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Abstract —We partially replicated the model described by Rafferty et al. to optimize au-
tomated teaching via POMDP planning. Teaching is formulated as a partially observ-
able Markov decision process (POMDP) in which the teacher operates and plans actions
based on the belief that reflects the learner s̓ state. The automated teacher employs a
cognitive learnermodel that defines how the learner s̓ knowledge state changes.Two con-
cept learning tasks are used to evaluate the approach: (i) a simple letter arithmetic task
with the goal of finding the correct mapping between a set of letters and numbers, and
(ii) a number game, where a target number concept needs to be learned. Three learner
models were postulated: a memoryless model that stochastically chooses a matching
concept based on the current action, a discrete model with memory that additionally
matches concepts with previously seen actions and a continuous model with a proba-
bility distribution over all concepts that eliminates inconsistent concepts based on the
actions. We implemented all models and both tasks, and ran simulations following the
same protocol as in the original paper. We were able to replicate the results for the
first task with comparable results except for one case. In the second task, our results
differ more significantly. While the POMDP policies outperform the random baselines
overall, a clear advantage over the policy based on maximum information gain cannot
be seen. We open source our implementation in Python and extend the description of
the learner models with explicit formulas for the belief update, as well as an extended
description of the planning algorithm, hoping that this will help other researchers to
extend this work.

1 Introduction

Teaching students in an automated fashion is a challenging task. Human teachers are
able to adjust the teaching process to the students depending on their current situation
(e.g., a teacher will act differently if they think that the student did not fully understand
a concept yet, or if they alreadymastered it). This level of understanding of the student s̓
knowledge and a consequential ability to adjust the teaching activities is not straightfor-
ward in automated teaching applications.
One method for increasing the teaching effectiveness in automated teaching applica-
tions was proposed by Rafferty et al. [1]1. They model teaching as a partially observable
Markov decision process (POMDP), considering the selection of the next teaching activ-
ity as a planning problem. The automated teacher employs a cognitive learner model
that defines how the student s̓ knowledge state is expected to behave and that defines

1Note that there is a shorter version with the same method described which only contains the first task of
this longer paper. We always refer to the longer and later paper in this replication.
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[Re] Faster Teaching via POMDP Planning

how the internal belief update is calculated. As the title of the paper suggests, the goal
of the teacher is to teach the student quickly. The teaching activities have a time cost
associated and the goal is to minimize the total time until a concept is learned.
The teacher has three types of teaching activities available: showing an example (i.e.,
teaching new content), asking a quiz (i.e., assessing the knowledge of the student), and
a question with feedback action (i.e., a question is asked and the questions̓ correct an-
swer is then revealed). Three learner models were postulated: a memoryless model
that stochastically chooses a matching concept based on the current action, a discrete
model with memory that additionally matches concepts with previously seen actions
and a continuousmodel with a probability distribution over all concepts that eliminates
inconsistent concepts based on the actions.
The combination of learnermodel and teaching action defines the belief update compu-
tation. During the planning phase, a set of sample actions are evaluated by a tree search
algorithm with limited horizon, where the belief is simulated according to the learner
model. The teacher selects the action with the lowest cost according to the action se-
quence costs leading the student the closest to the desired knowledge.
The algorithm is evaluated on two concept learning tasks: (i) a simple letter arithmetic
task with the goal of finding the correct mapping between a set of letters and numbers,
and (ii) a number game, in which students need to learn the target number concept (e.g.,
is the rule used for generating numbers ʼodd numbers ,̓ ʼnumbers between 15-25 ,̓ ...?).
We implemented the algorithms and evaluated our implementation through the same
simulations as in the original work. We received comparable results for the first task
with one deviation. However, the different models achieve a very similar performance
if paired with a sophisticated learner and are not better than a baseline based on max-
imum information gain. In the second, more complex task, the POMDP policies out-
performed the random baselines but have no clear advantage over the policy based
on maximum information gain. Further, no single learner model was clearly better
than the others. In addition, we report explicit failure rates of the policies when paired
with a particular learner model. This showed that the simulated memoryless learner
often fails to learn the concept, and that the continuous policy tends to overestimate
the learner abilities and does not discover mismatches between the belief and the state.
Our implementation is open and canbe foundat https://github.com/luksurious/faster-teaching.

2 Methods

2.1 Teaching as a POMDP

General framework — A partially observable Markov decision process (POMDP) extends a
Markov decision process (MDP) such that the agent does not directly observe the state
of the environment and instead receives (partial) observations of the state.
Similar to an MDP, the state space S describes the state of the environment, the action
spaceA is the set of possible actions the agent can take, the reward functionR(s, a) = r
describes the outcome for the agent after taking an action a ∈ A in state s ∈ S, and the
transition model T (s′|s, a) gives the conditional probability of the environment transi-
tioning from state s to state s′ ∈ S after the agent has taken action a ∈ A. γ ∈ [0, 1]
is a discount factor that describes how important future rewards are in comparison to
immediate rewards when calculating total rewards.
In a POMDP, as the states are not directly available to the agent, the set of possible
observations of the environment are denoted z ∈ Z and the conditional observation
model O(z|s′, a) assigns a probability of receiving the observation z after taking action
a causing a transition to s′. To track the state of the environment, the agent maintains a
probability distribution over the state space S called the belief b. b(s) is the probability
the agent assigns to the state s matching the environment s̓ state. Through a series of
observations, the agent can update this belief to infer the state of the environment. The
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[Re] Faster Teaching via POMDP Planning

Figure 1. A general process of a POMDP. True states are not available, instead, observations are
received. These allow to update the agent s̓ belief of the state that is used to choose an action to
change the state towards a desired goal.

goal of the agent is to find an action sequence that maximizes the expected discounted
future rewards E [

∑∞
t=0 γ

trt] where t denotes the time step of the interaction and rt is
the reward at that step.
Figure 1 describes the interaction in a POMDP. Taking an action a0 ∈ A causes a tran-
sition of the environment s̓ state from s0 to s1 with probability T (s1|s0, a0). Then, the
agent receives the observation z1withprobabilityO(z1|s1, a0) and a reward r1 = R(s1, a0).
This enables the agent to update its belief from b0 to b1 as described in the next section.

Belief update —We denote the operation of updating the belief from b to b′ as τ(b, a, z). A
generic belief update can be described with Bayesian statistics. For discrete states, the
probability of a single state can then be updated using the formula:

b′(s′) = η ·O(z|s′, a)
∑
s∈S

T (s′|s, a) · b(s) (1)

where η is the normalization term 1/
∑

s′ b
′(s′) to assert its sum is 1. This formula must

be applied to every state s ∈ S to obtain the updated belief b′. The complexity of a full
belief update is then of order O(|S|2).

