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Figure 1: Scatter plots depicting the relation of pass rate (a measure of level difficulty) and churn rate over 168 game levels
of Angry Birds Dream Blast, in both real player data and our simulations. Here, churn is defined as not playing for 7 days.
The colors denote level numbers. The baseline simulation model predicts pass rate and churn directly from AI gameplay. Our
proposed extended model augments this with a simulation of how the player population evolves over the levels.

ABSTRACT
We propose a novel simulation model that is able to predict the per-
level churn and pass rates of Angry Birds Dream Blast, a popular
mobile free-to-play game. Our primary contribution is to combine
AI gameplay using Deep Reinforcement Learning (DRL) with a
simulation of how the player population evolves over the levels.
The AI players predict level difficulty, which is used to drive a player
population model with simulated skill, persistence, and boredom.
This allows us to model, e.g., how less persistent and skilled players
are more sensitive to high difficulty, and how such players churn
early, which makes the player population and the relation between
difficulty and churn evolve level by level. Our work demonstrates
that player behavior predictions produced by DRL gameplay can
be significantly improved by even a very simple population-level
simulation of individual player differences, without requiring costly
retraining of agents or collecting new DRL gameplay data for each
simulated player.
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1 INTRODUCTION
One of the primary difficulties of game design and development is
that player behavior is hard to predict. This leads to an iterative
design process of prototyping and testing, which is slow and expen-
sive. Ideally, research should produce models and tools that allow
evaluating the effect of design decisions early on, before committing
resources to real-life game testing. This is one of the foundational
motivations of player and user modeling [29, 31, 49].

Better models and tools are in particular needed for predicting
and optimizing business critical behavior such as churn, i.e., a player
quitting the game and not coming back to it. Churn matters as many
modern games accumulate their revenue gradually from in-game
advertisements and purchases, instead of single up-front fee. To
prevent churn, free-to-play game companies engage in extensive
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data-driven A/B-testing and optimization of game levels. For exam-
ple, one would like to identify and modify levels with high churn
rate. However, instead of deploying different game level versions
to real players and seeing what happens, it would be desirable to
have predictive models of churn that allow designers to conduct
initial testing and prototyping in silico.

An emerging possibility is to use simulated game-playing agents
instead of human playtesters [3, 31], at a fraction of the time and
cost. However, present models are limited, e.g., by the need to train
models with large amounts of real player data in a way that does
not necessarily generalize to new game content [11]. Models and
algorithms that can play games without a large dataset of ground
truth behaviors are often not validated to give realistic predictions
of player behavior and experience [36].

This paper makes the following contributions to player modeling
and simulated game testing:

(1) We present new data indicating a relation between game
level difficulty (measured as pass rate) and churn rate, shown
in Figure 1. The data is from 168 levels and 95266 players of
Angry Birds Dream Blast, a successful free-to-play mobile
game from Rovio Entertainment.

(2) We propose a novel simulation model that predicts the ob-
served relation of pass and churn rates. Our key innovation
is to combine Deep Reinforcement Learning (DRL) game
playing agents with a simulation of how a player population
with simple computational models of skill, persistence, and
boredom evolves over the levels of a game as some players
churn.

Previous work has investigated DRL gameplay [16] and player
population simulation [35], but not combined the two. Previous
work has also predicted pass rate [11] and churn [6, 32, 48], and
found a relation between game success rate and engagement [24,
25], but has not modeled how the two interrelate in a dynamic
manner over a game’s levels.

2 RELATEDWORK
2.1 Churn prediction
Churn means inactivity duration, and its precise definition varies
from a few days to completely quitting a game. Churn prediction
empowers game companies to engage players who are likely to
churn, and hence increase the success probability of the game.
Churn prediction has been approached through survival ensembles
and Cox regression to estimate the likelihood of not being churned
and survive after a specific amount of time [5, 32]. Bertens et al. [5]
inspected both survival ensembles and Cox regression for using
in-game features such as player logins, play time, purchases, and
level ups in churn prediction.

