
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or 
part of any of the repository collections is not permitted, except that material may be duplicated by you for 
your research use or educational purposes in electronic or print form. You must obtain permission for any 
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not 
an authorised user.

Yingchareonthawornchai, Sorrachai; Roy, Proteek Chandan; Laekhanukit, Bundit; Torng,
Eric; Deb, Kalyanmoy
Worst-case conditional hardness and fast algorithms with random inputs for non-dominated
sorting

Published in:
GECCO 2020 Companion - Proceedings of the 2020 Genetic and Evolutionary Computation Conference
Companion

DOI:
10.1145/3377929.3390073

Published: 08/07/2020

Document Version
Publisher's PDF, also known as Version of record

Please cite the original version:
Yingchareonthawornchai, S., Roy, P. C., Laekhanukit, B., Torng, E., & Deb, K. (2020). Worst-case conditional
hardness and fast algorithms with random inputs for non-dominated sorting. In GECCO 2020 Companion -
Proceedings of the 2020 Genetic and Evolutionary Computation Conference Companion (pp. 185-186). ACM.
https://doi.org/10.1145/3377929.3390073

https://doi.org/10.1145/3377929.3390073
https://doi.org/10.1145/3377929.3390073


Worst-case Conditional Hardness and Fast Algorithms with
Random Inputs for Non-dominated Sorting ∗

Sorrachai

Yingchareonthawornchai

Aalto University, Finland

sorrachai.yingchareonthwornchai@

aalto.fi

Proteek Chandan Roy

Michigan State University, USA

royprote@msu.edu

Bundit Laekhanukit

Shanghai University of Finance and

Economics, China

bundit@sufe.edu.cn

Eric Torng

Michigan State University, USA

torng@msu.edu

Kalyanmoy Deb

Michigan State University, USA

kdeb@egr.msu.edu

ABSTRACT
We study the computational complexity of the non-dominated sort-

ing problem (NDS): Given a set P of n points in Rm , for each

point p ∈ P , compute ℓ, the length of longest domination chain

p1 ≻ p2 ≻ ⋯ ≻ pℓ = p, where x dominates y (denoted as x ≻ y) if
x is not larger than y in every coordinate. A special case of NDS,

which we label as NDS1, is to find all the non-dominated points in

P . NDS has emerged as a critical component for multi-objective op-

timization problems (MOPs). Form ≤ 3, Θ(n logn)-time is known.

For a fixed smallm > 3, the best bound is O(n logm−2 n log logn).
For largerm, the best result is an O(mn2)-time algorithm.

We show that the O(mn2) running time is nearly optimal by

proving an almost matching conditional lower bound: for any

ϵ > 0, and ω(logn) ≤ m ≤ (logn)O(1), there is no O(mn2−ϵ )-
time algorithm for NDS or NDS1 unless a popular conjecture in

fine-grained complexity theory is false. To complete our results,

we present an algorithm for NDS with an expected running time

O(mn + n2⇑m + n log2 n) on uniform random inputs.

CCS CONCEPTS
• Theory of computation → Algorithm design techniques;

ACM Reference Format:
Sorrachai Yingchareonthawornchai, Proteek Chandan Roy, Bundit Laekhanukit,

Eric Torng, and Kalyanmoy Deb. 2020. Worst-case Conditional Hardness

and Fast Algorithms with Random Inputs for Non-dominated Sorting . In

Genetic and Evolutionary Computation Conference Companion (GECCO ’20
Companion), July 8–12, 2020,Cancun, Mexico. ACM, New York, NY, USA,

2 pages. https://doi.org/10.1145/3377929.3390073

∗

Partially supported by the European Research Council (ERC) under the European

Union’s Horizon 2020 research and innovation programme under grant agreement

No 759557, Science and Technology Innovation 2030 -“New Generation of Artificial

Intelligence” Major Project No.(2018AAA0100903), NSFC grant 61932002, Program

for Innovative Research Team of Shanghai University of Finance and Economics

(IRTSHUFE) and the Fundamental Research Funds for the Central Universities. We

also thank Karthik C. S. for insightful discussion.

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

GECCO ’20 Companion, July 8–12,2020, Cancun, Mexico
© 2020 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-7127-8/20/07.

https://doi.org/10.1145/3377929.3390073

1 INTRODUCTION AND RELATEDWORK
We study the computational complexity of the non-dominated sort-

ing problem (NDS). Let P be a set of n points in Rm . We say that

a point p dominates1 another point q, denoted by p ≻ q, if pi ≤ qi
for positive i ≤ m, i.e., p is no larger than q in every coordinate

and p ≠ q. Note that it is possible that neither p nor q dominates

the other point. A point p is non-dominated w.r.t. P if p is not

dominated by any other points in P . Given a set of P points, the

non-dominated sorting problem asks to compute the rank function
R ∶ P → N defined as follows: R(p) = 1 if p is a non-dominated

point, and R(p) = 1 +max{R(q)∶q ≻ p}, otherwise. A widely used

variant of NDS, which we label NDS1, is to find all p ∈ P such that

R(p) = 1.
Non-dominated sorting has emerged as a critical component

for multi-objective optimization problems (MOPs). In contrast to

single objective optimization where we try to find the best pos-

sible solution, the desired result of an MOP is typically a set of

Pareto-optimal solutions that reflect the trade-offs among differ-

ent objectives. An NDS algorithm is a computational bottleneck

for multi- and many-objective evolutionary algorithms (MOEAs).