Application to automated teaching — This formulation can be applied to automated teaching
as follows: the student represents the environment and the knowledge of the student is
modeled as the state s ∈ S that is hidden from the teaching program. The automated
teacher is the agent operating in this environment by choosing actions a ∈ A to teach
the topic. The student responds to actions with answers z ∈ Z that represent the ob-
servations for the automated teacher. The automated teacher maintains a belief b as a
probability distribution of the knowledge of the student. In general, its goal is to change
the state of the student such that the student has mastered the topic according to the
reward function according to the pedagogical objective(s). The original formulation by
Rafferty et al. simplifies the reward function to only depend on the action R(a).
If the student s̓ learning behavior is known, the teacher can plan and choose actions in
such away that the learning of the student is optimized. Such amodel would thus define
the transition and observation functions needed to apply the POMDP framework.
Rafferty et al. consider that an action a is the choice of a specific type of teaching activity
t ∈ T (type) and a specific teaching item i ∈ I that describes some content or exam-
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ple of the topic. This decomposition allows simplifying the formulation when different
teaching methods are available. See section 2.2 for more details.

Planning optimal actions — Finding a policy that optimizes the pedagogical objective(s) is
done via online planning, i.e., during execution. Offline planning, i.e., precomputing
best actions for every possible belief state, might become computationally expensive
and, thus, not tractable for longer trials or teaching taskswith a large state space. Hence,
Rafferty et al. employ a forward tree search algorithm with a finite horizon similar to
Ross et al. [2].
In a nutshell, the process is as follows: The forward search starts from the current belief
state b. A set of actions Ã ⊂ A is sampled to lower the computational cost. Their values q
are calculated by simulating an interaction until horizon d (depth) and the action a∗ ∈ A
with the highest value is selected by the automated teacher.
Thus, we compute the best action a∗d(b) for a fixed horizon as follows:

a∗d(b) = argmax
a∈Ã

Qd(b, a) (2)

with b the current belief state, d ∈ Z the search depth, Ã ⊂ A the sampled actions, and
Qd(b, a) the action-value function for action a under the belief b calculated until d. This
follows the common notation in reinforcement learning where action-value functions
are used to denote the expected reward when performing a particular action in a given
state.
Since actions are composed of items i ∈ I and teaching activity types t ∈ T , the action
sampling is decomposed as follows: n teaching items Ĩ ⊂ I are sampled and the carte-
sian product with all teaching activity types T is constructed to create Ã = Ĩ × T . The
number of sampled actions is then equal to the product of sampled items and number
of teaching types |Ã| = n · |T |. This prevents ending up with actions of only a few types,
which is very probable in the case of |I| ≫ |T |.
A single action a might cause different state changes according to T (s′|s, a), and thus,
different observations z. For each action-observation pair, a new belief b′ = τ(b, a, z) is
computed. With this new belief, the process starts anew: new actions are sampled and
evaluated. The forward search expands tree-like and grows exponentially in breadth.
To keep the computations tractable, the search is limited by a fixed depth and a reduced
sample size.
If the set of possible observations following an action depends on the type of teaching
activity associated with that action, we can simplify the calculation to only consider
those observations that are possible for that teaching activity Zia ⊂ Z.
To calculate the value of an action under the current belief, the future expected values
of all possible observations for that action need to be considered and added to the value
of the action itself. We compute Qd(b, a), the expected value for using the action a ∈ A
in the belief b with search depth d as:

Qd(b, a) =

{
R(a) +

∑
z∈Zia

Pr(z|b, a) · γ · Vd−1(b
′ = τ(b, a, z)) if d > 0

V̂ (b) if d = 0
(3)

with R(a) the reward for action a, Pr(z|b, a) the probability of receiving z for action a
under the belief b, γ ∈ [0, 1] the discount factor, Vd(b

′) the value function for the new
belief, and V̂ (b) an estimation function of the value of the belief bwhen the search depth
is reached.
The value of the belief Vd(b) is defined as the maximum of the action-valuesQd(b, a) for
search depth d over the sampled actions Ã:

Vd(b) = max
a∈Ã

Qd(b, a) (4)
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Further, the probability of receiving anobservation for an actionunder a beliefPr(z|b, a)
is simply the sum of the observation model O(z|s, a) for every state, weighted by the
belief probability of that state b(s).

Pr(z|b, a) =
∑
s∈S

b(s) ·O(z|s, a) (5)

Finally, when the depth d is reached, the value of the belief state at the leaf node is
estimated by V̂ (b). The specific estimation function thus needs to be defined by the task
implementation of the method (see section 2.2). The estimated leaf value is propagated
back up and discounted according to γ.
The value of an action under a belief at a certain depth Qd(b, a) is thus the sum of the
immediate reward of the action R(a) and the sum over all valid observations for that
action Zia of the discounted back-propagated belief state values γ · Vd−1(b

′), weighted
by the observation probability Pr(z|b, a). According to the values of a set of actions, the
best action a∗d(b) can be chosen according to Equation 2.

Algorithm 1: Recursive forward search planning algorithm
Input:
b current belief
n no. of samples per level
d horizon

Output:
v∗ best value of next action
a∗ best action

Function ForwardSearch(b, n, d):
Ĩ ← sample n items uniformly from I

Ã← Ĩ × T
v∗ ←∞
for a ∈ Ã do

q ← R(a)
for z ∈ Zia do

b′ ← τ(b, a, z)
if d = 1 then

v ← V̂ (b′)
else

v ← v∗ of ForwardSearch(b′, n, d− 1)
end
q ← q + Pr(z|b, a) · γ · v

end
if q > v∗ then

v∗ ← q
a∗ ← a

end
end
return v∗, a∗

This algorithm is described in algorithm 1. It is implemented as a recursive algorithm
that returns themaximumexpected reward of the next action and the best action accord-
ing to this reward. In intermediate calls, the best value is used to calculate the value of
the immediate action while at the top level the best action is used to define the next ac-
tion to take. For simplicity, we describe it with a single best action although in practice
it is useful to maintain a list of actions with the highest known reward and choose the
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next action from that list. This is to prevent biasing the method toward some internal
structure of the actions.

2.2 Application as “faster teaching” to concept learning
The authors apply this general formulation to concept learning tasks. Category or con-
cept learning is the process of learning categories from examples [3].
In such tasks, we denote the set of concepts as hypotheses H.The task description has
to be complemented with (i) a prior distribution p0 over these concepts, (ii) the items
that can be used to teach the task i ∈ I, (iii) the teaching activities t ∈ T , and (iv) the
possible responses Z.
The reward function is defined such that the teacher focuses on reducing the timeneeded
for learning the task, hence the name “faster teaching”. Each teaching action is associ-
ated with a cost (negative reward) that is modeled after the time it takes the student to
complete the action. Thus,minimizing the costs results in the quickest learning. Weuse
the cost of an action C(a) and a minimization objective instead of maximizing rewards
(if R(a) = −C(a), then argmaxa R(a) = argmina−R(a)).
Teaching is terminated once the student has learned the concept. This is assumed if in
an assessment phase the learner answers all questions correctly. Such an assessment is
performed at regular intervals to check for termination, but not used for updating the
beliefs of the teacher.

