = 1.5 m, and l = 3h.

(b) L = 160 m, h = 0.5 m, and l = 3h.

Figure 26: FE-DE ice sheet samples interacting with rigid, truncated cones (not shown) in
Load case C1. The cones are surfacing from below at the centres of the samples. Radial
cracks propagate from the contact zones towards the free edges approximately perpendicular
to the cone surfaces. Circumferential cracks joining the radial cracks emerge and complete
the failure mechanisms.
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7. Summary and conclusions

In this paper, a rate-independent, de-cohesive damage model for the fracture
modelling of large, cellular, plate-like, quasi-brittle structures was proposed.
A three-dimensional, hybrid finite-discrete element (FE-DE) method was then
introduced in order to study sea ice sheet fracture. This was followed by three
applications. The uniaxial tensile fracture of an ice sheet was examined first.
The effects of both the size and the loading rate applied on the effective, uniaxial
tensile strength of an ice sheet were studied. The vertical penetration fracture of
an ice sheet loaded by a rigid, flat-ended, cylindrical indenter was investigated
next. The associated breakthrough loads and strengths were computed. It was
studied whether the loads or strengths were functions of either the thickness
h or the macroscopic in-plane size (side length L) of a square-shaped sheet.
The breaking of an ice sheet containing a circular hole by a rigid, truncated,
ascending cone was investigated last. The loads on the cone were computed
and then compared with known analytical results of a “direct” case. It was
explored whether a scheme in which a stationary ice sheet containing a circular
hole interacting with a surfacing cone yields loads that are comparable to the
case in which an ice sheet is moving, a structure is held stationary, and the
contacts occur only unilaterally (i.e. one-sidedly). The approach is believed
to be new and may be categorized as “in-direct” due to the reversed nature
of the interaction scenario. The approach should provide a means not only to
compute cone ice loads but also to investigate the failure as regards to the ability
of a numerical method to describe both radial and circumferential cracking. It
should, in addition, provide a device to compute bifurcation-type buckling loads.

While computing the tensile and the breakthrough strengths, a set of self-
similar sheet samples with an in-plane size range of 1:16 was examined. The
samples were square; had a side length of either L = 10, 20, 40, 80, or 160 m;
and a thickness of either h = 0.5, 1.0, or 1.5 m. With the sheets containing
holes, only the largest samples (L = 160 m) were investigated.

The results indicated that i) both the tensile and the breakthrough strengths
are strong functions of both L and h; ii) the tensile strength is a strong function
of the applied loading rate; iii) the failure mode as regards to the vertical
penetration fracture changes drastically as a function of L; iv) the model is
able to demonstrate both radial and circumferential cracking; and that v) the
proposed in-direct approach to compute ice loads on a conical offshore structure
provides realistic (i.e. comparable to the loads computed with a direct approach)
results.
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