Other methods address churn prediction as a classification prob-
lem. Bonometti et al. [6] employ deep neural networks to jointly
estimate survival time and churn probability by modeling early
interactions between players and the game, using the metrics like
play time, time difference between play sessions, and in-game ac-
tivity type and diversity. Yang et al. [48] study the regularity of
the time that long-term players spend in the game to perform the
binary classification into churned and not-churned .

In the context of churn classification, some works use aggre-
gated data [48], and others exploit temporal data [19, 22] instead.
Bonometti et al. [6] compared aggregated and temporal data, and
find that models with temporal data outperform the other kind.
Kristensen et al. [20] propose using stacked LSTM networks with a
combination of aggregated and time-series data as their inputs.

In contrast to the work above, we do not predict the probability
that a particular player churns. Instead, we predict the average
churn ratio per game level, with the goal of helping game designers
identify problematic levels before they are deployed to players. We
employ game-playing AI agents in producing the input features of
the predictor.

2.2 Game-playing Agents
Several studies have investigated game-playing agents in video
games. Some of these studies have focused on Monte Carlo tree
search (MCTS) [4, 13, 34], and others have exploited advances in
deep learning methods [11, 17, 21, 26, 46]. For in-depth overviews
of recent research on the topics, we refer the reader to Shao et al.
[40] and Justesen et al. [16].

Game-playing agents are beneficial in playtesting by reducing
costs and the need for human playtesters [3]. AI agents have been
found useful in finding bugs [8], game parameter tuning [14], and
predicting level difficulty and average player pass rate [11, 34].

Agents that are used in playtesting need to be reasonably human-
like. Zhao el al. [50] defines human-likeness as a balance between
skill and playing style. Ariyurek et al. [3] compare MCTS and
human-like AI agents in finding bugs. One can train human-like
game-playing agents simply through deep neural networks and
imitation learning [11], although this requires large amounts of
human gameplay data and does not necessarily generalize to new
content. For instance, if there are no human reference actions to im-
itate for a new type of a game puzzle, an imitation learning agent’s
behavior is undefined.

An alternative to imitation learning is provided by the com-
putational rationality paradigm, which views human behavior as
emerging from optimization of rewards received through taking
actions, albeit with limited computational capabilities [10]. The re-
wards can be either extrinsic ones such as a game score, or intrinsic
ones defined by computational motivation and emotion models
[36]. A common way to implement such reward optimization is
through MCTS, which requires no lengthy training, but incurs a
high run-time computing cost. For instance, Poromaa et al. [34]
uses a MCTS agent’s performance to predict the average human
pass rate. An alternative is Deep Reinforcement Learning (DRL),
which requires a lengthy and potentially unstable training process,
but can yield computationally lightweight neural network agents.
DRL is also better suited for continuous state and action spaces,
which are needed for embodied physically simulated players. DRL
has recently been shown to enable user simulation including the
biomechanics of the human body, predicting the perceived shoulder
fatigue of pointing movements [7].

In addition to imitation learning and computational rationality
approaches, some works implement heuristic agents based on the
common strategies that players take during playing the game [8, 13].
Isaksen et al. [14] optimize game parameters to reach a specific
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level of difficulty based on a heuristic AI player’ score. Silva et al.
[8] suggest how analysis of AI gameplay can be helpful in finding
defects in the rule set of a board game. They explored various
aspects of the game by matchups between game-specific agents,
each with different playing style. More recently, Holmgard et al.
[13] evaluate the effect of enhancing MCTS agents with player type
heuristics on the playablity of multiple dungeon maps.

In this paper, we focus on DRL agents that require no hand-
coded heuristics or human player data for learning to play a game.
Human data is only required for fitting a simple "sim2real" model —
e.g., linear regression — that maps simulation results to human-like
churn and pass rates.