Teaching activity types — In the context of concept learning, Rafferty et al. define three
possible types of teaching activity T : (1) showing an example, (2) asking a quiz, and (3)
asking a question and subsequently giving feedback about the student s̓ response.

(1) Example In an example, the teacher presents an item with the correct result or
concept. No response by the student is expected. Thus, Zexample = {∅}. The observation
model is trivial: O(z|s, a) = 1 if z = ∅ and 0 otherwise. However, as the example can
provide new insight for the learner, the transitionmodel assumes a state change for such
cases. This change depends on the learner model and is described in the next section.

(2) Quiz In a quiz, the teacher presents an item and the student has to respond with an
answer. This allows the teacher to refine their belief about the student s̓ true state, but
it does not give new information to the student.
The set of observations for this activity type contains the full set of observations valid for
the concept task, Zquiz = Z. The definition of the observation model O(z|s, a) depends
on the learnermodel and is described in the next section. The transitionmodelT (s′|s, a)
is trivial: as no new information is presented, the student is not expected to change their
state. The transition probability is set to 1 if both states are the same, 0 otherwise.

T (s′|s, a) =

{
1 s = s′

0 s ̸= s′
(6)

As a result,
∑

s T (s
′|s, a)b(s) of the belief update in Equation 1 collapses to just b(s′).

(3) Feedback In a question with feedback type of teaching activity, the previous types
are combined. First, the learner is asked a question to which they respond according to
their knowledge. Then, the teacher reveals whether the response was correct, and gives
the correct answer in case of an incorrect answer. Here, both the observationmodel and
the transition model are used in a non-trivial way. As in the quiz, the set of observations
for this teaching activity contains the full set of observations valid for the concept task,
Zfeedback = Z, and the observation model O(z|s, a) depends on the learner model. And
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as in the example, the transition model depends on the learner model, as the feedback
can provide new information to the learner.
Note that when modeling the update as in the Bayesian belief formula (1), the update
has to be split into two separate steps: the response of the learner is always related to the
state before taking the action, while the feedback might trigger a state change without
an additional observation. So first, the belief update according to the response z has
to be calculated in the same way as in the quiz activity. Second, if the response was
incorrect, a state change is expected based on the true answer, as in the example activity
type.

To reflect these similarities between the feedback type and the other activity types, we
will use refinement activities to refer to the quiz activity and the question part of the feed-
back activity (as they both allow the teacher to refine the belief), and evidence activities
to refer to the example activity and the feedback part of the feedback activity (as they
both allow the learner to improve its knowledge).
We define the generic belief update formulas for refinement and evidence activities as:

b′(s′) =

{
η ·O(z|s′, a) · b(s′) for refinement activities
η ·
∑

s∈S T (s′|s, a) · b(s) for evidence activities
(7)

η refers to the normalization term and depends on the belief formula.
Finally, we denote byHa the set of concepts (hypotheses) that are consistent with action
a, andHz|a the set of concepts which imply that z is a correct answer to action a.

2.3 Learner models
The learner model defines the details of the transition and observation functions. Raf-
ferty et al. postulate three learnermodels: (1) a discretememorylessmodel, (2) a discrete
model with memory, and (3) a continuous model with a dynamic probability distribu-
tion over the concept space. All models are extended to include noise to accommodate
human error during the learning.

Noise Two types of noises are added to all models: a production noise ϵp for cases
where the student responds inconsistently to their knowledge, and a transition noise
ϵt for cases where the student ignores new evidence and does not transition to a new
consistent state. For the production noise, it is assumed that the student respondswith a
random answer drawn uniformly from all possible answers. The transition noise affects
the state transitions, and themodels need to incorporate this behavior in their updating
rules to prevent diverging beliefs and states.

(1) Memoryless model This model is close to the learning model of Restle et al. [4]
and assumes that no explicit memory of previous actions is kept while storing a specific
concept hypothesis that is currently believed to be true by the learner (as opposed to
considering multiple possible plausible concepts). Thus, the learner state only depends
on the current knowledge and the immediate teaching activity. The state space S is
isomorphic to the space of possible conceptsH, such that any s ∈ S corresponds to one
specific concept hypothesis denoted hs.
For refinement activities, the observation model needs to be defined. As the learner
holds a single true concept, the response corresponds to the result under this single
concept. Taking noise into account, the observation model is defined as follows:

O(z|s, a) =

{
(1− ϵp) +

ϵp
|Zia |

if z is consistent for a under s
ϵp

|Zia |
otherwise

(8)

with ϵp
|Zia |

the probability of choosing a random response in case of a production error.
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For evidence activities, the learner is assumed to transition to a concept consistent with
the new evidence if not already in a consistent state. The probability of each consistent
concept is proportional its prior probability. With noise, the transitionmodel is defined
as follows:

T (s′|s, a) =



1 if hs′ ∈ Ha and s′ = s,

(1− ϵt) ·
p0(hs′)∑

s′′|hs′′∈Ha
p0(hs′′)

if hs′ ∈ Ha and s′ ̸= s,

ϵt if hs′ /∈ Ha and s′ = s,

0 otherwise

(9)

with p0 the prior probability over the possible concepts, and p0(hs′ )∑
s′′|h

s′′∈Ha
p0(hs′′ )

the prob-

ability of going from an inconsistent state to a particular consistent state based on the
relative prior among the consistent states.
The sum over states in Equation 7 for evidence actions can be decomposed to accommo-
date this structure. For states consistent with the information provided by the action,
it is composed of two parts: the likelihood of transitioning from an inconsistent state
to this consistent state, and the likelihood of already being in this state and, thus, not
transitioning. The belief update is consequently:

b(s′) =

{
η ·
[
(1− ϵt) · p0(hs′ )∑

s|hs∈Ha
p0(hs)

·
∑

s|hs /∈Ha
b(s)

]
+ b(s′) if hs′ ∈ Ha

η · ϵt · b(s′) otherwise
(10)

Note, that in case of feedback activities, the evidence update only has to be performed
for incorrect answers, as the learner is assumed to not transition for correct responses.

(2) Discrete model with memory This model extends the memoryless model so that
a history of the past m actions is kept. Transitions then have to be consistent with the
current action plus the memory actions, denoted AM . The memory only needs to store
actions that contain information, i.e., quiz activities are ignored. As for thememoryless
model, it is assumed that the student only holds a single concept as true and responds
accordingly to it.
If the memory would not be perfect, it must be considered part of the student s̓ state.
In this case, the number of possible memory states SM is calculated based on the set
of teaching items I and the set of valid memory teaching activities Tmem as |SM | =∑m

k=0 |I × Tmem|k. Taken together, the total state space would increase by the memory
states and become |S| = |H| · |SM | resulting in a possibly huge state space. For exam-
ple, in the letter arithmetic task with 6 letter-number pairs, 15 teaching items, 2 valid
memory teaching activities, and a memory size of 2, the total number of memory states
would grow from |H| = 720 to |H| · (1 + 30 + 302) = 670.302.
However, the model assumes a ʻflawlessʼ memory, i.e., even if an action is ignored for
updating the state due to the transition noise, it is kept in memory. As a consequence,
at every time step, only the single memory state based on the action history is possible
and needs to be considered, reducing the state space to |H| as before.
The transition and observation models are formulated analogously to the memoryless
case. The only difference is that the set of consistent concepts with the current action
Ha has to be consistent also with the actions in memory AM .