NDS1 has broader applications beyond MOEAs, notably including

skyline query in database [6].

The non-dominated sorting problem is completely solved when

m = 2 or 3 with a worst-case time complexity of Θ(n logn) [7,
9]. For a fixedm > 2, O(n logm−1 n)-time algorithms are known

using divide-and-conquer (D&C), often referred to as Jensen’s

sort [5], and the best known running time for this approach is

O(n logm−2 n log logn)-time algorithm [1]. For generalm, the first

O(mn2)-time algorithm is due to Deb et al. [2]. Since then there

have been several algorithms achieving the sameworst-case bounds,

but focusing on practical running time [3, 4, 8, 10, 11, 13]. Until

now, the O(mn2)-time bound has stood for almost two decades.

Further note that NDS1 does not have a known faster solution.

1.1 Our Results
We show that the running time O(mn2) is essentially optimal as-

suming the Hitting Set Conjecture (HSC) is true. The Hitting Set

Problem (HS) is defined as follows: Given two families of sets A
and B containing n sets each over the universe {1, . . . ,m} where
1

we use notion of pi ≤ qi to be consistent with the MOEA community where, in the

context of minimization, the point p is better when every coordinate is smaller than q .

185

https://doi.org/10.1145/3377929.3390073
https://doi.org/10.1145/3377929.3390073


GECCO ’20 Companion, July 8–12,2020, Cancun, MexicoSorrachai Yingchareonthawornchai, Proteek Chandan Roy, Bundit Laekhanukit, Eric Torng, and Kalyanmoy Deb

m = ω(logn), decide if there exists a set a ∈ A that intersects

(hits) every set b ∈ B in at least one element. If we use binary

vectors to represent sets, the HS problem is equivalently defined

as follows: Given two sets A and B of vectors over {0, 1}m where

m = ω(logn), decide if there exists a vector a ∈ A such that for all

b ∈ B, ∑mi=1 ai ⋅ bi > 0.
Hitting Set Conjecture (HSC). For any constant ϵ > 0, and

m where ω(logn) ≤m < (logn)O(1), there is no O(mn2−ϵ )-time

algorithm for the Hitting Set Problem.

To date, several hypotheses have been used to prove conditional

lower bounds of “easy” problems, e.g., the All-Pairs Shortest Paths
(APSP) conjecture, the Orthogonal Vectors (OV) conjecture, and the

Hitting Set (HS) conjecture; please see [12] and references therein.

We add to this growing body of fine-grained complexity results by

using the HSC to prove our main result.

Theorem 1.1. For any constant ϵ > 0, andm where ω(logn) <
m < (logn)O(1), there is no O(mn2−ϵ )-time algorithm for NDS or
NDS1 unless the HSC is false.

While our result, assuming the HSC is true, rules out any chance

of significantly improving the O(mn2) worst case bound, there are
ways to get better results. We list two here. First, there may exist

an algorithm with worst case running time O (mn2⇑ logO(1) n).
Second, algorithmsmay perform better on restricted input instances.

We now give our second result which exploits the second option.

Theorem 1.2. Under the uniform random input assumption, there
is an algorithm that takes as input a set of points P inRm , and outputs
the rank function (as defined in the NDS problem) in expected time
O(n2⇑m +mn + n log2 n).

Proof sketch. The algorithm is a variant of the Best Order Sort

(BOS) algorithm from [10]. The key intuition is that for random

inputs, the expected running time of BOS improves by roughly

anm2
factor for two reasons. First, most points are mutually non-

dominated, and verifying this takes only O(1) (instead ofm) ex-

pected time. Second, all points are ranked after exploring O(n⇑m)
(instead of n) expected points. □

2 CONDITIONAL HARDNESS OF
NON-DOMINATED SORTING

To prove Theorem 1.1, we introduce the following problem.

Bichromatic Binary Non-Dominating Problem (BBND).
Given two sets of points A and B where (i) ⋃︀A⋃︀ = ⋃︀B⋃︀ = n and (ii)

each point is a vector over {0, 1}m wherem = ω(logn), decide if
there exists a point a ∈ A that is not dominated (i.e., there exists a

positive i ≤m such that ai < bi ) by any point b ∈ B.

Lemma 2.1 (Reduction from HS to BBND). If BBND can be
solved in time T (m,n), then HS can be solved in time O(T (m,n) +
mn).

Proof. We define a reduction R(A,B) = (A′,B) from HS to

BBND using the binary vector formulation of the HS problem as

follows. Set A′ ∶= {a′∶a ∈ A} where a′i = 1 if ai = 0, and a′i = 0 if
ai = 1 for i ≤m. Clearly R runs in time O(mn).