2.3 Understanding Game Difficulty
Our work is motivated by the relation of level pass rate and churn
rate observed in our data. Pass rate is a measure of level difficulty,
and the effect of difficulty on player experience is a topic with a
considerable body of research. One of the most prevalent mod-
els in game design literature is the flow channel [38, 43], accord-
ing to which the ideal game is not too easy and not too hard, to
keep the player in the sweet spot between boredom and anxiety.
A similar view is provided by intrinsic motivation theories: Self-
determination theory posits the basic psychological need to feel
competent [37], which a too difficult game can obviously destroy.
On the other hand, research has also identified a basic need for
novelty of stimuli and experiences, central to experiencing curious
interest [18, 25, 41]. Competence and curiosity interact, as one way
to keep a game easy is to avoid introducing new types of challenges
the player has to learn, which violates the need for novelty. In
practice, successful games seem to optimize for both competence
and curiosity, using a carefully tuned difficulty progression that
allows experiencing competence, and periodically resets back to
a low difficulty when introducing new mechanics and challenges
to maintain novelty [23]. Recent work on mathematically optimal
learning, e.g., in artificial neurons, also posits a flow-channel style
difficulty model [47], identifying 85% success rate as optimal.

Naturally, preferences for difficulty vary between players and
games. For example, recent research has provided explanations
on why frustratingly difficult games can sometimes be enjoyable
[33]. However, our data is more in line with Lomas et al. [24], who
found lower difficulty to yield the highest engagement in their
educational game. In a follow-up study, Lomas et al. [25] found
moderate difficulty as most motivating when players could select
their opponent’s skill ranking. However, the easiest games were
most motivating when difficulty was determined randomly.

3 DATA: ANGRY BIRDS DREAM BLAST
This paper focuses on Angry Birds Dream Blast [9], a success-
ful free-to-play mobile game. Angry Birds Dream Blast is a non-
deterministic, physics-based match-3 game with a limited number
of moves per level. The player pops adjacent bubbles with similar
colors. Figure 2 shows a screenshot of the game. Beyond simple
bubble popping, different types of boosters can be produced by
combining bubbles. These boosters are used to pop a large quantity
of bubbles in rows and columns. Boosters are required to remove
some objects in the game. Additionally, there are locks in the game

that can be unlocked by collecting bubbles or other objects. Play-
ers can also acquire power-ups and extra moves through in-app
purchases. However, this is a feature we did not enable for the AI
agents.

Figure 2: Screenshot of Angry Birds Dream Blast.

For our study, we utilized a dataset of per-level pass and churn
rates from a total of 95266 players. Per-level churn rate, in range
0...1, was defined as the portion of players who stopped playing
for at least 7 days after trying the level at least once. After the
7 day period, some players may return to the game, but churn
measurement time needs to be limited in practice, e.g., for A/B
testing of game content updates. Pass rate, also in range 0...1, was
computed as the mean of 1 divided by the number of attempts
players required to pass each level.

Figure 1 indicates a relation between real player pass and churn
rates. Although the overall correlation is small (Spearman’s 𝑟 =

−0.144), the correlation is large when computing churn rate of a
level as the portion of players who churn without completing the
level (Spearman’s 𝑟 = −0.586). In other words, players who churn
without completing a level are more likely to do so in the more
difficult levels. Beyond a simple correlation, Figure 1 also suggests
that a low pass rate causes less churn in the later levels. It is this
dynamic we set out to explain in this paper.

It should be noted that Angry Birds Dream Blast is a live game
that is constantly evolving. Our data was collected from a version
that does not have all the mechanics of the latest game version.

4 METHOD
We implement and compare two churn and pass rate prediction
models:
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(1) A baseline regression model that directly predicts churn and
pass rate from AI gameplay, motivated by earlier work on
predicting game difficulty by AI gameplay [11] and the rela-
tionship between pass rate and churn observed in our data
in Figure 1, echoed by previous research on game difficulty
and engagement [24, 25].

(2) The extended model in Figure 3 that combines both AI game-
play and player population evolution over game levels.