(3) Continuousmodel Thismodel assumes that the studentmaintains a probability dis-
tribution over all possible solutions as formulated in [5]. No explicit history of previous
actions is stored but the state contains implicit information about the history. In this
case, every state is a probability distribution over all elements of H, making the state
space infinitely large. Thus, approximations are needed to make this model feasible.
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In this model, a state consistent with an action-observation pair is one in which the
probabilities of all inconsistent concepts with the action is zero ps(h /∈ Ha) = 0.
Responses to teaching actions are probabilistic and correspond to the combined proba-
bility the student places on the concepts with z as a correct answer.

O(z|s, a) =
∑

h∈Hz|a

ps(h) (11)

where ps(h) is the probability of the hypothesis h in the state s.
The transition model is defined such that for new evidence, the learner transitions de-
terministically to the closest consistent derivation of the current state s. This derived
state s∗a for the current action a is a copy of the current state in which the probabilities
of all inconsistent hypotheses are set to 0 while the other probabilities are retained and
normalized.

T (s′|s, a) =


1 if s is consistent with a and s′ = s

1 if s is inconsistent with a and s′ = s∗a
0 otherwise

(12)

With diverse evidence, the probability distribution converges to the true concept.
From the perspective of the teacher, it is intractable to hold a belief over the infinite set
of states. Below, we review the particle filter implementation that is employed instead.

Particle filter A particle filter is used to approximate the infinite set of possible states
via a limited number of weighted particles [6]. In this particle filter, each particle p ∈ P
represents one possible state sp (i.e., a probability distribution over concepts), and the
weight wp indicates the probability the teacher assigns to this particle. The sum of the
weightsmust always be 1 as in a probability distribution. The particlesP can be thought
of as corresponding to b and the weights to b(s) in the discrete case. As the belief state
is approximated, the belief update τ(b, a, z) is now a function of the existing particles as
described below.
In the beginning, the particles are initialized with two particles sharing equal weight:
one particle corresponding to the prior distribution p0, and one particle with a uniform
distribution over the concepts. If the prior distribution is uniform, only one particle is
created.
After each action, the particles are updated, and new particles are created based on the
observation and transitionmodels, and theirweights are recalculated. This corresponds
to the belief updates in the discrete models.
For refinement activities, theweights of the particles are updatedbased on the observation
model as follows:

w′
p = η · wp ·O(z|s, a) (13)

O(z|s, a) = (1− ϵp) ·
∑

h∈Hz|a

psp(h) +
ϵp
|Zia |

(14)

with ϵp
|Zia |

being the probability of observing the response z due to a production error. η
now refers to the renormalization factor after processing all particles, 1/

∑
p∈P wp. This

corresponds to the regular belief update Equation 7.
For actions using an evidence activity, every particle is replaced by two new particles,
one assuming the learner did not transition, and one assuming the learner transitioned.
The non-transitioned particle is simply a copy of the previous particle, with the weight
adjusted by ϵt. The transitioned particle is based on the old particle and updated to
reflect the new evidence. For this, the probability for all inconsistent states is set to zero
psp(h /∈ Ha)← 0. The weight of both particles is thus updated according to:
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w′
p =

{
η · (1− ϵt) · wp for transitioned particles
η · ϵt · wp for non-transitioned particles

(15)

Since this update doubles the number of particles, there is a limit imposed to prevent
uncontrolled growth on the number of particles. If the total number of particles exceeds
some predefined maximum, the particles with the smallest weight are removed so that
the limit is satisfied, and the weights are normalized again.
The weight updates and renormalizations are performed after both refinement and evi-
dence activities separately (relevant in the case of feedback activities). Further, in both
cases, there is a check for particle depletion (i.e., no particle is probable). This happens
if the sum2 of all particle weights is below some threshold. In this case, all particles
are eliminated, and two new particles are initialized with equal weight. One particle is
created according to the prior distribution and the other particle according to the state
a learner without noise would have ended up in following the history of previously seen
actions.
In this model, the update based on new evidence has to be done also for correct re-
sponses to feedback activities, as the response is sampled from the state of the learner
and does not represent a certain answer.

Planning — For every learner model, a corresponding policy is constructed that follows
the forward tree search planning algorithm described in section 2.1.4. To estimate the
cost of the leaf nodes in such concept learning tasks, the authors take the probability
of failing the assessment phase (given by the belief) and multiply it by a scaling of the
minimum future costs:

V̂ (b) = (1− pb(htrue)) · α ·min
a

C(a) (16)

with pb(htrue), the probability assigned to the true concept in the current belief, and α
a scale parameter.
For the memoryless and the model with memory, pb(htrue) is simply the belief probabil-
ity of the true concept. For the continuous model, it is the combined probability of the
true concept of all particles, weighted by the corresponding particle weight.

pb(htrue | b) =

{
b(s = htrue) for the discrete models∑

sp|p∈P wsp · psp(htrue) for the continuous model
(17)

2.4 Comparison with original paper
We tried to honor the originalmethod description asmuch aswe could. While certain el-
ementswere not clear to us, we discussed open questionswith thefirst author of the orig-
inal paper, and verified certain assumptions with their implementation. Specifically,
we verified that one should compute the belief update without the explicit Bayesian
equation (1), and treat the belief update as a two-step process for the refinement and
evidence parts of the actions, which is especially relevant for the feedback activity. We
deduced the planning algorithm 1 from the referenced papers and validated it with the
original implementation, and verified that the memory is not part of the state in the
discrete model with memory, and that the memory ignores quizzes. As such, we did
not have to take design decisions as clarifications were provided by the original authors.
Still, there might be differences in implementation details as we focused our validation
on the conceptual algorithms and model equations.

2Note that it is always the sum and not the maximum of the weights as wrongly stated in one passage in the
original supplementary material (as confirmed from the original implementation).
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3 Experiments

We applied our implementation to both concept learning task from the original paper:
the Letter Arithmetic task and the Number Game. As we were interested in the method
and its possible applications, we performed simulations only and no experiments with
humans.