We now prove the completeness of R. Assume that (A,B) is a
yes-instance to HS. That is, there exists a ∈ A such that for all b ∈ B,

∑mi=1 ai ⋅ bi > 0. This means there is a positive i ≤ m such that

ai = bi = 1. By construction (since we flip bitwise from a to a′),
for the same i , we have a′i = 0 and bi = 1, so a′i < bi . This holds
for every b ∈ B. Therefore, this particular vector a′ ∈ A′ is not
dominated by any b ∈ B, so (A′,B) is a yes-instance for BBND

We now prove the soundness of R. Assume that (A′,B) is a yes-
instance to BBND. So, there is a point a′ ∈ A′ that is not dominated

by any point b ∈ B. This means for each b ∈ B, there is a positive
i ≤ m such that a′i < bi . Since a

′
and b are binary vectors, this

implies a′i = 0 and bi = 1. By construction, we have ai = 1 and

bi = 1 for the same i . This holds for every b ∈ B. Hence, this vector
a has the property that ∑mi=1 ai ⋅ bi > 0 for all b ∈ B, so (A,B) is a
yes-instance for HS. □

Next we solve BBND using an NDS1 algorithm. The following

lemma is obvious.

Lemma 2.2. The input (A,B) for BBND is a yes-instance if and
only if there exists a ∈ A such that RA∪B(a) = 1 in the solution
population A ∪ B where RA∪B(p) is the rank of a solution p in the
population A ∪ B.

We now prove Theorem 1.1.

Proof of Theorem 1.1. By Lemma 2.1, it is enough to solve the

BBND problem in time O(mn2−ϵ ). If there is an O(mn2−ϵ )-time

algorithm for NDS1, we solve BBND in time O(mn2−ϵ ) as follows:
Given an instance (A,B), we find all the elements ofA∪B with rank

1 and output yes if there is an a ∈ A in this set and no otherwise.

The correctness follows immediately from Lemma 2.2. □

REFERENCES
[1] Maxim Buzdalov. 2019. Make Evolutionary Multiobjective Algorithms Scale

Better with Advanced Data Structures: Van Emde Boas Tree for Non-dominated

Sorting. In EMO (Lecture Notes in Computer Science), Vol. 11411. Springer, 66–77.
[2] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. 2002. A fast and elitist multiob-

jective genetic algorithm: NSGA-II. Evolutionary Computation, IEEE Transactions
on 6, 2 (Apr 2002), 182–197.

[3] Hongbing Fang, Qian Wang, Yi-Cheng Tu, and Mark F. Horstemeyer. 2008. An

Efficient Non-dominated Sorting Method for Evolutionary Algorithms. Evol.
Comput. 16, 3 (Sept. 2008), 355–384.

[4] Patrik Gustavsson and Anna Syberfeldt. 2018. A New Algorithm Using the Non-

Dominated Tree to Improve Non-Dominated Sorting. Evolutionary Computation
26, 1 (2018).

[5] M.T. Jensen. 2003. Reducing the run-time complexity of multiobjective EAs: The

NSGA-II and other algorithms. Evolutionary Computation, IEEE Transactions on
7, 5 (Oct 2003), 503–515.

[6] Christos Kalyvas and Theodoros Tzouramanis. 2017. A Survey of Skyline Query

Processing. CoRR abs/1704.01788 (2017).

[7] Sanjiv Kapoor and Prakash V. Ramanan. 1989. Lower Bounds for Maximal and

Convex Layers Problems. Algorithmica 4, 4 (1989), 447–459.
[8] Kent McClymont and Ed Keedwell. 2012. Deductive Sort and Climbing Sort: New

Methods for Non-dominated Sorting. Evol. Comput. 20, 1 (March 2012), 1–26.

[9] Yakov Nekrich. 2011. A Fast Algorithm for Three-Dimensional Layers of Maxima

Problem. In WADS (Lecture Notes in Computer Science), Vol. 6844. Springer, 607–
618.

[10] Proteek Chandan Roy, Md. Monirul Islam, and Kalyanmoy Deb. 2016. Best

Order Sort: A New Algorithm to Non-dominated Sorting for Evolutionary Multi-

objective Optimization. In GECCO (Companion). ACM, 1113–1120.

[11] Handing Wang and Xin Yao. 2014. Corner Sort for Pareto-Based Many-Objective

Optimization. Cybernetics, IEEE Transactions on 44, 1 (Jan 2014), 92–102.

[12] Virginia VassilevskaWilliams. 2015. Hardness of Easy Problems: Basing Hardness

on Popular Conjectures such as the Strong Exponential Time Hypothesis (Invited

Talk). In IPEC (LIPIcs), Vol. 43. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,

17–29.

[13] X. Zhang, Y. Tian, R. Cheng, and Y. Jin. 2018. A Decision Variable Clustering-

Based Evolutionary Algorithm for Large-Scale Many-Objective Optimization.

IEEE Transactions on Evolutionary Computation 22, 1 (Feb 2018), 97–112.

186