The per-level pass and churn simulation of the extended model
takes in both a level difficulty estimate based on the AI gameplay,
and a player population. The simulation outputs both the churn and
pass rate predictions of a level, and the new player population for
the next level, with churned players removed from the population.
In determining the passed and churned players, we employ simple
computational models of the following psychological and learning
phenomena:

• A player passes a level if the level difficulty is lower than the
player’s skill.
• A player churns if taking more attempts to pass a level than
the player’s persistence. This allows us to model how less
persistent players churn earlier, leading to later levels being
played by more persistent players who are less sensitive to
churn because of high difficulty.
• Even if a player passes a level, they may churn with some
random probability proportional to the player’s tendency to
get bored.
• Passing a level gets gradually easier over multiple attempts,
as the player learns from their mistakes.

Below, we first describe our AI game playing agent, then explain
how the AI gameplay data is used for the baseline model. Finally,
we detail the extended model of Figure 3, including the pass and
churn simulation (Algorithm 1).

4.1 AI Gameplay
Our Deep Reinforcement Learning AI agents are implemented using
the Unity ML-agents framework [15] and Proximal Policy Optimiza-
tion (PPO) [39] algorithm.

In Reinforcement Learning, an agent observes system state and
takes an action, which leads it to receives a new observation and
a reward. PPO optimizes the policy — a distribution of actions
conditional on state observations, implemented as a neural network
— to maximize the agent’s expected cumulative future rewards.

To make game playing emerge with PPO, one needs to frame the
game as a RL problem by defining the state observations, actions,
and rewards. Furthermore, one needs to define the neural network
architecture and a number of algorithm parameters. Our choices
are detailed below.

4.1.1 State observations. A combination of visual and numerical
vector observation were used. The visual observation is a 84 ×
84 × 3 RGB screenshot of the game, and the vector observation
contains the number of moves left, the types and numbers of the
remaining level goals (e.g., collecting a specific number of bubbles),
the numbers and types of the objects needed to unlock the visible
locks, and game camera position.

4.1.2 Action space. We use discrete action space, discretizing the
game screen into 32×32 possible points that the agent can click/tap.
A continuous action space was also tested, but did not produce as
good results.

4.1.3 Reward function. The reward function combines both extrin-
sic rewards and an intrinsic reward generated by the self-supervised
curiosity model of Pathak et al. [30] implemented in Unity ML-
agents.

The extrinsic reward is computed as a sumof reward components:
win bonus or lose penalty, cleared goals ratio, progress percentage
in opening locks, a small constant negative reward that penalizes
the agent for using more moves than needed, and a click reward.
The click reward is calculated as 𝑟𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝑐0 exp

(
− 𝑑
𝑐1

)
, where

𝑑 is the distance to the closest available match, and 𝑐0 and 𝑐1 are
tuning parameters. During the initial learning exploration where
the agent has no idea where to click, the click reward provides extra
guidance towards only clicking on valid targets.

4.1.4 Training. We train the agent separately on each level for 5
million PPO iterations, which takes on average 60 hours per game
level. Multiple training runs were conducted in parallel using cloud
computing (Amazon Web Services [2]). Each run was performed
on an AWS instance with a 16-core 3.4 GHz Intel Xeon CPU, and
used approximately 10 Gb RAM.

We provide the agent with 4xmoremoves per level than available
for human players, so that the positive rewards for completing a
level are less sparse. Too sparse rewards are a common reason
for RL agents not learning. The extra moves also help if the level
difficulty is too high and the number of moves is not sufficient even
for human players.

4.1.5 Neural network. Visual observations are encoded using a
convolutional neural network, with the result concatenatedwith the
other observations as shown in Figure 4. This is one of the default
settings provided in Unity ML-agents, based on the architecture
originally proposed by Mnih et al. [27].

4.1.6 PPO and Unity ML parameters. The iteration experience bud-
get of PPO agent is 10240 game moves. The agent collects expe-
riences in episodes with a large time horizon of 1024, i.e., each
episode is played until the level is completed or the agent runs
out of moves. We use optimization batch size 1024, decaying learn-
ing rate initialized at 0.0003, PPO clipping parameter of 0.2, PPO
entropy coefficient 0.005, discount factor 𝛾 = 0.99, Generalized
Advantage Estimation 𝜆 = 0.95, and curiosity reward coefficient
0.02.