3.1 Baselines
We compare the results to the baselines introduced in the original paper: a random pol-
icy, a random policy with only quiz and example actions (quiz-example only/QE only) and
policy with planning according to maximum information gain (MIG).
The random policy selects any of the a ∈ A actions randomly, however, making sure that
no item i ∈ I is sampled twice in the same teaching phase.
The quiz-example only policy ignores the feedback activity. It was introduced since in the
first original experiment with the letter arithmetic task, the planning algorithms did not
use any feedback actions, resulting in amuch higher average cost for the random policy
compared to the POMDP planners.
The maximum information gain policy performs a single planning step with the continu-
ous learner model. For every possible action, it simulates the belief change according
to the continuousmodel and compares the Shannon entropy of the current and the new
belief state.

entropy(b) =
∑

sp|p∈P

wsp ·

(
−
∑
h∈H

psp(h) · ln
(
psp(h)

))
(18)

The planner selects the action which produces the highest information gain for the
learner, i.e., the one that reduces the entropy the most. As with the continuous pol-
icy, the particle filter approximation is employed, and thus, the entropy of the belief
state is calculated as the weighted sum over the entropy of the particles. This policy pro-
vides only example activities to teach a concept as refinement activities do not provide
new information to reduce the entropy. As such, it cannot understand errors during
learning and revise its belief.

3.2 Task 1: Letter Arithmetic
The letter arithmetic task is composed of addition equations with two letters, such asA+
B = 3. In the original experiments, the mapping length is set to 6, which corresponds
to the letters A-F being mapped to the numbers 0-5 (we confirmed that there was a typo
in one passage noting a larger range of numbers 0-6).
Some sample actions are thus: B + F = 5 (example), A + C =? (quiz) and followed by
correct or answer = 2 for feedback actions. The number of possible teaching items I
can be reduced by only considering the possible combinations of the letters, i.e., ignor-
ing order. For the case with 6 letters, this gives |I| = 15 and a maximum |I × T | = 45
actions to evaluate.
The set of valid responses Z are the numbers 1 − 9. During the assessment phase, the
learner is queried to provide the correct mapping for each letter. The estimation of the
belief value of the leaf nodes V̂ (b) follows Equation 16 with α = 10. We use the original
values for the cost function C(a) and noise parameters, as shown in tables 1 and 2, that
were fitted from control experiments with users in the original study.
The concept spaceH is composed of all permutations of the 6 letters mapped to 0-5, so
|H| = 720. This is also the state space for the memoryless and discrete policy, as well as
the particle size in the continuous policy. All concepts are assumed to be equally likely,
so a uniform prior p0 over the concepts is used.
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Teaching type Cost in seconds
Example 7.0
Quiz 6.6
Feedback 12.0

Table 1. Letter arithmetic: Teaching activity costs

Learner model ϵt ϵp
Memoryless 0.15 0.019
Discrete 0.34 0.046
Continuous 0.14 0.12

Table 2. Letter arithmetic: Noise parameters

Teaching type Cost in seconds
Example 2.4
Quiz 2.8
Feedback 4.8

Table 3. Number game: Teaching activity costs

Learner model ϵt ϵp
Memoryless 0.25 0.14
Discrete 0.18 0.10
Continuous 0.21 0.15

Table 4. Number game: Noise parameters

3.3 Task 2: Number Game
The second task is called Number Game [5]. The goal in this task is to infer a specific
number concept for the number range 1 − 100. Such a concept can be either mathe-
maticalHmath, like odd, even, multiples of 5, etc., or a range based conceptHrange, like
10-20 or 64-83. The student is presented a number and is either told if the number be-
longs to the target concept (example and feedback activities) or is asked to provide this
categorization (quiz and question activities).
The set of teaching items I is the range of numbers 1 − 100, resulting in |I × T | = 300
possible actions. The set of possible responses Z only contains two values: ʻinsideʼ and
ʻoutsideʼ the concept. During the assessment phase, the learner is presented with 10
items and has to give 10 correct answers to displaymastery of the concept and terminate
the teaching. Of these items, 5 are sampled from within the concept and 5 from outside
the concept.
For V̂ (b) to estimate the belief value of leaf nodes, Equation 16 with α = 10 is used as
before. Again, we use the original values for the cost function C(a) and noise parame-
ters, as shown in tables 3 and 4, that were fitted from control experiments with users in
the original paper.
The exact concept space is more difficult to recover. Tenenbaum et al. [5] originally
described 5,083 possible concepts. Rafferty et al. reported to use 6,412 concepts, but the
exact definition is not given. We received the original unlabelled concept values from
the original author, from which we reverse engineered 6,354 of the 6,412 concepts (the
remaining 58 concepts were the same as other concepts, and as there were no labels, we
considered them duplicates). In addition to the original 5,083 concepts, the set of less
probable mathematical concepts Hmath+ is added, e.g., “multiples of 4 minus 1” or larger
multiples such as “multiples of 25”. Details of the concept space can be found in Table 5.
The definition of the prior p0 is following a hierarchical model as described in [5]. The
mathematical concepts Hmath and Hmath+ are assigned λ of the probability and each
class in turn is assigned half of this prior. As both classes are a lot smaller than the
range concepts, they are assigned the majority of the prior if λ is not small. Inside each
class, the prior is shared uniformly: p0(h ∈ Hmath) = 0.5 · λ/|Hmath| = λ/168 and
p0(h ∈ Hmath+) = 0.5 · λ/|Hmath+| = λ/5048.
The remainder (1−λ) is shared among the number range conceptsHrange proportional
to an Erlang distribution according to their interval size: p0(h ∈ Hrange) ∝ (|h|/σ2) ·
e−|h|/σ. This should capture the intuition that medium sized ranges are more likely
than very big or very small ranges.
For the free parameters λ, σ, we use the same values as originally described in [5]: λ =
1/2, σ = 10. That means, all mathematical concepts are assigned a prior probability
of 1/168 ≈ 5.95 · 10−3, the less probable mathematical concepts a prior of 1/5048 ≈
1.98 · 10−4, and e.g. the range 1-100 is assigned the prior≈ 3 · 10−7 while the range 64-83
a prior of ≈ 1.67 · 10−4.
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Concept class Number of concepts Prior
Mathematical concepts (below) 42

∑
= 1/4

Odd, even 2 1/168 ≈ 0.0059524
Square, cube 2 1/168
Primes 1 1/168
Multiples of 3-12 10 1/168
Powers of 2-10 (incl. 1) 9 1/168
Powers of 2-10 (excl. 1) 9 1/168
Numbers ending in 1-9 9 1/168

Less probable mathematical concepts (below) 1262
∑

= 1/4

Multiples of 13-50 38 1/5048 ≈ 0.0001981
Multiples of 3-50 minus 1...n− 1 1224 1/5048

Ranges n-m, 1 ≤ n ≤ 100, n ≤ m ≤ 100 5,050
∑

= 1/2

E.g. Range 10-20 1 ≈ 0.0002262
E.g. Range 64-83 1 ≈ 0.0001672
E.g. Range 1-100 1 ≈ 0.0000003
...
Total concepts 6,354

∑
= 1

Table 5. Set of concepts for the number game and their corresponding priors.

