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ABSTRACT
We study the computational complexity of the non-dominated sort-

ing problem (NDS): Given a set P of n points in Rm , for each

point p ∈ P , compute ℓ, the length of longest domination chain

p1 ≻ p2 ≻ ⋯ ≻ pℓ = p, where x dominates y (denoted as x ≻ y) if
x is not larger than y in every coordinate. A special case of NDS,

which we label as NDS1, is to find all the non-dominated points in

P . NDS has emerged as a critical component for multi-objective op-

timization problems (MOPs). Form ≤ 3, Θ(n logn)-time is known.

For a fixed smallm > 3, the best bound is O(n logm−2 n log logn).
For largerm, the best result is an O(mn2)-time algorithm.

We show that the O(mn2) running time is nearly optimal by

proving an almost matching conditional lower bound: for any

ϵ > 0, and ω(logn) ≤ m ≤ (logn)O(1), there is no O(mn2−ϵ )-
time algorithm for NDS or NDS1 unless a popular conjecture in

fine-grained complexity theory is false. To complete our results,

we present an algorithm for NDS with an expected running time

O(mn + n2⇑m + n log2 n) on uniform random inputs.

CCS CONCEPTS
• Theory of computation → Algorithm design techniques;
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1 INTRODUCTION AND RELATEDWORK
We study the computational complexity of the non-dominated sort-

ing problem (NDS). Let P be a set of n points in Rm . We say that

a point p dominates1 another point q, denoted by p ≻ q, if pi ≤ qi
for positive i ≤ m, i.e., p is no larger than q in every coordinate

and p ≠ q. Note that it is possible that neither p nor q dominates

the other point. A point p is non-dominated w.r.t. P if p is not

dominated by any other points in P . Given a set of P points, the

non-dominated sorting problem asks to compute the rank function
R ∶ P → N defined as follows: R(p) = 1 if p is a non-dominated

point, and R(p) = 1 +max{R(q)∶q ≻ p}, otherwise. A widely used

variant of NDS, which we label NDS1, is to find all p ∈ P such that

R(p) = 1.
Non-dominated sorting has emerged as a critical component

for multi-objective optimization problems (MOPs). In contrast to

single objective optimization where we try to find the best pos-

sible solution, the desired result of an MOP is typically a set of

Pareto-optimal solutions that reflect the trade-offs among differ-

ent objectives. An NDS algorithm is a computational bottleneck

for multi- and many-objective evolutionary algorithms (MOEAs).

NDS1 has broader applications beyond MOEAs, notably including

skyline query in database [6].

The non-dominated sorting problem is completely solved when

m = 2 or 3 with a worst-case time complexity of Θ(n logn) [7,
9]. For a fixedm > 2, O(n logm−1 n)-time algorithms are known

using divide-and-conquer (D&C), often referred to as Jensen’s

sort [5], and the best known running time for this approach is

O(n logm−2 n log logn)-time algorithm [1]. For generalm, the first

O(mn2)-time algorithm is due to Deb et al. [2]. Since then there

have been several algorithms achieving the sameworst-case bounds,

but focusing on practical running time [3, 4, 8, 10, 11, 13]. Until

now, the O(mn2)-time bound has stood for almost two decades.

Further note that NDS1 does not have a known faster solution.

1.1 Our Results
We show that the running time O(mn2) is essentially optimal as-

suming the Hitting Set Conjecture (HSC) is true. The Hitting Set

Problem (HS) is defined as follows: Given two families of sets A
and B containing n sets each over the universe {1, . . . ,m} where
1

we use notion of pi ≤ qi to be consistent with the MOEA community where, in the

context of minimization, the point p is better when every coordinate is smaller than q .
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m = ω(logn), decide if there exists a set a ∈ A that intersects

(hits) every set b ∈ B in at least one element. If we use binary

vectors to represent sets, the HS problem is equivalently defined

as follows: Given two sets A and B of vectors over {0, 1}m where

m = ω(logn), decide if there exists a vector a ∈ A such that for all

b ∈ B, ∑mi=1 ai ⋅ bi > 0.
Hitting Set Conjecture (HSC). For any constant ϵ > 0, and

m where ω(logn) ≤m < (logn)O(1), there is no O(mn2−ϵ )-time

algorithm for the Hitting Set Problem.