The parameters are explained in detail in the original PPO paper
[39] and Unity ML-agents [15]. The maximum number of moves
per level multiplier and the curiosity reward coefficient were tuned
manually. Other parameters use the Unity ML-agents default values.

4.2 Baseline model
The baseline model predicts both churn and pass rate using a simple
least squares linear regression of the form x𝑇w + 𝑏, where x is a
feature vector for the game level of interest, w is a vector of regres-
sion weights, and 𝑏 is a bias term. The feature vector comprises the
mean, standard deviation, min, max, and the 5th, 10th, 25th, 50th,
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Figure 3: Overview of our extended simulation model, showing how AI gameplay data of each level results in a level difficulty
estimate, which is fed to pass and churn simulation, together with player population parameters. The simulation outputs both
the churn and pass rate predictions of a level, and the player population for the next level.

Figure 4: Neural network architecture of the observation en-
coder, combining both convolutional and fully connected
(FC) layers.

and 75th percentiles of the cleared goals percentage while using
the moves available for human players, and the mean, standard
deviation, and the 5th, 10th, and 20th percentiles of the amount
of moves left when passing the level, and the mean and standard
deviation of the AI agent’s pass rate while using the same number
of moves as human players. In total, this yields 16 features.

Figure 5 shows the relation between AI and human pass rate
over levels. AI pass rate alone is not a great predictor of human pass
rate, especially in the later game levels, where AI is only rarely able
to pass the levels with the number of moves allowed for human
players. As explained in section 4.1.4, the AI can use 4x more moves
than human players. However, other AI gameplay statistics like
cleared goals percentage and moves left ratio help in the prediction.

4.3 Extended Model
A basic problem of the baseline model is that it doesn’t take into ac-
count how the player population varies over the levels. Because the
gameplay RL formulation does not include individual differences
of players, and because the AI is trained on all levels, the difficulty
predicted by the AI is an average measure that cannot map well to
the difficulty experienced by players with different skills and per-
sonalities. Individual differences could be implemented as reward

Figure 5: Relation between AI and human pass rate. Scatter
plot colors correspond to game level indices.

function terms determined by intrinsic motivation and emotion
models [36], but this would incur a considerable computational
cost as each different agent would require its own lengthy train-
ing process. This is why our extended model simulates individual
differences using a second, computationally much more simple
population-level simulation model.

As shown in Figure 3, our extended model uses the baseline pass
rate predictor as a building block, in conjunction with a pass and
churn simulation block that also takes in the current player pop-
ulation, and outputs the population remaining after some players
have churned. This way, the distribution of player skills and other
attributes is allowed to evolve throughout the game’s levels. The
DRL gameplay data needs to only be collected once, after which the
population simulation can be run with different parameters with
a very low computing cost. One simulation through all 168 levels
takes less than a second on a standard desktop computer.

4.3.1 Pass and Churn Simulation Algorithm. The pass and churn
simulation is detailed in Algorithm 1. We simulate a population
of 2000 players, each player described by a tuple of real-valued
attributes for skill, persistence, and boredom tendency. The initial
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player population’s attributes are sampled from a normal distribu-
tion.

For each level, we draw two random numbers 𝑠, 𝑡 from normal
distributions with means determined by player skill and persistence
attributes, and standard deviations defined by the parameters 𝛼, 𝛽
(Algorithm 1 lines 5-6). Each simulated player attempts a level until
passed or churned (line 9). If the random draw 𝑠 exceeds the level
difficulty, the player passes (line 11). Otherwise, the player churns
if the number of attempts exceeds the random draw 𝑡 (line 22).
Additionally, a player also churns if passing the level but becoming
bored, which is determined by the third random draw𝑏 based on the
boredom attribute (lines 14-15). For each failed attempt, the players
are also learning from their mistakes, simulated as incrementing 𝑠
(line 21). At the end, we return the population to its original size
by replicating randomly selected players (line 30). Because of the
random selection, this replication does not affect the distribution
of individual differences, and it prevents population depletion that
would lead to inaccuracies in simulating later levels.