As the less probable mathematical concepts Hmath+ were reverse engineered, the cor-
responding prior was similarly deduced to best match the associated prior given by the
original authors. Still, these priors slightly differ 5-10% from our reported values. On
the one hand, this is because our space is smaller by 58 items but also because they
might have used a slightly different λ (for instance, a value around 0.55519 instead of
1/2 could explain this difference but it does not change the results significantly).
Finally, the two random policiesʼ sampling strategy is modified such that with 50% prob-
ability an item inside the concept, and otherwise outside the concept is sampled. This
was introduced after the original authors noticed that a completely random policy was
too frustrating for the human learners.

3.4 Simulation
We validated our implementation by running the same simulations as in the original
paper. Every planning policy was tested with every learner model simulation. Hence,
for every simulated learning model, the three baselines and the three planning policies
with the learning models were tested, leading to a total of 18 pairings. Those pairs were
run 50 times each with a different but controlled seed set for the random number gener-
ators. In all trials of the same pair, the task instance was the same. The horizon depth
and samples per level were the same as in the original paper.
In the letter arithmetic task, all models used a horizon of d = 2. The memoryless model
sampled 7 items in the first level and 6 in the second level. The discrete model with
memory sampled 8 items in both levels, and the continuousmodel sampled respectively
4 and 3 items. Teaching phases consist of three actions followed by an assessment phase.
After a maximum of 40 teaching phases (i.e., 120 total actions) and a failed assessment
phase, the learning was terminated without success.
In the number game, the memoryless model and the discrete model used a horizon of
d = 2, with 6 and 8 items sampled, and 6 items sampled in both levels respectively. The
continuous model had a horizon of d = 3, with 6, 6 and 8 items sampled. Teaching
phases lasted 5 actions. The maximum number of teaching phases was again 40 (i.e.,
200 total actions).
In both tasks, the memory model was using a memory size of 2, and the continuous
model s̓ maximum particle size was set to 16 with the particle depletion threshold of
0.005, as in the original experiments.
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Precomputing actions — The authors note that for computational reasons, they precom-
puted the first actions and cached them to be used in all trials. During this precomputa-
tion, 10 items were sampled per level. The original paper reports only this number for
the first task, but we used the same number for the second task. In the letter arithmetic
task, 9 actions were precomputed, while in the number game, 20 actions were precom-
puted. Also, the same horizon as the target policy is used in every step.
Through precomputing actions, possibly better starting points would be found. Natu-
rally, during precomputation, the true responses of the learners are not known. If an
action with a non-empty response set is returned as the best action, a separate branch
for every possible response has to be followed. This ensures that during teaching, the
corresponding path according to the learner s̓ response is available. This leads to a pos-
sibly very large number of branches.

Evaluation metric — To compare our replication, we use the same metric as in the origi-
nal study to evaluate the planning policies for each simulated learner, the median time
to mastery. This refers to the hypothetical time the simulated learner spends with the
automated teacher based on the time cost of each action type.
For example, in the letter arithmetic task, if a learner is shown three examples and one
quiz, the expected time to mastery is 27.6. Note that assessment phases are not taken
into consideration in the time calculation. If mastery is not achieved, the total time
spent until this point is used. As each teaching phase consists of 3 actions and the least
costly activity is the quiz, the theoreticalminimum time is 19.8 (although it is impossible
to learn only via quizzes), and themaximum time would be 1440. In a setting using only
examples, the minimum time would be 21.0, while for maximum runs, averaging over
the action costs, the time until termination is expected to be 1024.
For the number game, the action costs are much smaller, while the teaching phases are
longer. The theoretical minimum time is 12.0 using example activities. The averaged
maximum in this task is then ≈ 666.67.
These numbers allow us to get an intuition of how well a learner is doing in respect to
the bounds of the problem.

3.5 Results

Letter Arithmetic — Our simulation results are shown in Figure 2 (a). The overall results
of the median time to mastery are very similar to the original paper with some notable
differences.
Most notably, the result for the memoryless learner with the memoryless policy differs.
It is lowest for the memoryless learner with 323.5s while the original authors reported
a time around 810s.
The results for the other learners match the original data closely, the random policies
differ slightly. The results for the three planner and the maximum information gain
policies paired with the discrete and continuous learners all have a median of 42.0s
(two rounds of example activities). Only the memoryless policy for the discrete learner
deviates from this value, although it is still contained in its confidence interval.
When comparing the time to mastery for the two random policies, note that the QE only
policy might achieve a lower number because the most expensive action is not used.
This can have a negative effect on the learning because with the random policy, there
is a 2/3 chance of seeing evidence, while with QE only, there is only a 1/2 chance. This
might explain the higher failure rate for thememoryless learner with the QE only policy.
The failure rate of the different simulations, i.e., howmany times a learning session was
terminated after 40 rounds of teaching phases before the learner achieved mastery of
the concept, are reported in Table 6. It shows that the memoryless learner consistently
failed to learn the concept, ranging from 18%-96% of the cases. It is highest with the
continuous policy at 96% and second highest for the QE only policy at 68%. Themedian
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(b) Original results, recreated from the original figure 4. The main difference is highlighted in red.

Figure 2. Median time to mastery for the letter arithmetic task. The results are grouped for each
simulated learner (x axis) showing the performance of the different policies. The error bars rep-
resent the bootstrapped 68% confidence interval.

time tomastery is very similar in both cases though since the continuous policy samples
only the cheapest activity type (quiz) after somepoint. The discretememory learner only
fails with the continuous policy in 26% of the cases, while the continuous learner never
fails to learn. Although the information is not available in the original paper, we assume
that the failure rates are similar since the median time to mastery is very close.
Table 6 shows computation times for the differentmodels across all learners. The online
planning computation times are well below 3 seconds which was put forward as the
threshold in the original paper. Increasing the sample sizes did not produce significantly
different results.
Figure 3 shows the teaching activity types planned for eachmodel. Both thememoryless
model and the discretememorymodel plannedmainly example activities. Interestingly,
both sampled a quiz type after eight and nine example types. Afterwards, the discrete
memory model employed more quizzes than the memoryless model. The continuous
model started with example activities only but gradually used more quiz type actions
which were the only type used after action step 12. No model planned feedback activi-
ties.
We provide data tables of the results in the supplementary section 8.
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Policy Failure rate with learner Computation time
Memoryless Memory Continuous

Random 50% 0% 0% -
Random QE only 68% 0% 0% -
Max. Information Gain 32% 0% 0% 0.1s
Memoryless 22% 0% 0% 1.3s
Discrete memory 18% 0% 0% 2.2s
Continuous 96% 26% 0% 1.2s

Table 6. Failure rates and mean computation times over 50 simulations for each policy-learner
pair.
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Figure 3. Planned activity types per step for each planning model for the letter arithmetic task.