To date, several hypotheses have been used to prove conditional

lower bounds of “easy” problems, e.g., the All-Pairs Shortest Paths
(APSP) conjecture, the Orthogonal Vectors (OV) conjecture, and the

Hitting Set (HS) conjecture; please see [12] and references therein.

We add to this growing body of fine-grained complexity results by

using the HSC to prove our main result.

Theorem 1.1. For any constant ϵ > 0, andm where ω(logn) <
m < (logn)O(1), there is no O(mn2−ϵ )-time algorithm for NDS or
NDS1 unless the HSC is false.

While our result, assuming the HSC is true, rules out any chance

of significantly improving the O(mn2) worst case bound, there are
ways to get better results. We list two here. First, there may exist

an algorithm with worst case running time O (mn2⇑ logO(1) n).
Second, algorithmsmay perform better on restricted input instances.

We now give our second result which exploits the second option.

Theorem 1.2. Under the uniform random input assumption, there
is an algorithm that takes as input a set of points P inRm , and outputs
the rank function (as defined in the NDS problem) in expected time
O(n2⇑m +mn + n log2 n).

Proof sketch. The algorithm is a variant of the Best Order Sort

(BOS) algorithm from [10]. The key intuition is that for random

inputs, the expected running time of BOS improves by roughly

anm2
factor for two reasons. First, most points are mutually non-

dominated, and verifying this takes only O(1) (instead ofm) ex-

pected time. Second, all points are ranked after exploring O(n⇑m)
(instead of n) expected points. □

2 CONDITIONAL HARDNESS OF
NON-DOMINATED SORTING

To prove Theorem 1.1, we introduce the following problem.

Bichromatic Binary Non-Dominating Problem (BBND).
Given two sets of points A and B where (i) ⋃︀A⋃︀ = ⋃︀B⋃︀ = n and (ii)

each point is a vector over {0, 1}m wherem = ω(logn), decide if
there exists a point a ∈ A that is not dominated (i.e., there exists a

positive i ≤m such that ai < bi ) by any point b ∈ B.

Lemma 2.1 (Reduction from HS to BBND). If BBND can be
solved in time T (m,n), then HS can be solved in time O(T (m,n) +
mn).

Proof. We define a reduction R(A,B) = (A′,B) from HS to

BBND using the binary vector formulation of the HS problem as

follows. Set A′ ∶= {a′∶a ∈ A} where a′i = 1 if ai = 0, and a′i = 0 if
ai = 1 for i ≤m. Clearly R runs in time O(mn).

We now prove the completeness of R. Assume that (A,B) is a
yes-instance to HS. That is, there exists a ∈ A such that for all b ∈ B,

∑mi=1 ai ⋅ bi > 0. This means there is a positive i ≤ m such that

ai = bi = 1. By construction (since we flip bitwise from a to a′),
for the same i , we have a′i = 0 and bi = 1, so a′i < bi . This holds
for every b ∈ B. Therefore, this particular vector a′ ∈ A′ is not
dominated by any b ∈ B, so (A′,B) is a yes-instance for BBND

We now prove the soundness of R. Assume that (A′,B) is a yes-
instance to BBND. So, there is a point a′ ∈ A′ that is not dominated

by any point b ∈ B. This means for each b ∈ B, there is a positive
i ≤ m such that a′i < bi . Since a

′
and b are binary vectors, this

implies a′i = 0 and bi = 1. By construction, we have ai = 1 and

bi = 1 for the same i . This holds for every b ∈ B. Hence, this vector
a has the property that ∑mi=1 ai ⋅ bi > 0 for all b ∈ B, so (A,B) is a
yes-instance for HS. □

Next we solve BBND using an NDS1 algorithm. The following

lemma is obvious.

Lemma 2.2. The input (A,B) for BBND is a yes-instance if and
only if there exists a ∈ A such that RA∪B(a) = 1 in the solution
population A ∪ B where RA∪B(p) is the rank of a solution p in the
population A ∪ B.

We now prove Theorem 1.1.

Proof of Theorem 1.1. By Lemma 2.1, it is enough to solve the

BBND problem in time O(mn2−ϵ ). If there is an O(mn2−ϵ )-time

algorithm for NDS1, we solve BBND in time O(mn2−ϵ ) as follows:
Given an instance (A,B), we find all the elements ofA∪B with rank

1 and output yes if there is an a ∈ A in this set and no otherwise.

The correctness follows immediately from Lemma 2.2. □
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