Note that we only simulate per-level learning, instead of learning
over the levels, as our level difficulty estimates and ground truth
data already have learning "built-in". The DRL agent is trained
from scratch for each level, and the human ground truth pass rates
are measured from players who have played through the level
progression, learning on the way.

Figure 6 shows how skill, persistence, and boredom attribute
distributions change over levels in the simulation. One can observe
an increase in average persistence, and a decrease in the tendency
to get bored. There is also an increase in skill, although to a lesser
degree.

Figure 6: Evolution of the simulated player population’s
mean and standard deviation of skill, persistence, and bore-
dom attributes over game levels.

4.3.2 Design Rationale. We chose to model skill, persistence, and
boredom based on our human player data and the literature on
game engagement and player psychology. Figure 1 shows that pass
rate and churn are related, with players being more likely to churn
with low pass rate, in line with [24, 34]. A psychological explana-
tion for this can be found in Self-Determination Theory [37], which
posits that feelings of competence and mastery support intrinsic

motivation. Thus, repeatedly failing a level is likely to decrease the
motivation to play. In AB Dream Blast, level pass rate depends on
skill but with some randomness due to randomly spawned game
objects, which motivates our stochastic skill model. The persistence
coefficient is based on some players being more persistent and will-
ing to keep trying when facing hard challenges [28]. Finally, game
engagement tends to decline over time [44, 45]. One psychological
explanation for this is that the novelty of a game fades over time,
which makes players less likely to feel curious interest [42]. Con-
sidering boredom as the counterpart of curiosity, we model each
simulated player’s tendency to get bored as probability of churning
after passing a level. This makes the player increasingly likely to
churn when progressing through multiple levels and the boredom
random draw is repeated.

4.3.3 Optimizing Simulation Parameters. To fit the model to ob-
served pass and churn rates from real players, we optimize three
types of parameters: 1) the baseline pass rate predictor’s regression
weights, 2) the means and standard deviations for the initial player
population’s skill, persistence, and boredom attributes, and 3) the
𝛼, 𝛽, 𝜃,𝛾 parameters of Algorithm 1.

Instead of jointly optimizing all parameters, we simplify by first
independently fitting the baseline pass rate predictor parameters.
The level difficulty 𝑑 in Algorithm 1 line 11 is computed as 𝑑 =

𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒 (−𝜌𝑏 ), where 𝜌𝑏 is the baseline pass rate prediction, and
the normalization is over all levels, transforming the difficulties
between zero and one.

The rest of the parameters (10 in total) are optimized using CMA-
ES [12], a derivative-free global optimization method, to minimize
the following objective function:

𝑓 = 𝑀𝑆𝐸 (𝜌𝑝 ) +𝑤churn𝑀𝑆𝐸 (𝜌𝑐 ), (1)
where 𝜌𝑝 and 𝜌𝑐 are the pass rate and churn rate predictions

of Algorithm 1, and 𝑀𝑆𝐸 denotes computing the mean squared
error over all levels. Since the churn rate varies in a much smaller
range than pass rate, we employ the𝑤churn parameter to amplify
the relative imporance of predicting churn correctly. We set𝑤churn
equal to the variance of human pass rates divided by the variance
of human churn rates.

We use CMA-ES population size of 120 and optimize until there
is no improvement for 100 iterations, which takes approximately
two hours on an Intel core i7 2.11 GHz CPU and consumes about
170 Mb RAM.

5 EVALUATION
We use 5-fold cross-validation to compute prediction errors and
compare the twomodels. More specifically, we always simulate over
all levels, but leave out one fifth in computing the optimization ob-
jective function. Thus, human data from levels used for measuring
validation error does not inform the model parameter optimization.
This matches the intended use case where the model is optimized
based on some existing level data, and a designer is using the model
to predict pass and churn rates of new levels.