Number game — Our results are shown in Figure 4 (a). The overall structure of the results
appear similar to the original results but there are major differences in our data. We
consider differences major if the values differ at least 50% and the relative performance
compared to the other policies is different.
For the simulated memoryless learner (top chart), our results for the target multiples of
7 are slightly higher and not clearly better than the random policies while their relative
performance matches the previously reported results. For the target multiples of 4 mi-
nus 1, our results with the memoryless planner and the discrete memory planner differ
significantly. Our simulations resulted in a median time to mastery of 480s for both
which was reported as 260s and 140s in the previous work. Hence in our results, no
planner exhibits a high performance while previously, the discrete planners resulted
in low teaching times. In the target Range of 64-83, we find the maximum information
gain policy performs comparable to the continuous policy at 108s while it performed
significantly worse than the other planners at 350s in the original results.
For the simulated discrete memory learner (middle row), with the target multiples of 4
minus 1, our continuous planner resulted in a significantly worse performance than all
other policies which performed remarkable in the previous paper. For target Range of
64-83, our maximum information gain policy achieves a very high performance with
12s, while in the original results, it was significantly worse than all the other policies
with 230s.
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(b) Original results, recreated from original figure 9. Major differences are highlighted in red
(∆ ≥ 50% and relative performance to other policies differs).

Figure 4. Median time to mastery for the number game separated for each simulated learner and
grouped by task. Error bars represent bootstrapped 68% confidence intervals.
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Policy Multiples of 7 Mult. of 4 minus 1 Range 64-83 Comp.
Mless Mem Cont Mless Mem Cont Mless Mem Cont time

Random 12% 0% 0% 54% 2% 0% 2% 0% 0% -
QE only 6% 0% 0% 54% 2% 0% 0% 0% 0% -
Max. Info.
Gain 16% 0% 0% 72% 6% 0% 6% 0% 0% 0.2s

Memoryless 4% 0% 0% 70% 0% 0% 0% 0% 0% 3.7s
Memory 4% 0% 0% 70% 0% 0% 0% 0% 0% 2.4s
Continuous 28% 0% 0% 68% 18% 0% 0% 0% 0% 21.9s

Table 7. Failure rates and computation times over 50 simulations for the number game tasks.

For the simulated continuous learner, we find it to perform significantly better with all
targets andwith all policies, achieving the best results among the different learners, and
not allowing to distinguishbetween theplannersʼ performance. In the originalwork, the
continuous learner was outperformed in many cases by the discrete memory learner
and even sometimes the memoryless learner. For the target multiples of 4 minus 1, our
policy based on the discrete memory policy performed equally well to the continuous
policy with 26s, while it was previously reported with a performance of 180s, much
higher than the other policies.
In general, we note that our results do not follow a clear line in comparison to the orig-
inal data. The best policy for a learner-policy pair is often different in our simulations
even if the differences are not large.
Table 7 shows the failure rates for the second experiment. We note similar results as
in the first experiment: The memoryless learner fails to learn in some cases, especially
for the target multiples of 4 minus 1. In fact, the failure rates are very similar across all
planners. In that task, also the discrete memory learner fails to learn with the random,
maximum information gain and continuous policies. However, the failure rates are
lower than in the first experiment. The continuous learner never fails to learn.
The computation times are reported in table 7 in the last column. They are significantly
higher than in the first experiment and close or larger than the threshold of 3s. In partic-
ular, the continuous policy exhibited amean computation time ofmore than 20s since it
was planning three horizons into the future. The higher computation times make sense
considering that the state space is around 7 times larger than in the letter arithmetic
task3. Note though that we invested less effort into making the computations efficient
for the number game.
Finally, Figure 5 shows the sampled teaching types for the different models, combined
for all three tasks. Recall that in the number game, the cheapest action type was the ex-
ample action. We notice that it is strongly dominated by example actions in all planners.
The discrete memory and the continuous model sometimes planned feedback actions
and quiz actions.
Again, detailed results and statistics are provided in the supplementary section 8.

3.6 Implementation
We implemented the model in Python 3, using Numpy to performmany calculations in
vectorized form. Simulations are run in parallel to reduce the needed execution time.
Reproducibility is achieved by using fixed seeds for the random number generators
in Python and Numpy. The code is publicly available on GitHub at https://github.com/
luksurious/faster-teaching/. All possible execution modes are configurable via command-
line arguments which also allows a manual learning mode for diagnosis.

3The precomputation times were sometimes significantly higher for the number game, depending on the
number of quizzes it sampled in the first 20 steps. This resulted in some cases in over 5,000 paths to be
precomputed and a runtime of more than 10 hours. In most cases though, the number of evaluated paths was
below 10 and done in few minutes.
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Figure 5. Planned teaching activity types per step for each planning model for the number game.

All simulations were executed on Ubuntu 18.04 with Python 3.7.5 on an Intel(R) Xeon(R)
CPU E5-1650 v4 @ 3.60GHz and 32GB of RAM.
To improve performance, the belief update is always performed separately for refine-
ment and evidence activities as described before. Further, the planning algorithm is
slightly improved to stop the iteration over possible observations if the current cost of
the action is already higher than the currently known best value.
To handle edge cases where a belief contains zero probability for all concepts (usually
due to inconsistent responses), we reset the belief in the discrete models to the initial
belief, similar to the particle depletion case in the particle filter implementation.
The biggest difference to the original implementation is that we did not employ the limit
on the computation times to 3s since we did not perform a user study.

4 Discussion

4.1 Results
Wewere able to partially replicate the results reported by Rafferty et al. for the simulated
learners. Indeed, the overall picture is similar but some results are different that lead
to a different evaluation.
We encountered two main differences in our replication. First, in the letter arithmetic
task, the memoryless policy performed significantly better with the simulated memo-
ryless learner. Intuitively this makes sense because it is matching the cognitive model
between the planner and learner. Second, in the number game, the maximum informa-
tion gain policy achieved comparable performance to the POMDP policies where it was
previously reported to be greatly outperformed by them.
Certainly, the randompolicieswere not good teachers. However, the policy based on the
maximum information gain achieved comparable results to the other POMDP policies,
while mostly failing in the original paper. Since it also employs the continuous belief
model inside to trace the state of the learner, it would be interesting to see whether
reducing the horizon of the other models leads to similar performance (with better run-
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times) and if the maximum information gain policy can be further improved by increas-
ing the horizon.
Our results show that for a strong learner, the planning model is not very important as
all achieve high performance. For a weaker learner, our simulations show that a policy
with weaker learning assumptions fits best. The letter arithmetic does not allow to draw
conclusions as all planning policies perform equally well. In the number game, the
results are more differentiated but it is still not possible to draw clear conclusions about
the suitability of a policy and whether they are superior to the maximum information
gain policy.
Even though the continuous policy was the only one to use a horizon of 3 in the number
game which resulted in much higher computation times, its results for mismatching
simulated learners were worse than in the original paper. This might be due to our
implementation not stopping calculations after 3 seconds. If that is one reason it might
imply that an improved search might actually be counter-productive in these cases.