Table 1 shows the validation mean squared error (MSE) and
mean absolute error (MAE) of the two models. The extended model
improves churn prediction and performs approximately similarly in
pass rate prediction. Note that the two models are complementary
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Algorithm 1 Pass and churn simulation, run for each level

Input: level difficulty 𝑑 , population 𝑃 , standard deviations 𝛼, 𝜃, 𝛽 ,
learning rate 𝛾
Output: pass rate 𝜌𝑝 , churn rate 𝜌𝑐 , evolved population 𝑃

1: 𝜌𝑝 ← 0 ⊲ Initialization
2: 𝜌𝑐 ← 0 ⊲ Initialization
3: 𝑀 ← 𝑃 .𝑠𝑖𝑧𝑒 ⊲ Remember population size
4: for player 𝑝 in population 𝑃 do
5: draw 𝑠 ∼ 𝑁 (𝜇 = 𝑝.𝑠𝑘𝑖𝑙𝑙, 𝜎 = 𝛼)
6: draw 𝑡 ∼ 𝑁 (𝜇 = 𝑝.𝑝𝑒𝑟𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑒, 𝜎 = 𝛽)
7: 𝑝𝑎𝑠𝑠𝑒𝑑, 𝑐ℎ𝑢𝑟𝑛𝑒𝑑 = false
8: 𝑛𝐴𝑡𝑡𝑒𝑚𝑝𝑡𝑠 = 0
9: while not 𝑝𝑎𝑠𝑠𝑒𝑑 and not 𝑐ℎ𝑢𝑟𝑛𝑒𝑑 do
10: 𝑛𝐴𝑡𝑡𝑒𝑚𝑝𝑡𝑠 ← 𝑛𝐴𝑡𝑡𝑒𝑚𝑝𝑡𝑠 + 1
11: if 𝑠 ≥ level difficulty 𝑑 then
12: 𝑝𝑎𝑠𝑠𝑒𝑑 ← true
13: 𝜌𝑝 ← 𝜌𝑝 + 1/𝑛𝐴𝑡𝑡𝑒𝑚𝑝𝑡𝑠/𝑀
14: draw 𝑏 ∼ 𝑁 (𝜇 = 0, 𝜎 = 𝜃 )
15: if 𝑏 < 𝑝.𝑏𝑜𝑟𝑒𝑑𝑜𝑚 then
16: 𝑐ℎ𝑢𝑟𝑛𝑒𝑑 ← true
17: 𝜌𝑐 ← 𝜌𝑐 + 1/𝑀
18: 𝑃 .remove(𝑝)
19: end if
20: else
21: 𝑠 ← 𝑠 + 𝛾 ⊲ Learning
22: if 𝑛𝐴𝑡𝑡𝑒𝑚𝑝𝑡𝑠 > 𝑡 then
23: 𝑐ℎ𝑢𝑟𝑛𝑒𝑑 ← true
24: 𝜌𝑐 ← 𝜌𝑐 + 1/𝑀
25: 𝑃 .remove(𝑝)
26: end if
27: end if
28: end while
29: end for
30: 𝑃 .add(randomly select𝑀 − 𝑃 .𝑠𝑖𝑧𝑒 players from 𝑃 )

instead of mutually exclusive: As the baseline pass rate predictor
gives a slightly lower mean error, one might use its predictions as
such, and only utilize the churn prediction of the extended model.
The means and standard deviations are computed over the cross-
validation folds. As CMA-ES results vary with random seed, we ran
the cross-validation 5 times for the extended model, i.e., the mean
and standard deviation are over a total of 25 optimization runs.

As shown in the scatter plots in Figures 7 and 8, the extended
model is better able to discriminate between the early and later
game levels. As players with low skill and persistence churn earlier,
same as players who get bored easier, the average churn rate in
early levels is higher than in the later levels.

To test the generalization to new levels added to the end of
the game, we did an extra validation test that leaves out the last
fifth of the levels during training. The pass and churn rate MSEs
of these levels are 0.01003 and 0.00003, which are lower than the
baseline 0.01073 and 0.00016. Naturally, our model can become less
reliable when more new levels are added, especially if the levels
feature novel gameplay. Thus, when releasing new levels, a game

developer should collect human player data and refit the population
simulation parameters.