4.2 Learner models
Our results provide extra information regarding the failure rates to evaluate the policies.
The mastery time alone can be misleading as it might mask failure rates with cheap
actions as it is the case with the continuous policy in the first task. From this analysis
we found that the simulated memoryless learner often fails to learn the concept and
as such it seems not a very plausible model for human concept learning. We deduce
from the original paper that the human learners were able to mostly learn the concepts
correctly in contrary. On the other side, the continuous policy most often led to failures
in the learners, indicating that it is not well suited for different types of learners. This
can also be seen from the types of actions sampled. In the letter arithmetic task, it
converged to choose only quiz activities. This fails to give new evidence and correct
mistakes, and resulted in the high failure rate for the memoryless learner. This is in
line with the analysis by Rafferty et al. that the continuous policy overestimates the
learning capabilities and might not discover a divergence between the belief and the
true state.
The two discrete models (memoryless model and model with memory) could be im-
proved by assigning higher transition probabilities to states that are closer to the cur-
rent state. For example, in the letter arithmetic task, the distance can be measured by
the number of necessary pairwise changes to move from one state to another. We argue
that this also better reflects human learning.
Further, the discrete model with memory assumes a perfect memory. It seems plausi-
ble that this is not always the case for human learners and might be too strong of an
assumption. However, if different memory state possibilities were integrated into the
model, the state space would increase significantly, reducing its tractability. Neverthe-
less, it could be a reason for the high transition noise determined for this learner model
in the letter arithmetic task.

4.3 Framework
One key to implementing the models efficiently is to not use the explicit Bayesian belief
update equation but instead treat the belief update separately for inferring the learner s̓
previous state and for calculating transitions based on new evidence, mainly in the case
of feedback activities. The formulation as a POMDP could be improved by taking this
into account or employing different action types that fit the structure better.
Defining the teaching goal and associated rewards or costs is a critical part in this frame-
work. Focusing on shortest time and associating the average time to process an action
type nearly eliminated one of the teaching types (feedback type), presumably due to the
high costs associated. It was shown that the continuous model converges to the cheap-
est action type and the differences in costs between the first and second task resulted
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in a very different behavior of the model. As the main planning decision, as stated in
the original paper, can be seen as deciding between teaching new content (examples)
versus inferring the learner s̓ state (quizzes), defining the cost function in the current
way does not seem to facilitate this decision well enough.
The estimation of leaf nodes requires more evaluation. The dimension α in the formula
needs to be scaled appropriately to the state space and corresponding changes in success
probability from teaching actions. Otherwise, the forward search could lead to mainly
choosing the cheapest action if the success probability of the correct concept is too small
in comparison. It would be interesting to see if the estimation of leaf nodes correspond
to the true values of the states in the experiments.
Having a separate assessment phasewhose purpose is solely to determine if the teaching
is finished, and not using the responses to tune the belief, falls outside of the POMDP
formulation and appears counter-intuitive. This results in a few cases where the teacher
is not able to determine the wrong hypothesis of the learner when the belief diverges
from the state, and no quiz actions are planned to validate the belief. It would be inter-
esting to see if integrating the assessment as a separate action type into the planning
algorithm would solve this issue.

5 Conclusion

Formulating teaching as a POMDP is a useful approach that allows to use sophisticated
planning algorithmswith cognitive learnermodels. While computational challenges re-
main for employing the proposedmethod in real-time settings, investigating challenges
and trade-offs for real-world teaching problems (e.g., second language learning) are still
necessary to fully understand the applicability of the formulation. Through this repli-
cation, we hope to facilitate research in this direction as currently employed heuristics
in tutoring systems lack adaptability for which model-based systems are promising can-
didates.
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8 Supplementary material

Policy Simulated Time to mastery in s
Learner Median Conf. Interval

Random
Memoryless 936.8 [751.8 976.6]
Memory 110.5 [102.0 125.4]
Continuous 68.9 [61.6 71.6]

Random QE only
Memoryless 814.4 [814.0 815.2]
Memory 102.2 [82.0 121.6]
Continuous 80.8 [61.4 81.2]

Max. Info.
Gain

Memoryless 462.0 [346.5 535.5]
Memory 42.0 [42.0 42.0]
Continuous 42.0 [42.0 42.0]

Memoryless
Memoryless 313.2 [271.0 396.2]
Memory 62.6 [42.0 62.6]
Continuous 42.0 [42.0 42.0]

Memory
Memoryless 466.1 [311.4 517.0]
Memory 42.0 [42.0 42.0]
Continuous 42.0 [42.0 42.0]

Continuous
Memoryless 794.8 [794.8 794.8]
Memory 42.0 [21.0 42.0]
Continuous 42.0 [42.0 42.0]

Table 8. Results for the letter arithmetic task for the different planning algorithms with correspond-
ing learner models. Bootstrapped 68% confidence intervals are reported in brackets.

Policy Sim. Multiples of 7 Mult. of 4 minus 1 Range 64-83
Learner Time (MD [CI]) Time (MD [CI]) Time (MD [CI])

Random
Mless 224.80 [196.80 284.20] 641.00 [538.10 656.10] 98.60 [88.80 123.20]
Memory 33.40 [30.80 37.00] 166.20 [143.40 208.40] 57.40 [49.60 67.70]
Cont. 32.00 [29.40 34.00] 51.60 [45.00 54.60] 42.00 [34.80 47.80]

Random
QE only

Mless 130.20 [116.40 146.00] 515.40 [428.00 516.80] 77.80 [58.40 91.60]
Memory 38.40 [38.00 39.20] 91.40 [89.60 104.00] 58.60 [51.80 65.60]
Cont. 26.60 [26.00 32.80] 45.80 [39.60 52.00] 51.60 [50.40 52.40]

Maximum
Information
Gain

Mless 168.00 [132.00 204.00] 480.00 [480.00 480.00] 108.00 [96.00 156.00]
Memory 12.00 [12.00 12.00] 12.00 [12.00 12.00] 12.00 [12.00 12.00]
Cont. 12.00 [12.00 12.00] 12.00 [12.00 12.00] 12.00 [12.00 12.00]

Memoryless
Mless 120.60 [96.80 140.20] 480.00 [480.00 480.00] 60.00 [36.00 60.00]
Memory 12.00 [12.00 12.00] 48.00 [18.00 66.00] 24.00 [24.00 24.00]
Cont. 12.00 [12.00 12.00] 12.00 [12.00 12.00] 24.00 [24.00 24.00]

Memory
Mless 90.00 [72.00 108.00] 485.40 [485.00 487.20] 24.00 [24.00 24.00]
Memory 12.00 [12.00 12.00] 41.60 [38.80 50.60] 24.00 [12.00 24.00]
Cont. 12.00 [12.00 12.00] 26.20 [26.00 26.40] 24.00 [24.00 24.00]

Continuous
Mless 192.00 [144.00 270.00] 482.40 [482.40 482.40] 94.00 [63.20 129.00]
Memory 12.00 [12.00 12.00] 230.40 [194.40 285.60] 48.80 [38.00 56.60]
Cont. 12.00 [12.00 12.00] 26.40 [26.40 26.40] 24.40 [24.40 24.80]

Table 9. Time to mastery for the number game tasks for each policy with corresponding learner
models. Reported are medians and the bootstrapped 68% confidence intervals (in brackets).
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