When carefully comparing the predicted and ground truth data
in Figure 8, one notes that although our model captures the overall
relation, some inaccuracy remains especially at low pass rates. We
hypothesized that this is at least to some degree due to inaccuracies
of the pass rates predicted by the AI gameplay. We tested this
hypothesis by also running the simulation using 𝑑 = 1 − 𝜌human
as the difficulty estimate, where 𝜌human is the human pass rate.
This decreases churn prediction MSE by 71%. Figure 9 also shows
how the scatter plots are visually more accurate. While the results
indicate our AI game playing agents are not yet human-like enough,
the results also suggest that our pass and churn simulation of the
extended model is surprisingly accurate.

We performed an ablation study to investigate the effect of each
simulation feature on the prediction results. Table 2 indicates that
removing any of the features would make our churn model less
accurate.

Figure 7: Prediction results of the baseline model. Scatter
plot colors correspond to game level indices.

Figure 8: Prediction results of our extended model. Scatter
plot colors correspond to game level indices.

6 LIMITATIONS AND FUTUREWORK
As a limitation, our model has not yet been validated in actual game
design work, e.g., in testing new levels and identifying problem-
atic levels before they are deployed to real players. This should
be possible in future work, as our Deep Reinforcement Learning
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Table 1: Mean squared errors and mean absolute errors of average pass rate and churn rate prediction.

Validation MSE Validation MAE
Method Pass rate Churn rate Pass rate Churn rate

Baseline 𝜇 = 0.02244
𝜎 = 0.00803

𝜇 = 0.00013
𝜎 = 0.00003

𝜇 = 0.11228
𝜎 = 0.01663

𝜇 = 0.00866
𝜎 = 0.00076

Extended model 𝜇 = 0.02320
𝜎 = 0.00831

𝜇 = 0.00008
𝜎 = 0.00002

𝜇 = 0.11467
𝜎 = 0.01647

𝜇 = 0.00607
𝜎 = 0.00073

Table 2: The effect of different simulation components on the prediction results.

Method Pass rate validation MSE Churn rate validation MSE
All features 0.023 0.00008
No boredom 0.024 0.00009
No persistence 0.023 0.00010
No learning 0.032 0.00010

No random noise in skill and persistence 0.023 0.00014

Figure 9: Extended model results when computing level dif-
ficulty based on actual human pass rates instead of those
predicted by AI gameplay. Comparing this to Figure 8, one
notes improved churn prediction for low pass rates. Scatter
plot colors correspond to game level indices.

game playing approach does not require any reference gameplay
data and should thus generalize to new levels. Our cross-validation
also suggests generalizability. As a downside, we noticed that the
difficulty predictions of the DRL data are not yet entirely human-
like especially for levels with very low pass rates. This is a topic
to investigate in future work, especially as the accuracy of our
population simulation and churn prediction does increase consider-
ably when replacing DRL difficulty predictions with ones computed
from ground truth human data.

Training a DRL agent on a new level is also slow, which imposes
a bottleneck on simulated game testing efficiency. Ways to address
this in future work include improving parallelism (e.g., [1]) and
testing and comparing alternative game playing AI approaches, e.g.,
utilizing MCTS instead of DRL, or speeding up the DRL training
process using transfer learning.

7 CONCLUSION
We have proposed a novel simulation model for predicting puzzle
game level pass and churn rates. Our model combines both AI game-
play for level difficulty prediction, and simulating the evolution of
a player population over game levels using simple computational
models of skill, persistence, boredom, and learning. In terms of
cross-validation error, the model outperforms a baseline model that
predicts pass rates and churn based on AI gameplay data alone.

Our work shows how predictions produced by game playing
Deep Reinforcement Learning agents can be enhanced by even a
computationally very simple population-level simulation of individ-
ual player differences, without requiring retraining the agents or
collecting new gameplay data for each simulated player. As training
the DRL agents can be very slow, this is a foundational result that
can empower future research and applications of player modeling
and simulation-based game testing. Our model is also the first to
make human-like pass and churn rate data emerge from AI game-
play in a way that captures how the relation of pass rate and churn
evolves over a game’s level progression.
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